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ABSTRACT 
We describe techniques and results for obtaining radial velocities and 
proper motions for individual stars in globular clusters. One set of 
these results for the nearby northern clusters M92 and M13 are 
discussed in terms of new dynamical models and distance estimators. 

1. Introduction 
In order to make realistic models of globular clusters, one needs to 
know something about both the stellar velocities and the light profile. 
Most earlier studies of clusters have only used the photometry and in a 
few cases, central velocity dispersions (see, for example, Illingworth 
1976) derived from the width of the lines in integrated spectra either 
by Fourier techniques or direct least-squares fitting in wavelength 
space. Gunn and Griffin (1979, hereinafter GG) first made dyamical 
models of a cluster (M3) using radial velocity data for stars 
throughout the cluster. The fact that those data badly disagreed with 
the most sophisticated model constructed till that time (Da Costa and 
Freeman 1976) and demanded both significant anisotropy in the outer 
parts of the cluster and a significantly steeper mass function (all 
within the framework of the King (1966)-Mitchie (1963) models, about 
which we will say more later) says quite certainly that without such 
data one cannot even approximately understand the dynamics of globular 
clusters. It is clear that if one had in addition proper motions, 
essentially all of the ambiguity of reconstructing the three-
dimensional velocity distribution from the observations would 
disappear, and one would have in addition a very powerful handle on the 
distance. The proper motions available are not quite sufficiently 
accurate to allow this to be done straightforwardly, as we shall see, 
but some considerable leverage on the models and quite good distance 
estimates can still be obtained. 

2. Radial velocities. 
Radial velocities of stars at these brightness levels (B < 15, say) and 
to the requisite accuracy (about 1 km/sec) are now being obtained 
routinely by two techniques which yield comparable efficiencies. The 
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original Griffin cross-correlation technique, applied at the coude of 
the 200-inch Hale telescope (Griffin and Gunn 1974) has been used in 
all our work. This technique involves the use of an infinite-contrast 
mask at the focal plane of a high-dispersion spectrograph, the mask 
having transparent slots which correspond in location to absorption 
lines in the stellar spectrum. The mask is scanned across the spectrum 
(or, in our and other cases, the spectrum across the mask) and the 
total flux through the mask recorded. The position of the mask which 
corresponds to a minimum in the flux represents the best agreement 
between the mask and spectrum and directly yields a radial velocity 
relative to those of a set of standard stars. In practice the scanning 
is done rapidly and periodically and the scans accumulated in a real or 
software-simulated multichannel analyzer; the position of the minimum 
is found in later analysis. Possible problems resulting from spectral-
type mismatch between the template star and the object observed, the 
fact that the shift to match is constant in wavelength and the doppler 
shift proportional to the wavelength, zero-point and scale drifts, are 
all unimportant in practice in properly designed equipment, and are 
discussed extensively in Griffin and Gunn (1974). This technique is 
some thousands of times faster than photographic spectroscopy, and 
probably yields more accurate results, if for no other reason than that 
the zero point of the instrument can be monitored on essentially 
arbitrarily short time scales. In a modification incorporating an 
echelle as the dispersing element, Mayor (see Mayor, et al. 1983) in 
the Coravel machine has solved at least the problem of the shift 
mismatch and has gained the high luminosity efficiency of echelle 
spectrographs. This instrument has been used to obtain high-quality 
velocities in 47 Tuc, as reported by Da Costa and Freeman in this 
volume. The advantages of the technique are speed and stability; the 
photomultiplier is used only as a flux collector and even large 
magnetic perturbations to its electron optics have negligible effects 
on the results. The disadvantage is that time spent scanning away from 
the cross-correlation dip is time wasted; this can be minimized to some 
extent by clever control of the scanning, and this is done to advantage 
in Coravel. It need not be a major loss for the globular cluster 
problem, since the line widths in the stars alone demand instrumental 
profiles some twenty km/s wide and the velocity dispersions are smaller 
than this—thus not much "continuum" need be scanned once the cluster 
velocity is found. One looks fondly today at CCD quantum efficiencies, 
but the rapid time response required and the large photocathode areas 
required by the realities of optics make their use in this 
configuration impossible. 

It would seem that it would be much more efficient to record all 
the spectrum at once and do the analysis later in the computer. Since 
there are many lines, one need obtain only very poor signal-to-noise in 
the spectrum to obtain very good velocities. The requirement is 
clearly for a detector with no noise of its own, high quantum 
efficiency, and excellent dimensional stability. The first requirement 
today means very high-gain intensification, whatever the ultimate 
detector. This approach was used by the Stromlo group with an 
intensified SEC vidicon to obtain a few velocities in NGC6397 (Da Costa 
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et al. 1977)• It has since been applied by the Latham and his 
collaborators at Harvard to a large number of problems, most notable in 
this context to a followup of Gunn and Griffin's velocity measurements 
in M3. The original measurements strongly suggested that the incidence 
of spectroscopic binaries in M3 was very small compared to the field, 
but the statistics were limited and the result has been called into 
question by Harris and McClure (1983). Latham and collaborators 
(1983,1984) have measured all the stars in the GG sample again, and 
have in fact found one binary; this confirms the greatly reduced 
numbers but is at clear variance with GG's suggestion that there may be 
none. Latham et al. have used an echelle spectrograph with a pulse-
counting intensified Reticon detector of the Shectograph (Shectman and 
Hiltner 1974) type. The efficiency, as expected, is somewhat higher 
than that of the cross-correlation technique, but it is not clear 
whether the ultimate accuracy is as high. The latter question is 
irrelevant for globular cluster work in any case, since the errors are 
small compared to the cluster velocity dispersions. 

The ideal machine for this problem has not been built yet but will 
doubtless be soon. An echelle spectrograph with a resultion of about 
0.3 Angstroms with coatings for high throughput in the 4000-6000 A 
range with a low-noise violet-sensitive CCD as a detector would be at 
least an order of magnitude more sensitive than any instrument now 
being applied to the problem. It should not be difficult to build an 
instrument of this sort with 30 percent quantum efficiency on the sky, 
and with some effort even higher efficiencies might be achieved. At 
15th magnitude, such a spectrograph would yield 20 electrons per 
resolution element per second; with a thousand stellar absorption lines 
of about 20 percent average depth at this resolution, one km/sec 
accuracy would be obtained in of the order of ten seconds, longer for 
very metal-weak objects just inversely as the line strengths. A CCD 
with very good low-level transfer efficiency, very good geometric 
properties, backside illumination with control of the surface potential 
profile for efficient accululation of electrons generated very close to 
the surface by violet photons, and very low noise (clearly 2-3 
electrons would be desirable) is required. While such chips so not 
exist today, we can look forward confidently to their existence within 
a couple of years. Such a machine would allow easy extension of the 
techniques discussed here to the most distant globular clusters and to 
dwarf spheriodals. 

3. Proper Motions 
Proper motions of individual stars in globular clusters measured by the 
techniques available today require very long time baselines. The field 
has been completely dominated by Cudworth and his collaborators, who 
have made use of the Yerkes plate collection, which contains 
first-epoch plates for the bright northern clusters taken in the first 
few years of this century. Since one-dimensional velocity despersions 
for clusters are of the order of five kilometers per second and the 
nearest clusters are about ten kpc distant, the relative proper motions 
are of order 10 milliarcseconds per century. Cudworth and Monet (1979) 
have measured proper motions in M13 with an accuracy of 13 mas/century, 
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Cudworth in M3 (1979a) and M5 (1979b) to 20 mas, and in M15 (1976a) and 
M92(1976b) to 30 mas; all quoted errors are one-component standard 
deviations. 

None of these results are sufficiently accurate to use the 
inferred motion of individual stars from the proper motions in 
dynamical analyses, though in the case of M13 its small distance and 
the relatively great accuracy of its proper motions allows one to 
approach this goal. What one can do is to use the proper motions in a 
statistical analysis, if the errors are well enough understood. Since 
globular clusters are pressure-supported structures, the measurement 
errors simply add in quadrature to the random velocities, and any 
systematics such as anisotropy should show in large enough samples. 
Since the fields are relatively small, it has not been possible to tie 
to the the background well enough to measure any rotation in the plane 
of the sky (though it is in principle possible to detect it as an 
induced anisotropy parallel to the equatorial plane in the random 
proper motions) or indeed even well enough to measure the absolute 
proper motion of the cluster, which is expected to be huge on the scale 
of the relative internal velocities. 

If one can convice oneself that the errors are well understood, it 
is possible, of course, to derive a tangential velocity dispersion up 
to the distance scale factor. With accurate radial velocities one can 
derive a radial velocity disperison, and the ratio of these, calculated 
(with not very much model sensitivity) from a dynamical model allows 
a distance to be determined. This technique was first applied by 
Cudworth to his M3 proper motions and the model of GG constructed using 
their radial velocities; the derived distance of 9.6 kpc compared well 
with accepted values between 9.2 and 10.5, but the errors were large 
enough not to be able to choose within the favored range. We will 
discuss a model of M13 below for which a quite good distance estimate 
can be obtained. 

4. Models for M13 and M92 
The two nearest bright northern clusters, M13 and M92, both show 
dynamically significant rotation in the radial velocity data which we 
have obtained for them, a fact which significantly complicates the 
construction of dynamical models—particularly as for both the effects 
of anisotropy are also important in the outer parts, as was the case 
for M3. One must use models with three integrals to describe such 
systems, and we discuss such models in this and the following sections. 

The models used are three component modified King(1966a) models, 
with distribution functions of the form 

fj (E,J,JZ) = e _ e j 2 e - A J ^ (e-AJE-l) , 
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Figure l a . 
The M13 radial light profile. Crosses are the observational points, and 
the solid line represents.the best fitting M13 model. 
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Figure lb. 
Velocity dispersion profile for the M13 model, with the stars binned in 
radius with 20 stars per bin. The bins are centered at 0.35, 0.77, 
1.16, 1.74, 2.42, 3.08, 4.62 and 11.82 core radii. 
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Figure lc. 
Rotation curve for the M13 model, with the stars binned in polar radius 
with 20 stars per bin. The bins are centered at 0.115, 0.327, 0.517, 
0.803, 1.26, 2.13, 3.77 and 9.16 core radii. 
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Figure 2a. 
The M92 radial light profile. Crosses are the observational points, 
and the solid line represents best-fitting M92 model. 

https://doi.org/10.1017/S0074180900147187 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147187


RADIAL VELOCITIES AND PROPER MOTIONS OF GLOBULAR CLUSTER STARS 25 

0 

8 

6 

4 

2 

n 

i i i i 

— 
-
-

i i i i 1 i i i i 1 i i i i 1 i i i i 

~~ • T ■ 

.. 

...i i i i 

t 

< > 

! i i i i I i i Y~1 | r 

M92 

t 
* 

i i i i 1 i i i i 1 i i i i 1 i i i i I i i I 1 i i i, i 1 i 

i i i 

-
-

— 
-
-J 

-J 
-̂  

-A 

-j 
J 
~i 

i i i 
0 1 2 3 4 5 6 7 8 

Radial Bin Number 

Figure 2b. 
Velocity dispersion profile for the M92 model, with the stars binned in 
radius with 10 stars per bin. The bins are centered at 0.62, 1.97, 
3.63, 7.47 and 13.9 core radii. 
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Figure 2c. 
Rotation curve for the M92 model, with the stars binned in polar radius 
with 10 stars per bin. The bins are centered at 0.356, 0.928, 1.79, 
3.40 and 7.67 core radii. 
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Or, in dimensionless form, 

f (Ct ut = ajCjexp(- ̂ iju2?2^t2) exp(yjft?;+u<j>) [exp(ypjU2+yjW)-l] 

for each of the three mass classes, labeled with j. The notation is 
the same as that of GG; the new quantities Q and li are the central 
angular velocity and its dimensionless counterpart (the "units" of the 
latter are scale velocities per core radius). It is assumed that the 
three mass classes are in thermal equilibrium in the central regions, 
so that the central velocity dispersions are inversely proportional to 
the square roots of the masses. The models are rotating, with a linear 
rotation curve in the core, and are anisotropic in the outer parts. 
These models, and the techniques used to construct them, are described 
in Lupton and Gunn (1984), following the notation and precepts outlined 
in GG. In particular, the use of the total angular momentum as an 
approximate integral is shown to introduce errors of less than about 1% 
in the density distributions. 

5. The Observations 
a). Light Distribution. In globular clusters, almost all of the light 
comes from the stars on the giant branch, with a smaller contribution 
from the stars on the horizontal branch and near the turnoff. This 
means that essentially all the light comes from a relatively small 
number of stars, and that the light distribution is seriously affected 
by small number statistics. The problem is especially serious in the 
core, where for example in M3 the integrated light is uncertain to 
about 6% (GG). Seriously affected as well are the measurements of the 
small ellipticities of the relatively slowly-rotating systems discussed 
here, though the flattening is obvious on the POSS prints. We have 
used the ellipticity data of Kadla et al (1976) and our own 
photographic photometry from out-of focus 1.2-meter Schmidt plates to 
determine the ellipticities. 

The radial photometry is in better shape, consisting of photometry 
and star counts by King (1966b) and King et al. (1968), and of our own 
data. The brightness may be integrated to give an estimate of the 
total magnitude of the clusters being studied. 
b). Velocities. The radial velocities used in this paper were 
measured with the Griffin-Gunn (1974) cross-correlation coudef 
spectrometer on the Hale telescope. Typical accuracies for a single 
measurement are about 1.2 km/s, to which must be added (as was the case 
for M3 as well) a "jitter" of about the same size to bring the 
cumulative chi-squared of the measurements down to an acceptable value. 
This extra error is believed to be due to motions in the atmospheres of 
the high luminosity giants studied, but its origin is immaterial to the 
dynamical analysis. Only stars brighter than about V = 14.0 can be 
studied easily, so these radial velocities are restricted to a 
relatively small number of stars in each cluster. 142 velocities are 
available for M13 while for M92, where velocities are very difficult to 
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measure owing to the extreme weakness of the metal lines, we have only 
49. These velocities are presented and discussed in detail in Lupton, 
Griffin, and Gunn (1984) (hereinafter LGG). 

The proper motion data are those of Cudworth and Monet for M13 and 
Cudworth for M92 discussed above. Since the errors in these motions 
are large compared to the expected velocities we did not use them in 
the model-making procedure. We did, however, use our models in 
conjunction with the proper motions to estimate the distance to the 
cluster, and to compare a postiori the velocity ellipsoids observed 
with those predicted by the models. 

6. Fitting Procedures 
We have adopted fitting procedures which are analogous to those 
presented in GG9 though the added complexity of the rotation and 
subsequent lack of circular symmetry both in the brightness and in the 
kinematics complicates things somewhat. As was done there, we have 
restricted ourselves to models which fit the azimuthally averaged 
brightness profiles essentially perfectly. We have used here a 
maximum-likelihood technique with an approximate distribution for the 
likelihood along with realistic estimates of the errors in the 
brightness profiles to judge the significance of deviations from the 
observed profile; we had no such tool for the M3 work, and it is 
possible that those models were overconstrained by the observed 
brightness distribution. The ellipticities played no role in the 
fitting, but were examined afterward. 

The scale of the fit to the brightness gives the angular core 
radius and the total flux, which with an assumed distance gives the 
physical core radius r and the total luminosity. The shape parameters 
are essentially those described in GG9 the inner core shape being 
determined by the total mass in massive remnants (taken here, as there, 
to be 1.2 MO white dwarfs), the slope in the "body" of the cluster, 
determined mostly by the depth of the dimensionless central potential, 
and the cutoff radius, determined here by a combination of the central 
potential, the anisotropy, and the rotation. 

The radial velocity data was likewise fit to the model by a 
maximum likelihood technique, here a generalization of the one 
described in GG. Here we have three parameters to fit, the central 
velocity dispersion (the velocity scale in the models), the mean 
cluster velocity, and the position angle of the rotation axis on the 
sky. As in the spherical models, the run of dispersion with radius is 
a critical diagnostic for mass in low-mass stars and for anisotropy. 
The slope of the mean rotation curve in units of central velocity 
dispersion per core radius determines the dimensionless central angular 
velocity for any assumed inclination angle, but the inclination angle 
itself is very poorly determined, even if one uses the ellipticity 
data, as has already been noted by Wilson (1975) . That this should be 
so is an immediate consequence of the fact that the ellipticity is 
quadratic in the angular velocity, the observed velocity is 
proportional to the sine of the inclination angle, and the observed 
ellipticity to the square of that quantity. The isotropic component of 
the centrifugal potential affects the cluster density distribution, so 
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one has a weak handle, but this near-degeneracy makes for a good deal 
of uncertainty in the final models. 

The list of parameters to be fit is the one for the spherical 
three-component ones enumerated in GG: Three dimensional ones, the 
total light, the core radius, and the central velocity dispersion; 
three dimensionless parameters for the mass function, here taken to be 
the mass fraction in 1.2 MO white dwarfs, the mass fraction in lower 
main sequence stars, and the mean mass of those objects (these two 
parameters manifest themselves as the slope and lower mass cutoff for 
continuous mass functions), and two dimensionless model parameters, the 
depth of the central potential in scale velocity units and the 
anisotropy radius in core radii. To this list are added three 
parameters associated with the rotation: the dimensionless central 
angular velocity, and the two angles, the inclination and the position 
angle of the apparent axis. A daunting list, but GG outlined how the 
first set are quite unambiguously determined by the behavior of the 
data; the position angle is well determined, but as noted above, the 
combination Q sin i is all that is determined well by the observed 
rotation curve. 

The final test of the models is the agreement or lack thereof 
between the dynamical mass, AvQ rc/G, where the dimensionless number A 
is calculated with the model, and the population mass, L (M/L), where 
M/L is the mass-to-light ratio for the assumed mass function. It is 
important to note that this comparison is affected by errors in the 
distance, since the dynamical mass is proportional to the first power 
of the distance and the population mass to the square; hence claims of 
the presence or absence of "missing mass" in globular clusters based on 
these techniques should be viewed with requisite caution. 

One last physical check on the models is to determine whether the 
anisotropy radius is in fact outside the radius where the local 
deflection relaxation time is of order 10 billion years; if it is not, 
it is difficult to understand how the anisotropy has survived till the 
present. 

7. Results 
a). M13. With an inclination angle of 60 degrees, near the most 
probable value, we easily obtained good fits to both the radial 
velocity and brightness data. The fits are shown in figures 1 and 2. 
The derived mass function parameters correspond to a main sequence 
slope of about 2.2, compared to a value of 2.0 for the best M3 model in 
GG and a value less than 1 for the solar neighborhood. This large 
value is driven largely by forcing agreement between the dynamical and 
population masses; adding remnants at the massive end or very low-mass 
stars at the other end to achieve the same end is precluded by the core 
shape in the first instance and the observed rapid fall of velocity 
dispersion with radius in the second. 

The parameters are summarized in the Table 1; a surprising result 
is the very small value of the anisotropy radius, only five core 
radii. 

We also built M13 models with an inclination angle of 30 degrees, 
which, of course, almost doubles the central angular velocity. These 
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models, though not near the classical ratio of 0.14 for ordered kinetic 
to gravitational energy for the onset of instability, represent the 
most rapidly rotating models we can easily construct. The centrifugal 
potential pulls in the wings of the cluster, and to fit the observed 
light profile the anisotropy radius must be very small, only 2.2 core 
radii, at which radius the deflection relaxation time is of order one 
billion years. We thus regard this model as unlikely to represent the 
cluster, though the fit is very nearly as good as the best 60 degree 
model. 

The scale velocity of M13 is quite high, 7.8 km/sec, and the 
distance fairly small, the favored values clustering about 6.5 kpc. 
The characteristic proper motions are thus pretty large on the scale of 
such motions, being about 25 millarcseconds/century. With the 
phenomenally low errors achieved for the proper motions in this cluster 
by Cudworth and Monet, only about 12 mas/century, very good comparisons 
can be made for the tangential motions and an excellent distance can be 
obtained. The anisotropy is obvious in the data, and appears to set in 
at about the place predicted by the models, but the amplitude of the 
anisotropy appears too large in the proper motion data, as if the 
errors had been slightly underestimated resulting in too large a ratio 
of the corrected radial to tangential motions. These points are 
discussed in detail in LGG, as are the schemes used for deriving the 
distance from various "best fit" criteria to the observed proper 
motions. We obtain a distance of 6.5 (-0.4,-1-0.6) kpc, in excellent 
agreement with the accepted value. 
b). M92. We have radial velocities for only 49 stars in this cluster, 
and so the fitting is much less certain. The kinematics of the outer 
parts is particularly poorly constrained, so the radius of the onset of 
anisotropy is very uncertain; in any case, very nearly isotropic models 
seem to fit well. The rotation is not as important dynamically as is 
the case in M13, and the rotation curve is poorly determined, so we 
have build models only for an inclination of 60 degrees. 

The best-fitting model has an anisotropy radius of about twenty 
core radii, less extreme than M3 and much less so than M13, and in 
agreement with Cudworthfs proper motion data, which indicates that the 
motions are isotropic over the area covered by his data, almost all of 
which come from within this radius. The mass function of the best 
model again has a slope of 2.2, and the comments made about that value 
for M13 we could repeat here, though the larger uncertainties must be 
kept in mind. The modulus of M92 is commonly thought to be slightly 
greater than that of M13, and our derived scale velocity smaller; 
these, combined with the vastly larger proper motion errors for this 
cluster make the dynamically derived distance estimate very uncertain 
indeed. We obtain a value of 6.1 (+1.0,-0.9) kpc, much smaller than 
the accepted 8.3 kpc value. Cudworth has indicated to us that the 
errors of the proper motions, which dominate this estimate, are likely 
to have been underestimated, and that a reanalysis using more modern 
techniques is underway. 

The parameters again are summarized in the table. 

https://doi.org/10.1017/S0074180900147187 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147187


30 R. LUPTON ET AL. 

Table 1. M13 and M92 models: properties of best fit models 

cl rc(pc) R(pc) v0(km/s) M/Lv M5 Td7 W0 £T Q 

M13 2.17 22.9 7.858 2.39 5.84 17. 7.5 5.0 0.34 

M92 0.74 61.0 6.077 2.39 3.92 1.6 11.5 20. 0.14 

rc is the core radius in pc, R the mean limiting radius, v0 the 
velocity scale (very nearly the central one-dimensional velocity 
dispersion), M/Lv the visual mass-to-light ratio, M5 the total mass in 
units of 105 solar masses, Tdy the reference central deflection 
relaxation time for the mean mass star, W0 the dimensionless central 
potential, Xt the dimensionless anisotropy radius, and OM the 
dimensionless angular velocity. 

8. Discussion 
We have discussed techniques for obtaining radial velocities and proper 
motions for globular cluster stars and the application of these data to 
the construction of dynamical models of the generalized King type, in 
particular the application of approximate three-integral models to 
photometric and kinematic observations of the rotating globular 
clusters M13 and M92. Excellent fits are obtained, and relatively 
unambiguous determination of the large number of parameters which 
characterize the models is achieved with the notable exception of the 
inclination of the rotation axis to the line of sight. The inclination 
is strictly unobtainable in the limit of small rotation but does not 
affect the other parameters (except, of course, the angular velocity) 
and is in practice unobtainable for more rapid rotation but confuses 
the fitting of other parameters. 

The reliability of the models themselves is questionable on two 
fundamental points. First, the relatively arbitrary form of the 
distribution function, and, second, the assumption of thermal 
equilibrium among the mass classes. The points are related, because 
thermal equilibrium in a single mass class dictates a distribution 
function not qualitatively different from the one we are using, though 
one may quibble with the exact form of the energy cutoff and such. 
Many of our conclusions about anisotropy and the lower end of the mass 
function depend quantitatively but not qualitatively on thermal 
equilibrium and the concommitant mass segregation. The models, though 
complex, are probably the simplest ones which include the physics one 
knows to be necessary to model real clusters; what is in question is 
not whether there is enough, but whether it is correct. Only real 
evolutionary models (and real data on mass functions and hopefully 
someday kinematic data for stars of radically different mass) will 
finally tell. These models in any case represent probably the farthest 
one wishes to proceed with the formalism and philosophy originated by 
King(1966a); the next step will of necessity be very much more 
complicated. 
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