SPACES OF HOLOMORPHIC FUNCTIONS AND HILBERT-SCHMIDT SUBSPACES

by EBERHARD GERLACH*

(Received 15 June, 1970)

In this note we construct certain Hilbert subspaces with Hilbert-Schmidt imbedding, for an arbitrary proper functional Hilbert space which consists of holomorphic functions. This work extends results of Chapter III in [1] and has applications in the regularity problem for generalised eigenfunctions (in particular to Theorem 2 in [2]). For an exposition of reproducing kernels and Bergman's kernel function we refer to [4].

Let P denote a polydisc $P = \{z \in \mathbb{C} : |z_j - a_j| < r_j \ (j = 1, ..., n)\}$ and $\mathcal{B} = \mathcal{B}(P)$ the space of all functions that are holomorphic in P and square integrable over P with respect to Lebesgue measure on \mathbb{R}^{2n} . \mathcal{B} , endowed with the L^2 -norm, has a reproducing kernel $B(z, \zeta)$ which is Bergman's kernel; the function $B : P \to \mathcal{B}$ given by $z \mapsto B(\cdot, z)$ is (strongly) conjugate-holomorphic (i.e. $\overline{z} \mapsto B(\cdot, z)$ is holomorphic from \overline{P} to \mathcal{B}). The following result extends Theorem III.1 of [1] (which corresponds to the case $\alpha = 1$ below).

THEOREM 1. There is a positive selfadjoint operator T of Hilbert-Schmidt type in the space \mathscr{B} with Bergman's kernel $B(z, \zeta)$, with the following properties. For every $\alpha \geq 0$, the Hilbert subspace $T^{\alpha}\mathscr{B} \equiv \mathscr{B}_{\alpha}$ of \mathscr{B} with norm $\|\varphi\|_{\alpha} = \|T^{-\alpha}\varphi\|_{\mathscr{B}}$ contains all functions $B(\cdot, \zeta)$ ($\zeta \in P$),

and so does the nuclear countably-Hilbert space $\mathscr{B}_{\infty} \equiv \bigcap_{\alpha \in \mathbb{R}} \mathscr{B}_{\alpha} = \bigcap_{k=0}^{\infty} \mathscr{B}_{k}$

$$\left(with metric \quad \rho(0, u) = \sum_{k=0}^{\infty} 2^{-k} \frac{\|u\|_{k}}{1 + \|u\|_{k}} \right);$$

moreover the mapping $\zeta \mapsto B(\cdot, \zeta)$ is conjugate-holomorphic in the norm of every \mathscr{B}_{α} and in the metric of \mathscr{B}_{∞} .

Proof. We construct the operator *T*. Let *m* denote a multi-index (m_1, \ldots, m_n) of *positive* integers, and write $\prod_{j=1}^n m_j = \overline{m}$. The monomials $\chi_m(z) = \prod_{j=1}^n (z_j - a_j)^{m_j - 1}$ are orthogonal in \mathscr{B} ; their norms are $\|\chi_m\| = \pi^{\frac{1}{2}n}\overline{m}^{-\frac{1}{2}}r_1^{m_1}\dots r_n^{m_n}$. Set $\varphi_m = \|\chi_m\|^{-1}\chi_m$; the φ_m form a complete orthonormal system ("CONS") for \mathscr{B} . The reproducing kernel $B(z, \zeta)$ is represented by $B(\cdot, \zeta) = \sum_m \overline{\varphi_m(\zeta)}\varphi_m$, the series converging in the norm of \mathscr{B} . We define the operator *T* by

$$T\varphi_m = \overline{m}^{-1}\varphi_m;$$

T is Hilbert-Schmidt, since $\sum || T \varphi_m ||^2 = \sum \overline{m}^{-2} < \infty$. For every real number α and every

* This research was supported in part by the National Research Council of Canada, Operating Grant A3014.

 $\zeta \in P$ we have

$$\sum_{m} \left| \, \overline{m}^{\alpha} \varphi_{m}(\zeta) \, \right|^{2} < \infty$$

and consequently

$$B(\cdot,\zeta) = \sum \left[\overline{m}^{\alpha} \overline{\phi_m(\zeta)}\right] \left[T^{\alpha} \varphi_m\right] \in T^{\alpha} \mathscr{B} = \mathscr{B}_{\alpha} \quad \text{for} \quad \alpha \ge 0.$$

Since each \mathscr{B}_{α} is dense in \mathscr{B}_{β} for any $0 \leq \beta \leq \alpha$, we may extend the chain of spaces \mathscr{B}_{α} ($\alpha \geq 0$) by duality. For every $\alpha > 0$, regard \mathscr{B} as a dense subspace of the anti-dual (\mathscr{B}_{α})*, the imbedding given by

$$f(\varphi) = (f, \varphi)_0$$
 for every $\varphi \in \mathscr{B}_{\alpha}$ and $f \in \mathscr{B} = \mathscr{B}_0$.

Setting $(\mathscr{B}_{\alpha})^* = \mathscr{B}_{-\alpha}$, we thus obtain a continuous scale of Hilbert spaces in the sense of S. G. Krein and others (cf. [3] for instance), and this scale is nuclear, since the imbedding $\mathscr{B}_{\alpha} \subset \mathscr{B}_{\beta}$ is nuclear whenever $\alpha - \beta > 2$. In this chain we can define any (real) power of T by $T^{\beta}\varphi_m = \overline{m}^{-\beta}\varphi_m$ for arbitrary real β , and then $T^{\beta}\mathscr{B} = \mathscr{B}_{\beta}$. Moreover, all the spaces \mathscr{B}_{β} consist of holomorphic functions on P, and the space \mathscr{B}_{β} has a reproducing kernel given by $B_{\beta}(\cdot, \zeta) = T^{2\beta}B(\cdot, \zeta) \ (\beta \in \mathbb{R})$. Also note that, for all $\alpha, \beta \in \mathbb{R}$, we have

$$T^{\beta}B(\cdot,\zeta)\in\mathscr{B}_{\alpha}$$
 for every $\zeta\in P$.

At the very end of [1] it was proved by direct calculation that $z \mapsto B(\cdot, z)$, regarded as a function from P into \mathcal{B}_1 , is (strongly) conjugate holomorphic, i.e., it was shown that

$$\partial B(\cdot,\zeta)/\partial \zeta_j = \lim_{h \to 0} \bar{h}^{-1} [B(\cdot,\zeta+h\varepsilon_j) - B(\cdot,\zeta)]$$

exists in the norm of \mathscr{B}_1 . (Note that the derivative on the left can always be defined pointwise by

$$\frac{\partial B(\cdot,\zeta)}{\partial \zeta_j}(z) = \frac{\partial B(z,\zeta)}{\partial \zeta_j},$$

which is known to exist.) In a completely analogous way one may calculate that, for any real numbers α and β , the function $B_{\beta}: P \to \mathscr{B}_{\alpha}$ given by $z \mapsto B_{\beta}(\cdot, z)$ is conjugate-holomorphic in the norm of \mathscr{B}_{α} .

Finally, set $\mathscr{B}_{\infty} = \bigcap_{\alpha \in \mathbb{R}} \mathscr{B}_{\alpha}$ and $\mathscr{B}_{-\infty} = \bigcup_{\alpha \in \mathbb{R}} \mathscr{B}_{\alpha}$, wit hthe corresponding projective and inductive limit topology, respectively. \mathscr{B}_{∞} is also equal to the nuclear countably-Hilbert space $\bigcap_{k \ge 0} \mathscr{B}_k$ (k an integer); it is a Fréchet space in the metric ("quasi-norm")

$$\sum 2^{-k} \frac{\|u\|_{k}}{1+\|u\|_{k}}.$$

Then $z \mapsto B_{\beta}(\cdot, z)$ (for every fixed $\beta \in \mathbb{R}$) is also conjugate-holomorphic as a function from P into \mathscr{B}_{∞} . The nuclear space $\mathscr{B}_{-\infty}$ is the strong anti-dual of \mathscr{B}_{∞} (and vice-versa), and it is

EBERHARD GERLACH

continuously imbedded in the space H(P) of all holomorphic functions in P with the topology of uniform convergence on compacts. The proof is complete.

REMARK. The space \mathscr{B}_{β} has reproducing kernel $T^{2\beta}B(\cdot, \zeta)$. In any proper functional Hilbert space \mathscr{H} on a set E, with reproducing kernel K, all bounded and certain unbounded operators L have a representation of the following kind:

$$(Lf)(x) = (Lf, K(\cdot, x)) = (f, L^*K(\cdot, x)) \quad \text{for} \quad x \in E,$$

i.e.,

104

$$(Lf)(x) = (f, \Lambda(\cdot, x)),$$

where $\Lambda(\cdot, x) = L^*K(\cdot, x)$ is the "kernel of L". In the present situation, for any $\alpha, \beta \in \mathbb{R}$, the operator T^{α} in \mathscr{B}_{β} is represented by a kernel $S_{\alpha,\beta}$, say, namely

$$S_{\alpha,\beta}(\cdot, z) = T^{\alpha}B_{\beta}(\cdot, z) = T^{\alpha+2\beta}B(z) = \sum \overline{m}^{-(\alpha+2\beta)}\varphi_{m}(\zeta)\varphi_{m};$$

$$(T^{\alpha}\varphi)(z) = (\varphi, T^{\alpha}B_{\beta}(\cdot, z))_{\beta}.$$

(Note that all φ_m lie in \mathscr{B}_{∞} .)

We now turn to the general case which corresponds to the preceding theorem. Let D be a connected domain in \mathbb{C}^n , and $\{\mathcal{F}, D\}$ an arbitrary proper functional Hilbert space consisting of functions that are holomorphic in D; denote the reproducing kernel of \mathcal{F} by $K(z, \zeta)$. Let P be any polydisc whose closure is contained in D. Then we have the following result.

THEOREM 2. There exists a Hilbert subspace Φ of \mathcal{F} containing all functions $K(\cdot, \zeta)$ ($\zeta \in P$), such that the imbedding of Φ into \mathcal{F} is Hilbert–Schmidt, and the function $P \to \Phi$ given by $\zeta \mapsto K(\cdot, \zeta)$ is conjugate-holomorphic in the norm of Φ .

Proof. Let $\mathscr{F}|_P$ be the space of restrictions to P of functions in \mathscr{F} . Since D is connected and the functions in \mathscr{F} are holomorphic, the subspace N(P) of \mathscr{F} of functions vanishing identically on P is zero. Thus $\mathscr{F}|_P$ is "the same" as $\mathscr{F} \ominus N(P) = \mathscr{F}$. All functions in $\mathscr{F}|_P$ are holomorphic in a neighbourhood of the closure of P, hence square integrable on P, and so $\mathscr{F}|_P (=\mathscr{F})$ is a Hilbert subspace of $\mathscr{B}(P) = \mathscr{B}$ with Bergman kernel B. Let G be the "kernel of \mathscr{F} in \mathscr{B} ", i.e., $(f, h)_{\mathscr{B}} = (f, Gh)_{\mathscr{F}}$ for $f \in \mathscr{F}$, $h \in \mathscr{B}$; its square root (taken in \mathscr{B}) is the canonical partial isometry of \mathscr{B} onto \mathscr{F} . Then the reproducing kernel of $\mathscr{F}|_P$ is the restriction of $K(z,\zeta)$ to $P \times P$, and $K(\cdot,\zeta)|_P = GB(\cdot,\zeta)$ for $\zeta \in P$. Let $\{\varphi_m\}$ and T in \mathscr{B} be as described in Theorem 1. Then

$$K(\cdot,\zeta)\big|_{P}=GB(\cdot,\zeta)=\sum_{m}\overline{m}^{\alpha}\overline{\varphi_{m}(\zeta)}GT^{\alpha}\varphi_{m}$$

for all $\alpha \geq 0$, and

$$\sum_{m} \|GT^{\alpha}\varphi_{m}\|_{\mathscr{F}}^{2} = \sum_{m} \|G^{\frac{1}{2}}T^{\alpha}\varphi_{m}\|_{\mathscr{B}}^{2} \leq \|G\|_{\mathscr{B}} \sum_{m} \|T^{\alpha}\varphi_{m}\|_{\mathscr{B}}^{2} \qquad (\|G^{\frac{1}{2}}\|^{2} = \|G\| \quad \text{in} \quad \mathscr{B}).$$

Now let $\{\psi_m\}$, where *m* varies over all multi-indices of positive integers, be a CONS in

 $\mathscr{F} = \mathscr{F}|_{P}$, and put

$$L\psi_m = GT^{\alpha}\varphi_m = \overline{m}^{-\alpha}G\varphi_m$$

for some fixed α . Then $K(\cdot, \zeta) \in L\mathcal{F}$ for all $\zeta \in P$, and, if $\alpha \ge 1$, then L is Hilbert-Schmidt in \mathcal{F} .

Let $\alpha \ge 1$ (fixed) from now on, and make $L\mathscr{F}$ into a Hilbert-Schmidt subspace Φ of \mathscr{F} by defining the following norm on it:

$$||v||_{\Phi}^{2} = \inf \{\sum |\xi_{m}|^{2} : v = \sum \xi_{m} L \psi_{m} \text{ in } \mathscr{F} \}.$$

We check that $K(\cdot, \zeta)$ is conjugate-holomorphic in the norm of Φ . It is known that the two limits

$$\partial K(z,\zeta)/\partial \zeta_j = \lim_{h \to 0} \bar{h}^{-1}(K(\cdot,z), K(\cdot,\zeta+h\varepsilon_j) - K(\cdot,\zeta))_{\mathcal{F}}$$

and

$$\lim_{h \to 0} \bar{h}^{-1} [K(\cdot, \zeta + h\varepsilon_j) - K(\cdot, \zeta)] \quad \text{in the norm of } \mathscr{F}$$

exist, and the value of the second of these at z is just the first limit. Write

 $\bar{h}^{-1}[K(\cdot,\zeta+h\varepsilon_j)-K(\cdot,\zeta)]=K_{\zeta,h}.$

Because of the uniqueness of limits we only have to show now that the $K_{\zeta,h}$ converge, as $h \to 0$, in the norm of Φ ; then their limit must lie in Φ and equal $\partial K(z, \zeta)/\partial \zeta_j$. If $\zeta \in P$, then

$$K(\cdot,\zeta)=\sum_{m}\overline{m}^{\alpha}\overline{\varphi_{m}(\zeta)}L\psi_{m}$$

and

$$\| K(\cdot, \zeta) \|_{\Phi}^{2} \leq \sum_{m} | \overline{m}^{\alpha} \varphi_{m}(\zeta) |^{2}.$$

Due to our constructions, G restricted to \mathscr{B}_{α} is a bounded operator of \mathscr{B}_{α} into Φ ; moreover $K_{\zeta,h} = Gh^{-1}[B_{\alpha}(\cdot, \zeta + h\varepsilon_j) - B_{\alpha}(\cdot, \zeta)] \equiv GB_{\alpha,\zeta,h}$, and the $B_{\alpha,\zeta,h}$ converge in \mathscr{B}_{α} by Theorem 1. Thus the $K_{\zeta,h}$ converge in the norm of Φ as $h \to 0$. The proof is complete.

REMARK. One could cover D by a sequence of polydiscs P_k whose closures all lie in D, redefine L and Φ suitably, and obtain the conclusions of Theorem 2 simultaneously for all $\zeta \in D$.

It would be desirable to obtain a slightly better result than the space Φ in Theorem 2, namely a nuclear Fréchet space Ψ continuously imbedded in \mathscr{F} , containing all $K(\cdot, \zeta)$ ($\zeta \in D$), such that the map $D \to \Psi$ given by $\zeta \mapsto K(\cdot, \zeta)$ is conjugate holomorphic in the topology of Ψ . For the present we leave aside the problem of constructing such a nuclear subspace in a direct way (without recourse to the space $\mathscr{B}(P)$).

If we restrict ourselves to a fixed polydisc whose closure lies in D, and if the closure \mathcal{M} of $\mathcal{F}|_{P} = \mathcal{F}$ in $\mathcal{B} = \mathcal{B}(P)$ reduces the operator T, we can proceed as follows. Let Q be the

EBERHARD GERLACH

orthogonal projection onto \mathscr{M} in \mathscr{B} . Then Q commutes with every T^{α} , and QT generates the nuclear Hilbert scale $\{Q\mathscr{B}_{\alpha} : \alpha \in \mathbb{R}\}, Q\mathscr{B}_{\alpha} = QT^{\alpha}\mathscr{B}$. In this case the nullspace of the kernel G (G defined in the proof of Theorem 2) equals the orthogonal complement of \mathscr{M} , and, as G is injective on every $Q\mathscr{B}_{\alpha}$, we simply transfer the norm $\| \|_{\alpha}$ from $Q\mathscr{B}_{\alpha}$ to $GQ\mathscr{B}_{\alpha} = G\mathscr{B}_{\alpha}$ and obtain the nuclear Fréchet space $\Psi = \bigcap \{G\mathscr{B}_{\alpha}, \| \|_{\alpha}\}$ ($\alpha \in \mathbb{R}$), which contains all $K(\cdot, \zeta)$ ($\zeta \in P$). The norm $\| \|_{\alpha}$ on $G\mathscr{B}_{\alpha}$ is the same as that given in the above definition of a norm on Φ (when we used $L\psi_m = \overline{m}^{-\alpha}G\varphi_m$). Since $\zeta \mapsto K(\cdot, \zeta)$ is conjugate-holomorphic in every norm $\| \|_{\alpha}$, it is conjugate-holomorphic in the metric

$$\sum 2^{-k} \frac{\|u\|_k}{1+\|u\|_k}$$
 of Ψ .

REMARK. If Φ^* and Ψ^* are the (strong) anti-duals of the Φ and Ψ above, then $\mathscr{F} \subset \Phi^* \subset H(D)$ or $\mathscr{F} \subset \Psi^* \subset H(D)$ with continuous linear imbeddings, where H(D) is the space of all holomorphic functions on D with the topology of uniform convergence on compacts.

REFERENCES

1. E. Gerlach, On spectral representation for selfadjoint operators. Expansion in generalized eigenelements, Ann. Inst. Fourier Grenoble, 15 (1965), 537–574.

2. E. Gerlach, Mean value properties of generalised eigenfunctions, *Proc. Edinburgh Math. Soc.* (2) 17 (1970), 155–158.

3. S. G. Krein and Ju. I. Petunin, Scales of Banach spaces (Russian), Uspehi Mat. Nauk 21 (1966), no. 2 (128), 89–168. [English translation in Russian Math. Surveys 21 (1966), no. 2, 85–159.]

4. H. Meschkowski, Hilbertsche Räume mit Kernfunktion (Berlin, 1962).

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER 8, B.C., CANADA and UNIVERSITY OF EDINBURGH