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There have been numerous studies concerning the possibility of self-similar scaling
laws in fully developed turbulent shear flows, driven over the past half-century or so
by the early seminal work of Townsend (1956, The Structure of Turbulent Shear Flow.
Cambridge University Press). His and nearly all subsequent analyses depend crucially
on a hypothesis about the nature of the dissipation, ε, of turbulence kinetic energy, k.
It has usually been assumed (sometimes implicitly) that this is governed by the famous
Kolmogorov relation ε=Cεk3/2/L, where L is a length scale of the energy-containing
eddies and Cε is a constant. The paper by Dairay et al. (J. Fluid Mech. vol. 781, 2015,
pp. 166–195) demonstrates, however, that, in the specific context of an axisymmetric
wake, there can be regions where ε has a different behaviour, characterised by a
Cε that is not constant but depends on a varying local Reynolds number (despite
the existence of a −5/3 region in the spectra). This leads to fundamentally different
scaling laws for the wake.
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1. Introduction

Townsend’s classical self-preserving approach to characterising the behaviour of
turbulent shear flows rests on the hypothesis that, at sufficiently large Reynolds
numbers, the flow will eventually (i.e. sufficiently far downstream) ‘forget’ anything
about how it was created and thus have a universal form determined solely by the
necessary integral constraints. Analysis then leads to the well-known scaling laws
for the mean velocity and turbulence stress fields, whose details depend only on
the type of flow. For an axisymmetric wake, the analysis leads to a wake width
governed by δ ∼ (x − xo)

λ and a decay in centreline velocity deficit governed by
uo ∼ (x − xo)

−2λ (with λ = 1/3), where x is the distance downstream from the
wake-generating object and xo is a virtual origin. The turbulence statistics follow
corresponding self-similar behaviour. Over the 60 years or so since Townsend’s early
work, there have been many, largely experimental, studies of all the possible flow
types, which have assessed the adequacy of the classical scaling laws. Such studies
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are never very straightforward, and this is particularly true for the axisymmetric wake.
To be confident about both λ and xo, it is necessary that the Reynolds numbers (both
initial – set by the body geometry and upstream velocity – and local – set by

√
k

and δ, say) are large enough to ensure that Townsend’s ‘memory’ hypothesis and
the Kolmogorov dissipation hypothesis are reasonable. In addition, there should be a
sufficiently large range in x downstream of the initial development region (a priori
of unknown length). It is not easy to satisfy both requirements simultaneously.

There has thus been some controversy over whether the Townsend scalings hold.
In fact, starting with the work of Bevilaqua & Lykoudis (1978) over 35 years ago,
there is mounting evidence that the geometry of the wake-generating body has a
marked influence on the far-wake growth rate and turbulence even in regions where
self-similarity is present, which leads to questions about whether the initial conditions
really are ever forgotten. Much later, a similar result was found for plane wakes by
Zhou & Antonia (1995). Johansson, George & Gourlay (2003) undertook a more
complete analysis and showed that, for small Reynolds number, an additional scaling
was possible (for which λ= 1/2) and that both solutions can indeed be dependent on
initial conditions. A numerical study was first done for a high-Reynolds-number case
by Gourlay et al. (2001). Both they and Redford, Castro & Coleman (2012) studied
the spatially homogeneous but time-developing equivalent of axisymmetric wakes
using direct numerical simulation (DNS). The latter showed apparently unequivocally
that, for late enough times (corresponding to very far downstream in the spatially
developing case), the classical λ = 1/3 universal behaviour occurs, in which the
multiplying constants (e.g. in the growth-rate relation for δ) are truly independent of
the initial conditions and Cε is essentially constant.

It is especially crucial to recognise that all the extant work has assumed the
adequacy of Kolmogorov’s hypothesis (that the small-scale motions evolve much
more rapidly than the time scale of the evolution of the whole flow), which led,
with additional assumptions, to the famous equilibrium dissipation law, ε = Cεk3/2/L
(with Cε = const.). The major objective of Dairay, Obligado & Vassilicos (2015) is
to ‘establish the existence of a new non-equilibrium dissipation law’, which assumes
that, given a global Reynolds number set by the initial conditions, Cε ∼ Re−n

l ,
where Rel is a local Reynolds number. They do this for an axisymmetric wake,
comparing their data with the scaling-law exponents that arise on the basis of this new
dissipation law.

2. Overview

After a brief introduction to the arguments leading to the classical axisymmetric
wake scalings in which λ = 1/3, not least their reliance on the assumption that
Cε = const., Dairay et al. (2015) introduce their alternative non-equilibrium dissipation
law (discussed more fully by Vassilicos (2015)), which states that Cε ∼ Rem

G/Ren
l ,

where ReG is a global Reynolds number set by the initial conditions and Rel is
a local one, which for an axisymmetric wake (as for grid turbulence) falls with
distance downstream. From the equations of motion and on the basis of the similarity
arguments by George (1989) (and see also Johansson et al. (2003)), this leads to
the wake scaling laws derived by Nedić, Vassilicos & Ganapathisubramani (2013),
which can essentially be expressed as δ∼ (x− xo)

1/(3−n) and uo∼ (x− xo)
−2/(3−n), with

n= m= 1 (cf. n= m= 0 for λ= 1/3). Note that this value of n and m is the same
as for a laminar wake (λ= 1/2), although it arises for different reasons. However, it
can also arise (and does) when the classical Kolmogorov law is assumed for a fully
turbulent, high-Reynolds-number wake characterised by large ratios of turbulence to
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viscous stress, provided only that the eddy viscosity is constant (Redford et al. 2012).
The presence of n = 1 scaling is thus not necessarily associated with low Reynolds
number.

Dairay et al. (2015) examine their scalings by exploring the wake of an irregular
(fractal-type) bluff plate with sharp edges, using both a wind tunnel experiment
and a matching DNS. This is unusual, not only in that both approaches are used
in the same work but also because the DNS is of a spatially developing wake
(as in the experiment), rather than a time-developing one, with the generating
body included in the computational domain. Whilst this allows capture of the near
wake it has the inevitable consequence that the available downstream extent of the
wake is somewhat limited. It is also unusual because of the use of a fractal-type
wake-generating plate, which leads, in the very near field, to a (‘multi-scale’) flow
having a mixture of wake-like and jet-like character. For the DNS, great care is
taken to ensure that there is sufficient domain size, grid resolution and statistical
convergence. For the experiments, the plate is placed in a low-turbulence wind tunnel
at ReG=U∞Lb/ν = 40 000, where Lb=

√
A, with A the plate area. The measurements

are made using hot-wire anemometry and extend to x≈ 50Lb, whereas the DNS has
ReG = 5000 and reaches approximately x= 100Lb.

The results suggest that, over most of the extent of the wind tunnel wake (15 6
x/Lb 6 50), CεRen

l with n= 1 is more closely constant than is Cε . Actually, they show
that a better fit requires n≈ 0.77. Further downstream (556 x/Lb 6 100) the DNS data
suggest a change to n≈ 0.5. To derive theoretical scalings for wake width and velocity
deficit that have n 6= 1, the authors make a ‘constant anisotropy’ assumption – that the
Reynolds shear stress and the turbulent kinetic energy profiles scale in the same way
(but not with u2

o). This is essentially a revised Townsend–George theory (Townsend
1976; George 1989), but includes the new ‘non-equilibrium dissipation’ law. (Note that
only the latter is necessary for n= 1.) The variations of uo and δ along the wake are
shown to conform quite well to the new scalings, uo ∼ (x − xo)

α and δ ∼ (x − xo)
β ,

with α = −2β = −2(1 + n)/(3 + n), albeit with different n (< 1) for the upstream
and downstream halves of the x region studied. Given that the local Reynolds number
(
√

kδ/ν) only falls to around 230 by x= 100Lb in the DNS, and is very much higher
in the wind tunnel, it is arguably difficult to claim that it is too small to expect the
classical scaling to hold.

In addition to the increasing body of evidence that the value of Cε can depend
on initial conditions, Dairay et al. (2015) (following Nedić et al. (2013), along with
the same group’s work on grid turbulence) thus go much further and question the
universality of Reynolds-number independence of Cε . No physical explanation is
offered for why the CεRen

l = const. dissipation law might apply, but it does provide
revised scaling laws for axisymmetric wakes that fit the present data.

3. Future

Although there is considerable evidence for the adequacy of the classical dissipation
relation, it is apparent that it may be too simplistic, at more than one level. (Actually,
it has long been recognised that Cε is unlikely to be universal (Taylor 1935).) It
is already clear that, whilst at sufficiently large Reynolds number Cε may become
constant, its precise value can depend on initial conditions (e.g. Sreenivasan 1998;
Antonia & Pearson 2000). Dairay et al.’s data seem even more revealing, in that,
using only one wake-generating body, they show that Cε is not even constant, but
rather varies with local Reynolds number. The Kolmogorov law ε = Cεk3/2/L, with
Cε = const., is often seen as ‘one of the cornerstone assumptions of turbulence theory’
but Lumley (1992) remarked that the ‘mechanism that sets the level of dissipation in
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a turbulent flow, particularly in changing circumstances’, is worthy of further study.
If the results of the Dairay et al. (2015) study can be shown to be typical of other
high-Reynolds-number turbulent shear flows ‘in changing circumstances’, or indeed in
axisymmetric wakes at significantly higher Rel than they could reach, the premonition
implied by Lumley’s remark will prove to have been prophetic. The matter is certainly
worthy of more extensive study, not least because the non-equilibrium dissipation law
seems to break the link between the presence of −5/3 spectra and classical cascade
arguments. This new law seems to hold over much of any wake region that is likely
to exist in real applications, so, even without any physical explanation, it would seem
to be important. One can expect further experiments exploring the issue, aimed not
least at finding whether (and if so, why) there is a final transition to a more classical
scaling at some greater distance downstream, as Dairay et al. (2015) suggest, even
though Rel must continue to fall.

Finally, note that little is known about how the very-near-wake flow transitions
to the region explored by Dairay et al. (2015). The process must surely be very
dependent on the geometry of the generating body. The near-wake usually contains
interesting and complex dynamics (e.g. the recent work of Rigas et al. (2015) and
references therein). There would seem to be much scope for exploration of the various
transition regions. And there remains the need for a physical explanation for the new
non-equilibrium dissipation relation.
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