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INTERACTION OF SOME MEROMORPHIC SOLUTIONS OF THE
KdV EQUATION

by M. KOVALYOV and K. M. LEE

(Received 15th May 1997)

A necessary and sufficient condition for confluence of two poles of a class of meromorphic solutions of the
KdV equation is introduced and proved.

1991 Mathematics subject classification: 35Q51, 35Q53.

1. Introduction and statement of the main result

In this paper we study interaction of some meromorphic solutions of the
Korteweg-de Vries equation

u, - 6uux + uxxx = 0, lim u(t, x) = 0. (1.1)

These solutions, sometimes referred to as positions [11, 12, 14, 15], and sometimes as
harmonic breathers [7] are of the form

8£2sin2£(4£2t+x-y) J l -cos2l (4 l 2 t+x-y)
sin2£(4£2t+x-y)-2£(12£2t+x-p)+ [sm2£(4i2t+x-y)-2t(\2t2t+x-i

(1.2)

Probably first studied in [11, 12, 14, 15], (1.2) naturally arises when one generates
explicit solutions of (1.1) by means of the Darboux transform [11, 12] or attempts to
define solutions of (1.1) with the "simplest continuous spectrum" [7].

Solutions (1.2) possess a pole whose location depends on time. This pole may play
role of a "centre" of the corresponding harmonic breather in much the same way as
the local minimum of the soliton solution ul ** .—- plays that role for the

cosh2 l(x-4t2t-<p) r J

corresponding soliton. The solution (1.2) can be written as

u(r,x) = -2^-j lnT(t ,x) (1.3a)

. . sin2£(4£2t + x - y) , ,„„, . ,, _..
t(t,x) = ±—— - (\2l2t + x - p) (1.3b)

2c
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so the pole of (1.2) is exactly the zero of the r-function in (1.3) and the study of motion
of the pole of (1.2) can be reduced to the study of motion of the zero of x(t, x). Since
x\t, x) = £&£ = cos 2£(4i2t + x - y) - 1 < 0, the T-function itself is monotonically
decreasing in x from -t-oo to -oo and thus always has exactly one zero. The zero is
simple unless

U{Uh + x - y) = 2nn, « e E

and

in which case the zero is of third order. The solution of (1.4) is of the form:

p — y nn

"4?
— p 2>nn

ne

(1.4a)

(1.4b)

(1.5)

Such points are often referred to as resonances [14].
We can define superposition of two harmonic breathers [7, 13] and study their

interaction in a way similar to that for solitons. Due to the complicated form of the
two-harmonic-breather solution, the interaction of the harmonic breathers when they
are close to each other has, so far, been studied only numerically [17]. Here we obtain
some analytical results similar to those of [2, 5, 9, 10, 13, 16] for solitons.

To do this we use the following representation of the two-harmonic-breather solution
obtained in [7]:

where

w(t,x) = -2—5\nx(t,.
9x

= zl(t,x)x2(t,x)-q\t,x) (1.6)

' ' {, = x + U2t -y, if, = x + I2i2t -pit i = l, 2;

*• p 0 p I p gl gl ^

<-l <-2 <-\ -T*-2 f-l — (-2

Cj ^p <*2> ^ | ^ "» ^2 " '

The analytical results are summarized in the following theorem.
Theorem, (a) The x-function of (1.6) always has at most two zeros, i.e. for each value

ofteR, there are at most two values ofx satisfying x(t, x) = 0.

(b) Two distinct roots ofx(t,x) — 0, which we denote by x,(0 and x2{t), merge into one
for some value oft if and only if the quantities
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- 7.) - M\(Pi - y2) - /f(3y2 - P2 - 3y, + p,)]

are integers and are either both even or both odd. If nx and n2 are both even, then at time
t = ^ + ^ P ^ + ^'<t,x) has a single root x ^ ^ - ^ = ^ - ' - ^ of order

10. If n, and n? are both odd then at time t = ^ + -=% = &3p- + - ^ > x(t. x) Aaj a single

2. Proof of the Theorem

We break up the proof into a sequence of lemmas.

Lemma 1. The x-function defined in (1.6) and its components satisfy the following
identities:

x = T,T2 - q2 (2.1)

' 2t, " ' '

2
sin lx <!;, cos i2l;2 - £, cos £, £, sin £2<J2) (2.3)

(2.4)

(2.5)
* dx2

x\ = — = cos 246 - 1 = - 2 sin2 t£k, i = 1,2 (2.6)

x1! = —^ = -4£,- s in £ , 6 c o s £,{„ i = 1 , 2 (2.7)

T7 = — = - 2 T , sin2£2^2 - 2T2sin2£,^ - 2^sin£,<J, sin£2^2 (2.8)
ox
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x" = —2 = - Uxx2 sin2/,f, - 2£2T, si

; sin2 €,f, cos2 £2<̂ 2 - -£2 sin2£2£2cos2£,£,) (2.9)

T'" = - 4£2T2COS2£,£1 - 4£2T, cos2£2£2 + - i ^ - j sin 2£2£2(£
2 + 1£, 1£1)

t , — c2

- -5^1-5 sin 2*. {, (^ + 1 \ cos2 £2£2 + £2 sin21&) (2.10)

(2.11b)

Proof of (2.1)-(2.10) is by direct computations. Equation (2.11a) is obtained by
solving (2.8) for T2 and then substituting ?2 = -j^fi ^ ^ T , - ^"ff i into (2.1);
(2.11b) is obtained in a similar manner.

Lemma 2. Ifx(t, x) = x'(t, x) = 0, then x"(t, x) = 0.

Proof. If neither s in£ , f ,=0 nor sin£2<^2=0, (2.11) gives us T, = - j ! j j^g ,
T2 = --^ffiq. Substituting these into (2.9) we obtain x" = 0. If sin£,f, = 0 (sin£2<j|2 = 0
is handled in exactly the same manner), then x = 0 and (2.8) implies T, sin£2(!;2 = 0
and therefore either sin£2^3 = 0 or T, = 0. If sin£2ij;2 = 0 then substituting sin-6,^, =
sin£2(J2 = 0 into (2.9) we obtain r" = 0. If xt = 0, then substituting this and x = 0 into
(2.1) we obtain q = 0, which together with sin£,^, = 0 yields sin£2< 2̂ = 0, substituting
sin £,(!;, = sin£2ij2 = 0 into (2.9) again gives us x" = 0.

Lemma 3. Let x(t, x), considered as a function of x for an arbitrary but fixed value
of t, have an extremum at x = x0. Then x{t, x0) < 0.

Proof. If sin^f, ^ 0 at (t, x0), then x'(t, x0) = 0 and (2.1 la) yields

2T V<0
i /

If sin€2<J2 ^ 0 at (t, x0), (2.1 lb) yields the result.
Consider now the case sin£,^, = sin£2^2 = 0 at (t, x0). Substituting sin£,(f, =

sin€2« 2̂ = 0 into (2.8) and (2.9) we obtain r'(t, x0) = t"(t, x0) = 0. The fact that x = x0 is
an extremum then implies x'"(t, x0) = 0, which, using (2.10), gives us £2»/2 + £2^1 = 0 ,
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with t|,,i/j evaluated at (t, x0) according to (2.2). Then t2n2 +t\ril =0 implies
< 0. Substituting now sin£,^, = sin£2<!;2 = 0 m t o (21) we obtain x = qxr\2 < 0.

Lemma 4. Le/ x0 be a local maximum of x(t, x) considered as a function of x for an
arbitrary but fixed value oft. Then x(t, x0) < 0.

Proof. In view of Lemma 3, it suffices to show that x{t, x0) / 0. Assume
x{t, X0) = 0 and consider

Due to continuity o f / in all of its arguments, /(A,, A2, t, x0) < 0 for A, and A2

satisfying |A, — p, | + |A2 — p2\ < e for some sufficiently small e. Thus /(A,, A2, t, x0)
attains a local maximum as a function of A, and A2 at A, = p, and A2 = p2 and therefore
^- = T2 = 0, ^ = t, = 0 and the matrix || ^ - 1 | is nonnegative definite. On the other

hand direct computations give us || -^ II = I 2 0 ) which is not nonnegative definite.

The obtained contradiction proves that the assumption r(t, x0) = 0 is false.

Lemma 5. Let x0 be a local minimum of z(t, x) {considered as a function of x for an
arbitrary but fixed value oft) and x(t, x0) = 0. Then

,£, = g sin£,<!;, sin£2£2 = 0.

Proof. Substituting T' = 0 into (2.8) we obtain

Squaring both sides and replacing T,T2 with q2 gives us

T2 sin412£2 + T2 sin4 l^x = -q2 sin2 l^x sin2 £2£2.

Since the left-hand side is nonnegative and the right-hand side is nonpositive, they both
must be zero, yielding the result.

Lemma 6. Let x0 be a local minimum of x{t, x) {considered as a function of x for an
arbitrary but fixed value oft) and x{t, x0) = 0. Then either

T,(t, x0) = T2(t, x0) = sin £,£, = sin*2f2 = 0

or

T,(r, x0) = x2(t, x0) = cos€ ,^ = cos£2^2 = 0.

https://doi.org/10.1017/S0013091500020290 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020290


346 M. KOVALYOV AND K. M. LEE

Proof. By Lemma 5 one of (a) T, = sin £,<!;, = 0, (b) x2 = sin£2£2 = 0, (c) sin £,<!;, =
2 = 0 or (d) T, = x2 = 0 must hold. Consider each case separately.

(a) T, = sin £,(!;, = 0. Since x0 is a local extremum and x(t,x0) = 0, Lemma 2 implies
T" = 0. Substituting T, = sin£,£, = x" — 0 into (2.9) we obtain sin€2^2 = 0. Again since
x0 is a local extremum and x" = 0 we also have x" = 0, which along with (2.10) implies
T2=0.

(b) Similar to (a).

(c) sinl,£, = sml2£2 = 0. Substituting these into (2.9) we obtain x" = 0 which along
with the fact that x0 is an extremum yields x" = 0. Substituting x" — sin I, £,x = sin £2<̂ 2 = 0
into (2.10) gives us £?T2 + ^ 2 T , = 0 and therefore T,T2 < 0. On the other hand
substituting x — 0 into (2.1) results in T,T2 = q2 > 0 implying that either T, or x2 is 0.
But l\x2 + £2T, = 0 and therefore once one of them vanishes so does the other one.

(d) T, = T2 = 0. Substituting T, = x2 = x = 0 into (2.1) we obtain q — 0 and thus if
either one of sin £,<!;, or sin£2£2 is zero then so must the other one, yielding the result.

Let us now assume that neither sin£,^, nor sin^2^2 vanish at (t, x0). Substituting
T = T2 = q = 0 into the expressions for x" and T(4) we obtain x" = T(4) = 0. Since x = x0

is an extremum we must have T(5) = 0 which combined with T, = x2 = q — 0 yields
cos £,<!;, =cosl2£,2 = 0.

Lemma 7. Let x0 be a local minimum of x(t0, x) (considered as a function of x) and
let r(t0, x0) — 0. Then there exist two integers n, and n2 either both even or both odd such
that

_ Pi ~ yi ra»i _ Pi - y2 nn2

Proof. Lemma 6 implies that there exist two integers n, and n2 either both even or
both odd such that

- P i = 0

= x0 + 12^ 0 - p2 = 0

Solving the first system we obtain
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_ p, - y, nnx _ 3y, - p,

°~ U] 161]' °~ 2

whereas solving the second system we get

Pi ~ y2 ™2 _ 3y2 - p2

Proof of the Theorem. Part (a) If r(t, x) had more than two zeros it would also
have a nonnegative local maximum but that contradicts Lemma 4.

Part (b) Two zeros of the T-function merge into one if and only if for some t0

t(t0, x) has a single zero x0 which is also a local (as well as global) minimum. But
according to Lemma 7 this can happen only if (2.12) holds. Vice versa if (2.12) holds
then one can verify by direct computations that t(t0, x) has a local minimum at x = x0

as well as r(t0, x0) = 0. By solving (2.12) for n, and n2 we obtain (1.7).
The order of zero at x = x0 is easily verified by direct computations.

Acknowledgements. The authors would like to express their gratitude to the referee
and Professor Lacey for their suggestions and corrections and to Ms. V. Spak for
typing the manuscript.

REFERENCES

1. M. J. ABLOWITZ and P. A. CLARKSON, Solitons, Nonlinear Evolution Equations and Inverse
Scattering (London Math. Society Lecture Notes), 149, Cambridge University Press, 1991).

2. S. CAENEPEEL and W. MALFLIET, Internal structure of the two-soliton solutions of the
KdV equation, Wave Motion 7 (1985), 299-305.

3. B. FUCHSSTEINER, The interaction equation, Phys. A 228 (1996), 189-211.

4. C. S. GARDNER, J. M. GREENE, M. D. KRUSKAL and R. M. MIURA, Korteweg-de Vries
equation and generalizations VI, Comm. Pure Appl. Math. 27 (1974), 97-133.

5. P. F. HODNETT and T. P. MOLONEY, On the structure during interaction of the two-soliton
solution of the Korteweg-de Vries equation, SIAM J. Appl. Math. 49 (1989), 1174-1187.

6. H. Hu, Darboux transformation of Su-chain, in Proc. Conf. Diff. Geometry in honor of
Prof. Su Buchin (1991, Shanghai, World Scientific Press, Singapore, 1993).

7. M. KOVALYOV, Basic motions of the Korteweg-de Vries equation, in Nonlinear Analysis,
Theory, Methods and Applications, to appear.

8. B. M. LEVITAN, Inverse Sturm-Liouville Problems (Chapter 6, VNU Science Press, 1987).

9. R. J. LEVEQUE, On the interaction of nearly equal solitons in the KdV equation, SIAM J.
Appl. Math. 47 (1987), 254-262.

10. W. MALFLIET and L. VAN DE VELDE, A study of two interacting KdV solitons, Lett.
Nuovo Cimento (2) 42 (1985), 179-183.

11. V. B. MATVEEV, Asymptotics of the multiposition-soliton T-function of the Korteweg-
de Vries equation and the supertransparency, /. Math. Phys. 35 (1994), 2955.

https://doi.org/10.1017/S0013091500020290 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020290


348 M. KOVALYOV AND K. M. LEE

12. V. B. MATVEEV, Phys. Lett. A. 135 (1992), 2009-2212.

13. T. P. MOLONEY and P. F. HODNETT, Soliton interaction (for the Korteweg-de Vries
equation): a new perspective, J. Phys. A 19 (1986), L1129-L1135.

14. A. A. STAHLHOFEN, On completely transparent potentials of the Shrodinger equation,
Phys. Rev. A51 (1995), 934.

15. A. STAHLHOFEN, Ann. der Physik 1 (1992), 554-569.

16. T. YONEYAMA, The Korteweg-de Vries two-soliton solution as interacting two single
solitons, Progr. Theoret. Phys. 71 (1984), 843-846.

M. KOVALYOV K. M. LEE
DEPARTMENT OF MATHEMATICAL SCIENCES DEPARTMENT OF MATHEMATICS, SCIENCE AND
UNIVERSITY OF ALBERTA TECHNOLOGY
EDMONTON, ALBERTA HEARTLAND COMMUNITY COLLEGE
CANADA T6G 2G1 1226 TOWANDA AVENUE

BLOOMINGTON
ILLINOIS 61701
USA

https://doi.org/10.1017/S0013091500020290 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020290

