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Abstract

The scaled boundary finite element method (SBFEM) is a semi-analytical computational
method initially developed in the 1990s. It has been widely applied in the fields
of solid mechanics, oceanic, geotechnical, hydraulic, electromagnetic and acoustic
engineering problems. Most of the published work on SBFEM has focused on its
theoretical development and practical applications, but, so far, no explicit discussion on
the numerical stability and accuracy of its solution has been systematically documented.
However, for a reliable engineering application, the inherent numerical problems
associated with SBFEM solution procedures require thorough analysis in terms of
its causes and the corresponding remedies. This study investigates the numerical
performance of SBFEM with respect to matrix manipulation techniques and their
properties. Some illustrative examples are given to identify reasons for possible
numerical difficulties, and corresponding solution schemes are proposed to overcome
these problems.
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00A73.
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1. Introduction

The development of SBFEM dates back to the mid-1990s [25]. Initially, it was termed
as the consistent infinitesimal finite-element cell method, and later renamed as the
scaled boundary finite element method, when the concept of solving problems was
better understood. Since then, SBFEM has been used in various engineering fields with
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rapid recognition and acknowledgement. Apart from the wave propagation problem
within the framework of dynamic unbounded medium-structure interaction, from
which the concept of SBFEM was originally derived, SBFEM has been employed in
fracture mechanics [28–30] by taking advantage of its capability to accurately capture
the stress intensification around the crack tips. It has also been applied to solve wave
diffraction problems around breakwaters and caissons by many researchers [10, 11, 23,
24]. Subsequently, SBFEM has been reformulated in computational electromagnetics
to address waveguide eigenproblems [13], extending its application to a new area.

Similar to other numerical methods, one of the most significant concerns in
assessing the practical applicability of SBFEM is the reliability of its solution; more
specifically, the numerical stability and accuracy of its calculations. The original
partial differential equations (PDEs) governing the physical problem, through the
scaled boundary coordinate transformation and the weighted residual technique, is
rewritten in the matrix form of ordinary differential equations (ODEs), that is, the
scaled boundary finite element equation. The term matrix refers to the coefficient
matrices of the equation, which are calculated from the discretization information
of the domain boundary and are in the form of matrices. These coefficient matrices
are used to formulate a Hamiltonian matrix, of which a matrix decomposition is to
be performed. The level of accuracy of the Hamiltonian matrix decomposition is a
prerequisite for a valid SBFEM calculation. On the other hand, SBFEM is essentially
vulnerable to the unavoidable rounding error associated with floating-point arithmetic,
especially when the magnitudes of matrix entries calculated from input parameters
differ significantly over a vast range. The rounding error can intensify over a sequence
of matrix manipulations, especially matrix inversions, to such an unmanageable extent
that it renders the SBFEM calculation meaningless.

Most of the literature in this area has focused on the theoretical development of
SBFEM to derive its conceptual framework [6, 20–22, 26, 27] and the technical
issues related to the solution algorithms of the scaled boundary finite element
equation [1, 2, 12, 17, 18]. No explicit emphasis has been given to the numerical
stability and accuracy of the SBFEM solution, which motivates a discussion on its
practical applicability. The goal of this study is to fill in this gap in the research, that
is, to explore the numerical credibility of SBFEM, detect the technical reasons for
potential instability and inaccuracy and propose solution schemes to overcome these
problems.

2. Basic formulation of SBFEM

The concept of SBFEM originates from two robust numerical methods, that is, the
finite element method (FEM) and the boundary element method (BEM). By scaling
the discretized boundary of the study domain with respect to a centre, either outwards
to address an unbounded domain or inwards for a bounded domain, SBFEM describes
the problem by using a radial coordinate and two circumferential coordinates. This
reduces the spatial dimension of the problem by one in the solution process, as
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Figure 1. Definition of the scaled boundary coordinate system [20].

in the BEM. The discretization and assembly concepts are inherited from FEM;
however, they are only applied on the boundary, which significantly minimizes the
discretization effort and leads to substantially reduced degrees of freedom.

Detailed and systematic descriptions of key technical derivations of SBFEM and
its solution schemes are abundantly documented, and hence will not be repeated here.
However, we outline a three-dimensional illustration of a bounded elastic problem to
introduce some key equations for later reference.

The scaled boundary coordinate system (ξ, η, ζ), with ξ denoting the radial
coordinate and η and ζ for the circumferential coordinates, is illustrated in Figure 1.
It is interrelated to the Cartesian coordinate system (x̂, ŷ, ẑ) by the mapping function
[N(η, ζ)] as

x̂(ξ, η, ζ) = ξ[N(η, ζ)]{x} + x0,

ŷ(ξ, η, ζ) = ξ[N(η, ζ)]{y} + y0,

ẑ(ξ, η, ζ) = ξ[N(η, ζ)]{z} + z0,

(2.1)

where ({x}, {y}, {z}) represents a nodal point on the discretized boundary and (x0, y0, z0)
represents the scaling centre O with respect to which the boundary is scaled. Note that,
as a convention in SBFEM, the coordinate of the Cartesian space is represented by
(x̂, ŷ, ẑ), and (x, y, z) is reserved for the coordinates on the boundary. However, x, y and
z are still used when indicating directions in the following discussions.

Equation (2.1), on which the scaled boundary transformation is based, is the
core of the SBFEM concept. The governing differential equations for elasto-dynamic
problems are shown in equation (2.2), with [L] representing the differential operator,
{σ} the stress amplitude, {ε} the strain amplitude, {u} the displacement amplitude, [D]
the elastic matrix, ω the excitation frequency and ρ the mass density: that is,

[L]T {σ} + ω2ρ{u} = 0,
{σ} = [D]{ε},
{ε} = [L]{u}.

(2.2)
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Equation (2.2) is weakened along the discretized circumferential direction by using
either the weighted residual technique or the variational principle. Consequently, the
scaled boundary finite element equation in the nodal displacement function {u(ξ)}
yields

[E0]ξ2{u(ξ)},ξξ + (2[E0] + [E1]T − [E1])ξ{u(ξ)},ξ + ([E1]T − [E2]){u(ξ)}
+ω2[M0]ξ2{u(ξ)} = 0 (2.3)

with the internal nodal force

{q(ξ)} = [E0]ξ2{u(ξ)},ξ + [E1]Tξ{u(ξ)}, (2.4)

where [E0], [E1], [E2] and [M0] are the coefficient matrices obtained by boundary
discretization and assemblage.

Equation (2.3) is termed as the scaled boundary finite element equation. It is a linear
second-order matrix-form ODE, the solution {u(ξ)} of which represents the analytical
variation of the nodal displacement in the radial direction. For elasto-static problems
with ω = 0, equations (2.3) and (2.4) are formulated on the boundary where ξ = 1. The
nodal force {R} and nodal displacement {u} are related by

{R} = [K]{u}, (2.5)

with [K] representing the static stiffness matrix on the boundary. Equation (2.3)
is solved by introducing the variable {X(ξ)} to incorporate the nodal displacement
function {u(ξ)} and the nodal force function {q(ξ)} as

{X(ξ)} =
{
ξ0.5{u(ξ)}
ξ−0.5{q(ξ)}

}
. (2.6)

This yields the first-order ODE

ξ{X(ξ)},ξ = −[Z]{X(ξ)}, (2.7)

where in terms of [E0], [E1], [E2] and the identity matrix [I],

[Z] =

[
[E0]−1[E1]T − 0.5(s − 2)[I] −[E0]−1

−[E2] + [E1][E0]−1[E1]T −[E1][E0]−1 + 0.5(s − 2)[I]

]
,

with s representing the spatial dimension of the study domain (s = 2 or 3 for two-
or three-dimensional problems, respectively). For elasto-dynamic problems, the nodal
displacement function {u(ξ)} records the displacement variation history with respect to
time. The relationship of nodal force {R} and nodal displacement {u} is introduced as

{R} = [S (ω)]{u}, (2.8)

with [S(ω)] representing the dynamic stiffness matrix. With {R} = {q(ξ)} at ξ = 1 on
the boundary, the scaled boundary finite element equation is rewritten using [S(ω)] as

([S (ω)] − [E1])[E0]−1([S (ω)] − [E1]T ) − [E2] + [S (ω)]
+ω[S (ω)],ω + ω2[M0] = 0. (2.9)
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Figure 2. Solution procedures of SBFEM.

Equation (2.9) is a nonlinear first-order matrix-form ODE. Now the main objective is
to solve the dynamic stiffness matrix [S(ω)] in equation (2.9) and substitute it back
into equation (2.8) to obtain the nodal degrees of freedom {u}.

Being formulated either in {u(ξ)} or [S(ω)], once {u} is obtained, the solution of
the entire domain can be calculated by specifying the scaled boundary coordinates ξ, η
and ζ. The solution is exact in the radial direction, and it converges in the finite element
sense in circumferential directions. The solution procedures described above can be
illustrated by a flow chart shown in Figure 2.

3. Matrix decomposition

3.1. Eigenvalue decomposition and inherent numerical issues Some of the main
techniques for solving the matrix-form scaled boundary finite element equation for
both elasto-static and elasto-dynamic problems have been summarized in Section 2.
A Hamiltonian matrix [Z] is formulated using [E0], [E1] and [E2] of the scaled
boundary finite element equation (2.3), where the nodal displacement function {u(ξ)} is
the basic unknown function. A new intermediate variable {X(ξ)} is introduced, which
reduces the second-order ODE (2.3) to a first-order ODE (2.7). By hypothesizing
the displacement field in the form of the power series of the radial coordinate ξ, the
solution of equation (2.7) yields

{X(ξ)} = c1ξ
−λ1{φ1} + c2ξ

−λ2{φ2} + · · · + cnξ
−λn{φn}, (3.1)
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with n as the dimension of the Hamiltonian matrix [Z]. Substitution of equation (3.1)
into equation (2.7) leads to the eigenproblem

[Z]{φi} = λi{φi} for i = 1, 2, . . . , n, (3.2)

where λi is the eigenvalue of [Z] and {φi} is the corresponding eigenvector. Equation
(3.1) can be recast in a matrix form as

{X(ξ)} =
[
[Φ11] [Φ12]
[Φ21] [Φ22]

] [
[ξΛ1 ]

[ξΛ2 ]

] {
{C1}

{C2}

}
, (3.3)

where Λ1 and Λ2 are two diagonal matrices with λi (i = 1, 2, . . . , n) being their entries.
Note that, if λ is an eigenvalue of [Z], then −λ, λ̄ (conjugate complex number) and −λ̄
are also eigenvalues of [Z]. The eigenvalues λi of matrix [Z] can be arranged in such
a way that all the eigenvalues in Λ1 have positive real parts and all the eigenvalues in
Λ2 have negative real parts. From equations (3.3) and (2.6),

{u(ξ)} = ξ−0.5([Φ11][ξΛ1 ]{C1} + [Φ12][ξΛ2 ]{C2}) (3.4)

and
{q(ξ)} = ξ+0.5([Φ21][ξΛ1 ]{C1} + [Φ22][ξΛ2 ]{C2}), (3.5)

where the integral constants {C1} and {C2} are to be determined by the given boundary
conditions.

The displacement amplitude at the scaling centre, where ξ = 0 for a bounded
domain, should be finite. Since the real parts of λi in Λ2 are negative, from equations
(3.4) and (3.5)

{u(ξ)} = ξ−0.5[Φ11][ξΛ1 ]{C1} (3.6)

and
{q(ξ)} = ξ+0.5[Φ21][ξΛ1 ]{C1}. (3.7)

Since {R} = [K]{u} and {R} = {q(ξ = 1)} on the boundary, eliminating the constant
vector {C1} from equations (3.6) and (3.7) yields

[K] = [Φ21][Φ11]−1. (3.8)

Consequently, {u} and {C1} can be calculated from equation (2.5) and (3.6),
respectively.

After {C1} is determined, the nodal displacement function {u(ξ)} along the line
defined by connecting the scaling centre and the corresponding node on the boundary
is analytically obtained from equation (3.6). For unbounded domains, the displacement
amplitude at ξ =∞ must remain finite, and {R} = −{q(ξ = 1)} applies.

In real cases, however, the power series formulation may not provide a complete
general solution, since logarithmic terms exist in problems involving particular
geometric configurations, material composition and boundary conditions [3, 8, 15, 16].
In this case, multiple eigenvalues or near-multiple eigenvalues of the Hamiltonian
matrix [Z] might be present, corresponding to parallel eigenvectors and indicating the
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existence of logarithmic terms in the solution. Consequently, matrices [Φ11] and [Φ21]
in equation (3.8) (or [Φ12] and [Φ22] for the case of an unbounded domain), formed by
parallel eigenvectors, are rank-deficient and irreversible, which results in inaccurate
solutions, or even failure of the eigenvalue decomposition when solving the scaled
boundary finite element equation.

3.2. Real Schur decomposition Deeks and Wolf [5, 7] investigated a two-
dimensional unbounded domain problem governed by the Laplace equation using
SBFEM, in which the displacement amplitude is infinite in the nearby field. This
infinite term is represented by an additional logarithmic mode, associated with the rigid
body translation to the power series formulation of the solution. Song [17] proposed a
matrix-function solution in combination with the real Schur decomposition to address
this multiple eigenvalue issue. Terms in the series solution are not restricted to power
function form. Unlike the work presented in Deeks and Wolf [5, 7], Song’s [17] matrix
function method does not require any prior knowledge of the presence of logarithmic
terms, and copes well with the power and logarithmic functions and their transitions
in the solution. Li et al. [12] further discussed the outperformance of the real Schur
decomposition compared with the conventional eigenvalue decomposition technique.

The real Schur decomposition of the Hamiltonian matrix [Z] can be expressed as

[Z] = [V][S ][V]T , (3.9)

where [V] is an orthogonal matrix and [S] is a block upper triangular matrix with one-
by-one and two-by-two blocks on the diagonal. The eigenvalues are revealed by the
diagonal elements and the blocks of [S]. The columns of [V] constitute a basis offering
superior numerical properties to a set of eigenvectors {φi} in equation (3.2) [14]. The
matrices [S] and [V] are partitioned into submatrices of equal size as

[S ] =

[
[Sn] ∗

0 [Sp]

]
and [V] =

[
[Vu1] [Vu2]
[Vq1] [Vq2]

]
,

with ∗ representing a real matrix. The diagonal elements of the matrix [Sn] are
negative, and those of the matrix [Sp] are positive. Block-diagonalizing [S], using an
upper-triangular matrix and equation (3.9) yields

[Ψ]−1[Z][Ψ] =

[
[Sn] 0

0 [Sp]

]
.

Similar to equation (3.3), the general solution of equation (2.7) using the real Schur
decomposition is

{X(ξ)} =
[
[Ψu1] [Ψu2]
[Ψq1] [Ψq2]

] [
ξ−[Sn]

ξ−[Sp]

] {
{C1}

{C2}

}
.

Accordingly,

{u(ξ)} = ξ−0.5([Ψu1]ξ−[Sn]{C1} + [Ψu2]ξ−[Sp]{C2}),
{q(ξ)} = ξ+0.5([Ψq1]ξ−[Sn]{C1} + [Ψq2]ξ−[Sp]{C2}).
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Figure 3. A cylindrical pile subjected to a uniformly distributed pressure.

Figure 4. A typical scaled boundary element and the shape functions.

The following solution procedure is the same as described for the eigenvalue
decomposition in Section 3.1. By performing the real Schur decomposition, the
inverse of a possibly close-to-singular matrix [Φ11] (or [Φ12]) can be avoided by
inverting only an upper-triangular matrix [Ψu1] (or [Ψu2]). In addition, real Schur
decomposition is more stable and suffers less from numerical difficulties than the
eigenvalue decomposition. A case study is provided in the next section to demonstrate
the efficiency of the real Schur decomposition.

3.3. Numerical example A cylindrical pile with radius a = 1 m and height h =

10 m, subject to uniformly distributed pressure p = 3 × 108 Pa is shown in Figure 3.
The pile at the bottom of the cylinder is fixed, and it is assumed to exhibit elastic
behaviour with Young’s modulus E and Poisson’s ratio ν being 2.8 × 1010 Pa and
0.25, respectively. The scaling centre is chosen at the bottom centre of the pile. The
circumferential boundary, as well as the top surface of the cylinder, is discretized with
quadratic eight-node quadrilateral isoparametric elements. A representative scaled
boundary element is shown in Figure 4, accompanied by corresponding shape function
expressions. An example of the discretization scheme is illustrated in Figure 5(a).
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Figure 5. Discretization illustration of the pile foundation for (a) SBFEM model and (b) FEM model.

The real Schur decomposition is employed in the calculation. The convergence test
shows that eight elements around the pile circumference are needed, one element along
the radius and sixteen elements along the height of the pile. The displacement of point
A (see Figure 3) on the edge of the pile head converges to 8.0357 and 52.344 mm in the
x- and z-direction, respectively. In this example, a nondimensionalized SBFEM model
is used to exclude the possibility of numerical inaccuracy caused by unfavourable
matrix properties, such as ill-conditioning. The SBFEM nondimensionalization will
be detailed in Section 4.

An equivalent FEM analysis is carried out for comparison purposes. Three-
dimensional 20-node hexahedral solid elements are used in the FEM model, as shown
in Figure 5(b). A convergence test shows 28 elements around the circumference, 5
elements along the radius and 50 elements for the height. The displacement of point A
in the x-direction converges to 8.0357 mm, and reaches 52.345 mm in the z-direction.

The displacement profiles of line AB (see Figure 3) from both SBFEM and FEM
models are plotted in Figure 6, in which lines are used to represent FEM results and
markers for SBFEM results. The comparison shows excellent performance of the real
Schur decomposition in the SBFEM solution process.

In order to demonstrate the superiority of the real Schur decomposition over the
eigenvalue decomposition, the radial and vertical displacements of point A, calculated
using the two matrix decomposition algorithms, are compared in Figure 7. The
labels on the horizontal axis represent different discretization schemes. For example,
6 × 10 × 1 signifies that the numbers of elements in the circumferential, vertical and
radial directions are 6, 10 and 1, respectively. Unlike the eigenvalue decomposition, in
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Figure 6. Displacement comparison between SBFEM and FEM model.

real Schur decomposition no prior knowledge of the potential multiple eigenvalues is
required, and no complex number operation is performed. Moreover, the inversion of
rank-deficient matrices can be efficiently avoided, and it gives more stable and reliable
results compared to the eigenvalue decomposition, as shown in Figure 7.

4. SBFEM nondimensionalization

4.1. Numerical issues associated with matrix properties A cylindrical pile
subject to uniformly distributed pressure, as illustrated in Figure 3, is used in this
section to investigate the numerical credibility of the SBFEM calculation in relation to
matrix properties. We examine the displacement components of the point A in the x-,
y- and z-directions.

In the SBFEM model, the scaling centre O is chosen at the geometric centre of
the pile at (0, 0, 5), and the entire surface is discretized into 184 eight-node quadratic
quadrilateral elements. The solution procedure using the real Schur decomposition
presented in Section 3.2 is followed. Using the raw parameters of the cylindrical pile
given in Section 3.3, the displacement components in the x-, y- and z-directions of
the point A are calculated as 4.431 × 103 mm, 1.421 × 104 mm and 7.178 × 104 mm,
respectively. Apparently, these results differ considerably from the solutions depicted
in Figure 7, which are 8.036 mm, 0 and 52.382 mm, respectively.

A close examination of the Hamiltonian matrix [Z] reveals its condition number
κ = 2 × 1024. This implies that the Hamiltonian matrix is ill-conditioned, and any
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Figure 7. Comparison between the eigenvalue decomposition and the real Schur decomposition methods
for: (a) radial displacement and (b) vertical displacement. (Note that the vertical displacements from the
two methods overlap in the plot.)

subsequent manipulations either directly or indirectly related to this matrix may fail
due to any rounding error fluctuation. The exactness of equation (3.9) is checked by
examining the norm of a residual matrix

[Res1] = [Z] − [V][S ][V]T . (4.1)

Theoretically, a norm [Res1] = 0 calculated from equation (4.1) is expected. However,
we obtained a norm 0.1345, which is far beyond the acceptable accuracy tolerance
with an order of 10−7 [9].

Another examination can be associated with the static stiffness matrix [K]. The
static stiffness matrix [K], obtained from equation (3.8), should satisfy equation (2.9),
with [S (ω)] and ω being replaced by [K] and 0, respectively. Therefore, another
residual matrix [Res2] is defined in equation (4.2), which has norm 9 × 1021: that
is,

[Res2] = ([K] − [E1])[E0]−1([K] − [E1]T ) − [E2] + [K]. (4.2)

By examining the Hamiltonian matrix, we find that the maximum magnitude of its
entries is 1010, resulting from the input parameter, that is, Young’s modulus, which
has a magnitude of 108 in the present case. The minimum magnitude, however, is
zero. This significant difference in magnitudes of the matrix entries leads to the ill-
conditioning of the matrix.
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Figure 8. A quarter of a square prism footing embedded in a semi-infinite space: (a) the geometric plot
(b) scaled boundary discretisation of the prism-medium interface.

An elastic wave propagation problem in an unbounded domain serves as another
example illustrating the detrimental effects of large magnitudes of input parameters to
SBFEM calculations. The case of a quarter of a square prism footing embedded in a
semi-infinite half-space, as presented by Song and Wolf [19], is used herein to illustrate
the problem. The geometry of the footing is reproduced in Figure 8(a) with b = 1 m
and e = 2/3 m. The material properties of the half-space are assigned as follows: the
shear modulus G = 1 × 1010 Pa, Poisson’s ratio ν is 1/3 and the mass density ρ is
2500 kg m−3.

A SBFEM model is established with the scaling centre located at point O
in Figure 8(a). The interface between the footing and the unbounded domain is
discretized into 12 eight-node quadratic quadrilateral elements, resulting in a total
of 49 nodes, as shown in Figure 8(b). The continued-fraction technique is used
to formulate the dynamic stiffness matrix [S∞(ω)] in equation (2.8). Details of the
continued-fraction formulation of [S∞(ω)] for an unbounded domain has been given
by Bazyar and Song [1], with key equations presented below. The dynamic stiffness
matrix [S∞(ω)] is decomposed as

[S∞(ω)] = iω[C∞] + [K∞] − [Y (1)(ω)]−1, (4.3)

where [C∞] and [K∞] are the constant dashpot matrix and stiffness matrix, respectively.
At high frequency, [Y (i)(ω)] is the residual of the two-term expansion of [S∞(ω)], and
in a recursive form

[Y (i)(ω)] = iω[Y (i)
1 ] + [Y (i)

0 ] − [Y (i+1)(ω)]−1 (i = 1, 2, 3 . . .),

where [Y (i)
1 ] and [Y (i)

0 ] are the auxiliary matrices, and the superscript i denotes the order
of the continued-fraction formulation. Substituting equation (4.3) into equation (2.8)
yields {

{R(ω)} = (iω[C∞]+[K∞]){u(ω)} − {u(1)(ω)}
{u(ω)} = [Y (1)(ω)]{u(1)(ω)} i f i = 1{u(i−1)(ω)} = (iω[Y (i)

1 ] + [Y (i)
0 ]){u(i)(ω)} − {u(i+1)(ω)}

{u(i)(ω)} = [Y (i+1)(ω)]{u(i+1)(ω)}
i f i > 1

(4.4)
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and in a matrix form this can be expressed as

([A] + iω[B]){û(ω)} = {F̂(ω)}, (4.5)

where {û(ω)} and {F̂(ω)} represent the displacement and external force vectors,
respectively. The coefficient matrices [A] and [B] are formed using [Y (i)

1 ] and [Y (i)
0 ],

(i = 1, 2, 3 . . .) as

[A] =



[K∞] −[I] · · ·

−[I] [Y (1)
0 ] −[I] · · ·

−[I] [Y (2)
0 ] · · ·

...
...

...
. . . −[I]
−[I] [Y (Mc f−1)

0 ] −[I]
−[I] [Y (Mc f )

0 ]


,

[B] = diag([C∞], [Y (1)
1 ], [Y (2)

1 ], . . . , [Y (Mc f−1)
1 ], [Y (Mc f )

1 ]).

(4.6)

The matrices [Y (i)
1 ] and [Y (i)

0 ] (i = 1, 2, 3 . . .) are obtained through a series of matrices
formed by using parameters such as the material density and Young’s modulus (details
can be found in [1]). These calculations include solving Sylvester equations and matrix
inversions. Hence, the properties of the matrices involved are of significant importance
to the stability and accuracy of the overall SBFEM calculations. For example, in
equation (4.6), [K∞] and [Y (1)

0 ] represent the stiffness and flexibility of the domain,
respectively. The magnitude of matrix entries in [K∞] is reciprocal to, and significantly
differs from that in [Y (1)

0 ]. This is analogous between [Y (1)
0 ] and [Y (2)

0 ], . . . , [Y (Mc f−1)
0 ]

and [Y (Mc f )
0 ], as shown in Table 3. Note that instead of examining any particular element

in the matrix, an algebraic sum of elements corresponding to x-, y- and z-directions is
performed. In the meantime, the degree of the difference amplifies as the order of the
continued-fraction increases. Subsequently, upon formulating the coefficient matrix
[A] (analogously, matrix [B]) when solving equation (4.5), the difference in matrix
entries of [K∞], [Y (1)

0 ], [Y (2)
0 ], . . . , and [Y (Mc f )

0 ] results in the ill-conditioning of matrix
[A] (and [B]); this leads to the failure of the SBFEM solution.

From the above discussions, it is clear that input parameters should be processed
prior to calculations to improve the quality of matrices for subsequent computations.
This motivates the introduction of a nondimensionalization scheme into the SBFEM
calculation, since it allows all quantities to have a relatively similar order of magnitude.
The detailed procedure of nondimensionalization and its incorporation into the
SBFEM formulation are presented in the next subsection.
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4.2. SBFEM nondimensionalization procedure Wolf and Song [25] presented
a dimensional analysis, identifying independent variables related to the dynamic
stiffness matrix. The nondimensionalization scheme proposed in this study follows
their idea. The dimensionless length r∗, Young’s modulus E∗ and the mass density
ρ∗ are calculated using corresponding reference variables r∗ = r/rr, E∗ = E/Er and
ρ∗ = ρ/ρr, respectively. The dimensions of the dynamic stiffness matrix [S(ω)] and
the independent variable frequency ω are Ls−3MT−2 and T−1, respectively, with s
representing the spatial dimension of the study domain (s = 2 and s = 3 for two- and
three-dimensional problems, respectively). An equation expressing the dimensions of
[S ]n1 rn2

r En3
r ρ

n4
r ω

n5 as L(s−3)n1+n2−n3−3n4 Mn1+n3+n4 T−2n1−2n3−n5 is used to calculate [S ∗(ω)]
and ω∗. Note that this equation is formed using the reference variables, rather than the
corresponding material parameters, as is the case illustrated by Wolf and Song [25].
This allows more flexibility in the nondimensionalization process and yields

(s − 3)n1 + n2 − n3 − 3n4 = 0,
n1 + n3 + n4 = 0,

−2n1 − 2n3 − n5 = 0.

These equations, two of which can be arbitrarily chosen, are used to determine the
five parameters ni (i = 1, 2, 3, 4 and 5). Given n1 = 1 and n5 = 0, they yield the
dimensionless dynamic stiffness matrix

[S ∗(ω)] = r2−s
r E−1

r [S (ω)], (4.7)

or, if n1 = 0 and n5 = 1,

ω∗ =
ωrr√
Er/ρr

. (4.8)

Similarly, for the static stiffness matrix [K], mass matrix [M] and damping matrix [C],

[K∗] = E−1
r r−1

r [K], [M∗] = ρ−1
r r−3

r [M], [C∗] =

√
Er/ρr

Err2
r

[C], (4.9)

and the coefficient matrices [E0], [E1], [E2] and [M0] are nondimensionalized as

[E0∗] = E−1
r r2−s

r [E0], [E1∗] = E−1
r r2−s

r [E1],
[E2∗] = E−1

r r2−s
r [E2], [M0∗] = ρ−1

r r−s
r [M0]. (4.10)

Also, the independent variable t∗ needs to be recalculated in the time-domain analysis
as

t∗ =

√
Er/ρr

rr
t. (4.11)

With all these above expressions, equation (2.3) retains its original form exactly. For
the sake of presentation, all asterisks are removed from the mathematical expressions
hereafter, unless otherwise specified.
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Corresponding to the continued-fraction formulation of the dynamic stiffness matrix
[S∞(ω)] in equation (4.3), the nondimensionalized form of the relevant matrices are

[C∗∞] =

√
Er/ρr

Errs−1
r

[C∞],

[K∗∞] = E−1
r r2−s

r [K∞],
[Y (i)∗

0 ] = (Errs−2
r )−Ni [Y (i)

0 ],
[Y (i)∗

1 ] = (E0.5
r ρ0.5

r rs−1
r )−Ni [Y (i)

1 ] (Ni = (−1)i).

(4.12)

Accordingly, equations (4.4)–(4.6) are reformulated, but they maintain exactly
the same format, with the dimensional quantities replaced by the corresponding
nondimensionalized counterparts: that is

{R∗} = E−1
r r1−s

r {R},
{u∗} = r−1

r {u},
{u(i)∗} = (Err

s−1
r )−Ni{u(i)}.

(4.13)

In order to incorporate the proposed parametric nondimensionalization scheme into
the SBFEM calculation, a group of reference variables need to be specified, so that all
relevant quantities involved in the calculation are of similar magnitude. Precision has
to be considered at various intermediate stages, such as the real Schur decomposition
of the Hamiltonian matrix [Z] and the general eigenvalue decomposition of [E0]
and [M0]. In addition, the stiffness matrices [K] and [K∞], the mass matrix [M],
the damping matrices [C] and [C∞], and the auxiliary matrices [Y (i)

1 ] and [Y (i)
0 ]

(i = 1, 2, 3 . . .) associated with the continued fraction are required, to satisfy the
corresponding algebraic equations.

Equations (4.7), (4.9)–(4.10) and (4.12)–(4.13) illustrate how matrices are
nondimensionalized with respect to the reference variables. They are not explicitly
formulated in the solution procedure. Calculated results are dimensionless and require
subsequent interpretation in order to be applied to engineering problems. For example,
a variable with dimension L should be multiplied by the reference length rr to
obtain the corresponding dimensional value. The following examples will detail these
procedures.

4.3. Numerical examples

4.3.1 Static analysis The cylindrical pile in Section 3.3 is reconsidered with
four sets of reference variables, as shown in Table 1, to demonstrate SBFEM
nondimensionalization. Taking into account the magnitude of the input parameters,
four values of Er are selected as 1 Pa, 1 × 103 Pa, 1 × 107 Pa and 2.8 × 1010 Pa to
nondimensionalise the Young’s modulus E and the external pressure p, both of which
have dimensions ML−1T−2. The reference length rr equals 1 m, as the same SBFEM
model is used for the four cases and the dimension of the model is identical to the
physical prototype of the pile. The mass density is irrelevant in this example and
therefore is not discussed. For each of the four cases, the maximum difference ∆Mmax
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Table 1. Numerical performance of SBFEM using a static analysis.
````````````̀Parameters

Set number
1 2 3 4

Er (Pa) 1 1 × 103 1 × 107 2.8 × 1010

rr (m) 1 1 1 1
∆Mmax 4 × 1010 4 × 107 4 × 103 138.74
κ 2 × 1024 8 × 1016 8 × 108 2 × 105

Res1 0.1345 1 × 10−4 3 × 10−8 7 × 10−11

Res2 9 × 1021 1 × 109 0.0011 9 × 10−12

ux (mm) 4.431 × 103 11.507 8.0357 8.0357
uy (mm) 1.4205 × 104 5.744 4.625 × 10−8 1.394 × 10−8

uz (mm) 7.178 × 104 51.534 52.358 52.358

in the magnitude of the entries of the Hamiltonian matrix and the condition number
κ of the Hamiltonian matrix, as well as the norms of the two residual matrices Res1
and Res2, are examined. The displacement components ux, uy and uz of point A are
transferred into the corresponding dimensional values and are listed in Table 1.

Evaluating the four indices, ∆Mmax x, κ, Res1 and Res2, we find that the numerical
performance of the SBFEM calculation improves as the reference parameter Er

gradually increases. The maximum magnitude difference among the entries of the
matrix [Z] decreases from a magnitude of 1010 to 102, and its condition number
decreases from 1024 to 105. Consequently, the norms of the two residual matrices
are found to converge to zero when Er reaches 2.8 × 1010 Pa. The readings of the
displacement components also indicate a trustworthy calculation, when appropriate
reference variables are employed. Note that the reference parameters should be defined
in such a way that all variables involved in the matrix calculation hold similar
magnitude regardless of their dimensions. For the present case, a combination of
Er = 2.8 × 1010 Pa and rr = 1 m generates a magnitude of one for both the length
L and pressure ML−1T−2.

4.3.2 Modal analysis The case in Section 4.3.1 examines how the accuracy of
SBFEM results is affected by the magnitude of input parameters in statical analysis,
and thus highlights the necessity of parametric nondimensionalization in the SBFEM
calculation. The modal analysis presented in this section and the transient analysis
in the next section will examine the performance of the dimensionless SBFEM
calculation in elasto-dynamics. The L-shaped panel of Song [18] is re-examined here
with the same geometric configuration. Young’s modulus E and the mass density ρ are
assigned the values 2.8 × 1010 Pa and 2400 kg m−3, respectively, with a Poisson’s ratio
1/3.

A sketch of the L-shaped panel is reproduced in Figure 9(a), illustrating the
geometric configuration (b = 1 m) and the boundary conditions; line EF is fully
constrained in both x- and y-directions and AB is fixed only in the x-direction.
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Figure 9. L-shaped panel: (a) geometry of the panel and its boundary conditions (reproduced from [17])
(b) the SBFEM mode.

In the SBFEM model shown in Figure 9(b), the L-shaped panel is divided into
three subdomains with the scaling centres located at the geometric centre of each
subdomain. Therefore, all the boundaries as well as the two interfaces between the
subdomains are discretized. This analysis can also be carried out by treating the L-
shaped panel as a single domain and locating the scaling centre at the point O, and thus
only those lines other than OA and OF need to be discretized. Three-node quadratic
elements are used for the boundary discretization, which results in 196 degrees of
freedom for the problem. The continued-fraction technique is employed and an order
of six is used when formulating the global stiffness and mass matrices. Here the
reference parameters are rr = 1 m, Er = 2.8 × 1010 Pa and ρr = 2400 kg m−3.

The first 110-order dimensionless natural frequencies calculated from SBFEM
are plotted in Figure 10(a). From equation (4.8), we obtain the dimensional natural
frequencies

ω =

√
Er/ρr

rr
ω∗

and compare this with the result of an equivalent FEM modal analysis in Figure 10(b).
The two curves agree extremely well. The same analysis using dimensional parameters
in the SBFEM model is also attempted, but it fails due to the error accumulation during
the calculation process, which renders the subsequent results meaningless.

4.3.3 Transient analysis Here, we use the L-shaped panel to illustrate the effect
of a parametric nondimensionalization on the transient analysis. A force condition,
similar to that described by Song [18], is specified and is uniformly distributed along
line BC (Figure 9(a)) with the magnitude varying with respect to time, as shown in
Figure 11(a). The values of ppeak, ttotal, tpeak and tzero are given in Table 2, in which
dimensional and nondimensional parameters are listed.
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Figure 10. Natural frequency of the L-shaped panel: (a) dimensionless natural frequency from SBFEM
model (b) comparison of dimensional natural frequencies between FEM and SBFEM results.

Figure 11. SBFEM transient analysis of an L-shaped panel: (a) pressure variation with respect to time (b)
dimensionless displacement in the y-direction of point A.

Table 2. Parameters of the transient analysis of an L-shaped panel.

Dimensional Nondimensional
Material parameters E (Pa) 2.8 × 1010 E∗ 1

ρ (kg m−3) 2400 ρ∗ 1
Temporal variables ttotal (s) 0.022 t∗total 75

tpeak (s) 1.4639 × 10−4 t∗peak 0.5
tzero (s) 2.9277 × 10−4 t∗zero 1
∆t (s) 7.3193 × 10−6 ∆t∗ 0.025

Natural circular frequencies ω1 (rad s−1) 1371.682 ω∗1 0.4032
ω2 (rad s−1) 2819.265 ω∗2 0.8259

External pressure ppeak (Pa) 2.8 × 107 p∗peak 1 × 10−3
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The SBFEM analysis adopts the same discretization model (see Figure 9(b)),
and the reference material properties Er and ρr are chosen as 2.8 × 1010 Pa and
2400 kg m−3, respectively. Using Newmark’s integral technique with α = 0.25 and
δ = 0.5 [4], all the temporal variables associated with the time integration are
nondimensionalized by equation (4.11). The damping effect of Rayleigh material
is taken into account with a material damping ratio of 0.05, assuming that the
L-shaped panel is made of concrete. From the modal analysis in Section 4.3.2,
ω1 = 1371.682 rad s−1 and ω2 = 2819.265 rad s−1, are selected, corresponding to two
orthogonal modal shapes. However, their dimensionless counterparts are used for the
formulation of the damping matrix. The magnitude of the external pressure at any time
step is nondimensionalized according to the Young’s modulus.

The dimensionless displacement history of point A (see Figure 9(a)) in the y-
direction is shown in Figure 11(b). With reference length rr = 1 m, the dimensional
displacement should hold the same amplitude as u∗y, whereas the time variable should
be calculated by reformulating equation (4.11) in terms of t to obtain its dimensional
counterpart.

An equivalent FEM analysis is also carried out for comparison purposes. We
observe excellent agreement between FEM and SBFEM results in Figure 12, which
compares the displacement in the x- and y-directions of point O and the displacement
histories in the y-direction of points C and D (Figure 9(a)) from both FEM and SBFEM
calculations. Use of original parameters in the SBFEM analysis does not produce any
realistic result.

4.3.4 Wave propagation in unbounded domains Revisiting the example of elastic
wave propagation in an unbounded domain in Section 4.2, we observe that the
application of the nondimensionalization process with reference parameters rr =

1 m, Gr = 1 × 1010 Pa and ρr = 2500 kg m−3 significantly reduces the degree of
difference between the magnitudes of matrix entries. As shown in Table 3, for a
continued-fraction order Mc f up to eight, the variation in the magnitude of matrix
elements is between 1 × 100 and 1 × 1010, as opposed to 1 × 10−7 and 1 × 1017

when using dimensional parameters. Therefore, using equation (4.6), the difference
in the magnitude of the largest and the smallest elements in [A] can be reduced from
1024 to 1010. The component of the dynamic stiffness matrix in the z-direction of
the unbounded domain calculated at specified frequencies before and after applying
the nondimensionalization scheme is compared in Figure 13. Note that, using
dimensional parameters, the dynamic stiffness matrix becomes substantially different
from that using dimensionless parameters. Due to the unfavourable matrix properties,
calculations using dimensional parameters potentially lead to erroneous results or even
terminate the calculation in the process of matrix manipulations. By improving the
properties of the coefficient matrices, the nondimensionalization scheme undoubtedly
enhances the credibility of SBFEM calculations.
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Figure 12. Comparison of displacement history between SBFEM and FEM models: (a) in the x-direction
of point O, (b) in the y-direction of point O, (c) in the y-direction of point C and (d) in the y-direction of
point D.

5. Conclusion

The intense matrix calculations involved in SBFEM result in numerical instability
when solving engineering problems. Therefore, in this study, we focus on the
numerical performance of SBFEM which has not been systematically addressed
in the literature. There are two aspects of this discussion, namely, the matrix
manipulation technique and the matrix properties. The eigenvalue decomposition
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Figure 13. Comparison of the vertical dynamic stiffness coefficient before and after applying the
nondimensionalization scheme of an elastic wave propagation problem in an unbounded domain: (a)
real part of [S 8(ω)] vs frequency (b) imaginary part of [S 8(ω)] vs frequency. (Bold line for “before” and
dashed line for “after” nondimensionalization.)

of the Hamiltonian matrix leads to the underlying multiple eigenvalues associated
with possible logarithmic terms in the solution. The real Schur decomposition can
be adapted as an alternative, since it circumvents this problem and provides more
stable and accurate solutions. Furthermore, no manipulation of complex numbers
is required in the eigenvalue decomposition. A case study of a cylindrical pile
subjected to uniformly distributed pressure along the circumferential direction shows
a better performance by the real Schur decomposition compared with the eigenvalue
decomposition.

On the other hand, since SBFEM relies on intense matrix computations, the
properties of all relevant matrices are important for establishing the stability and
accuracy of the results. Therefore, we propose that a group of reference variables
be predefined so as to nondimensionalize the input parameters, such as the
geometric dimension, material properties and temporal variables, before performing
the calculation by SBFEM. All relevant matrices thus present favourable properties
to ensure the correctness of the calculations. Numerical examples with respect to
elasto-statics, modal and transient analyses, and the wave propagation problem in an
unbounded domain formulated using the continued-fraction technique, show enhanced
performance of SBFEM after applying the proposed nondimensionalization scheme.
This study clarifies the reasons for potential numerical instability and inaccuracy of
SBFEM, and corresponding solution schemes are proposed to rectify these issues.
Overall, the study is expected to guarantee a reliable implementation of SBFEM when
solving engineering problems.
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