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ABSTRACT. Crevasses, once formed, are subject to 
rotation and bending according to the velocity field through 
which they travel. Because of this, crevasse shapes can be 
used to infer something about the velocity field of a 
glacier. This is done using a model in which each crevasse 
opens perpendicularly to the principal extensional strain-rate, 
when that strain-rate exceeds some specified critical value, 
and is then deformed according to the same velocity 
gradients that formed the crevasse. This model describes 
how crevasses are formed, translated, rot~ted, bent, and 
lengthened. 

Velocity fields are sought for which calculations 
produce crevasses approximating those found in three 
example areas on Ice Stream B, Antarctica. The first 
example is the hook-shaped crevasses that occur just outside 
the chaotic shear zone at the ice-stream margin. They are 
used to infer a rate of lateral shearing, and side drag. The 
second example, a pattern of splaying crevasses, is 
satisfactorily simulated by a model with side-drag stress 
varying linearly across the ice stream. This confirms that 
this region is restrained almost entirely by side drag. The 
third example is transverse crevasses and their change in 
orientation, but many different velocity fields can produce 
the observed pattern . Of these three examples, the shapes of 
hook-shaped marginal crevasses and splaying crevasses can 
provide useful information whereas transverse crevasses are 
less helpful. 

INTRODUCTION 

Crevasses are prominent surface features on many 
glaciers, and they are caused by the deformation of the ice 
on which they develop. They form as open fractures in 
response to the stress field at the surface and are altered as 
they are carried down-glacier. If a theory for the formation 
and subsequent alteration of crevasses can be developed and 
proved, it may be possible to link the geometry of crevasses 
to the stress regime. 

Much of this is done in an informal way by most 
field glaciologists. The presence of crevasses, itself, indicates 
larger stresses than elsewhere. Also, as Nye (1952) and 
Sharp (1960) have explained, the orientation of newly 
formed crevasses indicates the direction of principal stresses 
at the surface, and something of the surface-velocity field 
can be inferred from the manner in which crevasses are 
carried along and distorted after formation. 

These principles have been applied to Ice Stream B, 
Antarctica (Fig. I) (Vornberger and Whillans, 1986). 
Diagonally oriented crevasses have been used to infer the 
location of the margins of the ice stream where it shears 
past nearly stagnant ice. Other crevasses indicate that the 
ice flow is extensional for most of the length of the ice 
stream, until near the Ross Ice Shelf where lateral spreading 
dominates. Subsequent measurements of surface velocity of 
the ice stream (Bindschadler and others, 1986; Whillans and 
others, 1987) verify these deductions about the ice-flow 
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pattern. However, more information can be obtained from 
the crevasse field. 

As a first step toward further development of this 
theory, we model the evolution of crevasses, and address 
three example crevasse patterns on Ice Stream B. The 
objective is to determine if crevasse shapes can be used to 
infer quantitative characteristics of the ice flow. 

The development of the technique for the interpretation 
of crevasse patterns could be very valuable, especially with 
the current interest in the flow and stability of the polar 
ice sheets, and the advent of improved aerial photography 
and of satellite imagery. It may be possible to learn much 
about the dynamics of a glacier from remotely sensed 
crevasse patterns and a very limited field program. 

THE MODEL 

The development of a crevasse is followed through a 
specified, steady two-dimensional velocity field. Glaciers 
generally do not change flow patterns quickly, especially not 
over the time span during which a crevasse field forms . 
This means that a map of a train of crevasses is also a 
depiction of the evolution of a single crevasse in various 
phases of its development as it traverses the velocity field . 
Crevasse patterns thus may be taken to depend only on the 
velocity field and the criteria for the initial formation of 
crevasses. 

This assumption of steadiness is somewhat at variance 
with Whillans and others (1987), who argued that the flow 
of Ice Stream B is non-homogeneous and non-steady. It is 
assumed here that the velocity field is steady on the 100 
year time-scale needed for crevasse systems to develop. 
Also, the assumption of steady flow simplifies the problem. 

In this model, crevasses are assumed to form when the 
principal extensional strain-rate exceeds a critical value. The 
critical strain-rate has been measured in earlier studies. It is 
about 0.01 a-I in temperate ice (Meier (1958) for 
Saskatchewan Glacier, Alberta, Canada; Meier and others 
(1957) for Blue Ice Valley, Greenland; Holdsworth (1965, 
1969) for Kaskawulsh Glacier, Yukon Territory, Canada) 
and about 0.002 a-I in polar ice at -28°C (Holdsworth 
(1969) at Meserve Glacier, Antarctica). The firn temperature 
on Ice Stream B at the UPB camp (Fig. I) at 17.4 m depth 
varies between -28 ° and -25°C, so the critical strain-rate 
of 0.002 a-I obtained for Meserve Glacier is used. 

The onset of crevassing requires further study, 
especially to determine if ice fabric , texture, or the rate of 
stress increase are important. Also, on crevasse formation, 
some of the stress in the upper layer of the glacier is 
relieved and so, in many examples, new crevasses do not 
form near existing crevasses. This process helps determine 
crevasse spacing, but, as is discusssed below, this spacing is 
irregular, which indicates that crevasse formation is more 
complex than these simple ideas would allow . There are 
thus a number of unresolved issues with regard to crevasse 
initIatIOn. However, for the work here, we assume that 
crevasses form when a critical strain-rate is attained. The 
actual value of the critical strain-rate is not as important, 
for this study, as that there is some value and that 
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Fig. 1. Vi sible f eatures on l ee Stream B. West Antarctica. True south is roughly towards the top of the 
map. Large /lumbers indicate the crevasse patterns modelled here ( J, curved marginal crevasses; 2 , 
splaying crevasses; 3. transverse crevasses). Approx imately every twentieth crevasse is shown. l ee flow 
is left to right , and numbered dot s are velocity -measurement stations. This map was prepared from a 
mosaic of aerial photographs. The coordinate system has been d escribed in Whillan s and others 
(1987) . 

crevasses form consistently according to this critical value. 
Once the crevasse is formed , the trajectories of points 

along the crevasse are traced. Thus, at any time, the 
position and shape of the crevasse are described by a line 
connecting the points. If the crevasse lengthens, more points 
are included in the calculations. 

Particle trajectories are found by solving equations 
describing velocity for position as a function of time. The 
velocity field is described by the components of the 
horizontal ice-surface velocity, Ux = dx/ dt and uy = dy/dt 
at horizontal position (x,y) . They are given by the first
order terms in a Taylor series expansion about (0,0): 

(I) 

(2) 

where ux(O,O) and uiO,O) are specified velocity components 
at the origin of the coordinate system, and Ux x, Ux y ' uy ,x' 
and Uv,y a~e specified velocity gradients (Table I). ' 

Recalling that Ux = dx / dt and uy = dy/dt, and 
eliminating x, these equations are solved for y as a function 
of time together with two boundary conditions: 

I. 

2. 

Initial posltton (at t 

y = Yo; and 
0): 

Initial velocity (at t = 0): 
dy/dt = ui O,O) + uy, x xo + Uy ,yYo 

(3) 

(4) 

where (x o..vo) is the starting position of the selected 
trajectory. Similar conditions are used in solving for x. 

The Appendix contains a fuller explanation of how the 
equations are solved. Analytic expressions are obtained for x 

4 

TABLE l. DEFINITIONS OF VELOCITY GRADIENTS 
(x is directed along the flow direction of the ice stream, 

and y across flow) 

aux 
ux ,x ax 

aux 
Ux, y ay 

longitudinal stretching 

side shearing 

lateral extension or spreading or, 
if negative, compression 

flow-line turning 

and y as a function of time, t, start position (xo ..vo)' and 
velocity gradients (ux ,x' Ux,y, uy,x' and Uy ,y)' 

EXAMPLE OF MARGINAL CREVASSES 

The outermost component of Ice Stream B is a train of 
curved crevasses abutting against an inter- stream ridge (Figs 
I and 2). The length of these curved crevasses is relatively 
constant, and they are concave down-glacier. Each crevasse 
is straight at its end nearest the inter-stream ridge, and 
becomes hook-shaped at its other end, next to the chaotic 
zone. The chaotic zone is a region of intersecting crevasses 
and snowdrifts and is believed to be composed of ice that 
has flowed from the inter-stream ridge into the ice stream. 
The shape, length, and spacing of the curved marginal 
crevasses are similar along all the margins of Ice Stream B, 
with an exception only at the bend in the southern margin 
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Fig. 2. Part of an aerial photograph. showing a 4.3 km by 1.6 km part of the ice-stream margin near 
"1" in Figure 1. The complex region is the chaotic zone of the ice stream, which is moving left to 
right. The long curved crevasses are studied here. The smooth region is part of the inter-stream ridge 
which is flowing slowly towards the ice stream. ( U.S.C.S. flight TMA-251 7-V, exposure number 
12-132. lat. 83°45' S., long. 148°W., near station 43 ). 

("Valhalla" in Figure I), where they are longer and more 
smoothly curved . 

To simulate crevasses in the ice-stream margin, two 
zones are defined (Fig. 3) . The first is part of the inter
stream ridge, where the principal extensional strain-rate is 
not sufficient to form crevasses. Ice flows into the second 
zone, where the principal extensional strain-rate is large 
enough to form crevasses. In the model, the boundary 
between the two zones, the crevasse-initiation line, is 
straight and its position is fixed. As the ice is carried away 
from the crevasse-initiation line, the crevasse continues to 
grow and extend back to the line. The older part of the 
crevasse is carried down-glacier and rotated because of the 
simple shear. The resulting hook-shaped crevasses are like 
those observed in Nature. 
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Fig. 3. Formation of a curved marginal crevasse by flow 
from the inter-stream ridge (uy = 50 m a-I ) and side 
shear (ux .y = 0.09 a-I ). Straight arrows indicate ice-flow 
direction. Along the crevasse-initiation line, u x = O. 
Crevasse ages in years are shown next to the crevasses. 
The calculations begin a/ the origin . 

A useful measure is the radius of curvature at the 
tightest bend in the crevasses, Rc' It is measured by 
matching circular arcs in an overlay with crevasses on the 
photographs. The point of sharpest curvature is at the end 
of the crevasse nearest the chaotic zone. The major 
uncertainty in measuring Rc arises because one side of the 
crevasse is difficult to trace into the chaotic zone. In some 
cases, so much of the crevasse has been incorporated into 
the chaotic zone that an accurate curvature cannot be 
obtained. Nevertheless, where obtainable, the value of Rc is 
fairly consistent from crevasse to crevasse with an average 
value of 250 m (± 150 m). Only at "Valhalla" is the value of 
Rc different, being 3500 m. In this study, the more typical 
crevasses at straight margins are studied . 

There are also some short (50-300 m long) straight 
crevasses between the curved marginal crevasses (Fig. 2) . 
These crevasses have the same orientation as the outermost 
straight part of the curved marginal crevasses, and they 
occur directly against the chaotic zone. This similarity in 
orientation of the short straight crevasses and the younger 
straight part of the curved crevasses supports the assumption 

that the direction of principal extensional strain-rate in this 
area is constant. 

Figure 3 shows the development of one crevasse. The 
rotation rate of the crevasse first increases and then 
decreases, and for this example, with rather large values of 
ul' and Ux,y' the sharpest curvature is attained after about 
1'5 km of transport. 

The two major influences on crevasse shape are side 
shear (such terms are defined in Table I) and the rate at 
which ridge ice is flowing into the ice stream (u ). From 
the model runs, these quantities are found empirica~y to be 
linked to the minimum radius of curvature by 

for Uy,y = o. (5) 

Figure 4 shows this line . The crevasse shape, expressed by 

1500 
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Rc(m) 

500 

o~.-.-.-.-.-.-.-.-~ 

o 500 1000 
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Fig. 4. The radius of curvature. Rc' is linearly related to 
I uy/ u x y I' for the case of Ux x = 0 = uY.Y' The points 
show the results of numerical ' calculations for values of 
I uy I ranging from 5 to 40 m a-I, and I Ux ,y I ranging 
from 0.01 to 0.15 a-I . The seal/er about the line is due to 
the numerical approximations involved in calculating Rc' 
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Rc' is simply related to the ratio of flow rate from the 
inter-stream ridge, uy' to rotation rate, Ux /2. 

Lateral extension (Uy. y > 0) or compression (uy y < 0) 
also affects the radius of curvature because it changes the 
value of uy along the length of the crevasse. For a given 
value of uy at the crevasse-initiation line, lateral 
compression causes the value of uy to be less as distance 
from the crevasse-initiation line increases (Fig. 5). This 
means that u at the point of maximum curvature is 
smaller, and, by the equation above, this leads to a more 
tightly curved crevasse. Lateral compression also tends to 
bring the tips of the crevasse closer together. The result of 
both processes is a smaller radius of curvature. Conversely, 
lateral extension causes the crevasse to be stretched out and 
the radius of curvature to be larger. 
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Fig. 5. Radius of curvature, Rc' versus lateral velocity 
gradient, uy y' for a lateral flow raLe uy = 6 m a-I . Each 
line is for ' the rale of side shear, ux,y.' indicated. The 
lines are obtained by fits to the results of numerical 
calculations (dots) . 

Longitudinal stretching (ux x) is not considered in this 
model, because, in this mode), the ice flow is directly 
across the crevasse-initiation line into the ice stream, so 
Ux = 0 at all x along that line. 

The fourth velocity gradient, uy x' is also not included 
here. This gradient causes flow-line turning, and thus would 
make the crevasse-InItIatIOn line curved. It would be 
applicable to the crevasses near "Valhalla", but that is not 
attempted here. 

Measurements of the radius of curvature of marginal 
crevasses along the northern margin of Ice Stream B, or 
"Snake", are now used to infer a value for side shear at the 
margin. The radius of curvature for marginal crevasses along 
the "Snake" is 250 ± 150 m. Velocity measurements for 
stations 15, 19, 24, 26, 34, and 46 on the ice ridge indicate 
a flow rate from the inter-stream ridge, uy ' of about 
6 m a-I (Whillans and others, 1987). This value is also that 
needed to balance snow accumulation on the inter-stream 
ridge. Substituting that rate into Equation (5), one obtains 
U;Cy = 0.048 a-I, with a range of 0.03-0.12 a-I. This rate of 
SIde shear agrees closely with the value of about 0.05 a-I 

6 

measured in the "Snake" at the longitude of DNB camp 
(Bindschadler and others, 1987a). 

In this calculation, the rate of lateral spreading, uy y' 
is set to zero. In fact, the flow pattern shows small laterally 
compressive values in the upper and central parts of Ice 
Stream B and small extensive values near the ice shelf. 
These effects could be included but this is not warranted 
considering the difficulty in obtaining precise curvatures. 
The effect would be small. 

The curved marginal crevasses are thus useful for 
estimating the value of side-shear rate, Ux y' at the ice
stream margin. The major limitation arises because the older 
ends of the crevasses are in the chaotic zone where they 
cannot be traced. This causes an uncertainty in the 
measured value of crevasse curvature. The method leads to 
a determination of the side-shear rate to within a factor of 
about 4. This is a valuable method for obtaining rough 
estimates of this velocity gradient. Through use of a flow 
law, one can then compute lateral drag . In this case, it is 
about 200 kPa (using a rate factor of 700 kPa a- 1/ 3 from 
Hooke (1981». The technique is most appropriate to use for 
valley glaciers and ice streams for which there are no direct 
measurements. 

EXAMPLE OF SPLAYING CREVASSES 

Splaying crevasses occur in the region near DNB camp 
(Figs I and 6), and Figure 7 is a schema of the general 
pattern. In valley glaciers, this pattern typically results from 
lateral extension and side shear (Sharp, 1960). On Ice 
Stream B they also occur in an area of lateral extension, 
and only one side of the full pattern is visible. 

...... " .... .. . 
: ..... . 

~6 

Fig . 6. Map of the splaying crevasse pal/ern ("2" in Figure 
1). lee flow is left to right . Numbered circles are velocity 
stations. Number 46 is also indicated in Figure 1. 
Transects 1 and 2 and the line of symmetry are discussed 
in the text . 

Glacier margin 

2//1 
Line of ---::::::-?;..., • 
sYmmetry~ICe flow 

Glacier margin 
Fig. 7. Typical splaying crevasses on a valley glacier. Due 

to lateral extension , crevasses are longitudinally oriented at 
the line of symmetry. At the glacier sides, side shear 
results in crevasses at 45°. (Taken from Sharp, 1960, 
p. 52.) 
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Following experience on valley glaciers, this crevasse 
pattern is taken to be due to a combination of lateral 
extension and side shear. This therefore involves the 
velocity gradients uy y and Ux y (Table I). The spatially 
averaged lateral extension rate 'IS uniform throughout this 
region, except for very local variations (Bindschadler and 
others, 1987a). These authors also inferred that the 
side-shear stress varies across the ice stream, being more 
important at the margin than at the center. There is thus 
both lateral extension and a gradient of side shear across 
the glacier. 

To model this situation, adjacent linear velocity fields 
are connected. This is necessary because side shearing is not 
constant and the trajectory calculations are for constant 
velocity gradients. Separate linear-velocity fields or "panels" 
are arranged side by side as shown in Figure 8. As applied 
here, the value of extension (uy,y) is the same for all 

20 

/" / / / Ux,y 
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,-... 

V E 
~ 10 / / / 

5 V /" / /' 

o 
o 5 10 15 20 25 

X (km) 
Fig. 8. Crevasse position with distance for adjacent rec

tangular velocity fields . Four are shown. but eight are 
used in the calculations. Ice flow is left to right . Side 
shearing. u x. y' changes linearly from zero at the line of 
symmetry (y ' = 0). The crevasses first form at x = O. 

velocity fields, but this is not necessary. The side shear 
(ux y) is zero at the line of symmetry of the crevasse 
pat/ern increases from one panel to the next, and is 
0.05 a-I at the margin. This incorporates the second 
derivative, Ux yy (also written a2ux / ay2). Crevasse 
orientations in each panel are calculated separately. 

The first experiment is for a constant value of Ux,yy 
Crevasse orientations are calculated using lateral extensIOn 
Uy, y = 0.002 a-I, and with side shear, Ux,y in~reas!ng 
linearly (ux yy = 0.002 a-I km-I) along the y-dlrectlOn 
(Fig. 8). However, the orientations of modelled (Fig. 8) and 
observed (Fig. 6) crevasses agree only for those crevasses 
along, and farthest from the line of symmetry. In the 
intermediate panels, at 7.5 and 12.5 km from the line of 
symmetry, the modelled crevasses are turned more than 
those observed. 

This result indicates that Ux,yv. is not constant. The 
simplest model for tranverse vaflabons in u x is that of 
lamellar flow, in which side-shear stress varies linearly 
across the ice stream and there are no other stresses (e.g . 
Whillans and others, 1987). Lamellar flow produces lateral 
shearing that varies as the nth power of distance, y, from 
the line of symmetry, 

(6) 

where n is the exponent in Glen's flow law and c is a 
constant. Whillans and others also calculated shearing in the 
presence of additional normal stresses, and that leads to an 
additional linear term on the right-hand side of Equation 
(6) . Here, however, only the simpler, lamellar case described 
by Equation (6) is considered. 

The value of c is found from the orientation of 
crevasses in their nascent zone. This is at transect I (Fig. 6) 
at the up-glacier end of the crevasse field near where they 
first form. Considering that crevasses form perpendicular to 
the orientation of principal extension, the orientation of a 
new crevasse is obtained from elementary principles and is 

Vomberger and Whillans: Crevasse deformation 

where 9 is measured anticlockwise from the line of 
symmetry in Figure 6. The gradie~ts ux,;:c = ~.001 a-I, Uy,y 
= 0.002 a-I, and uy,x = 0 are available from field measure
ments (Bindschadler and others, 1987b). The value of u x y 
obtained by re-arranging Equation (7), is shown in Figure 
9. Only data to a distance of 9 km are shown. Crevasses 

0.002 

o 

-0.002 
~ .. 

-0.004 • lro • 
>: -0.006 
x 

::::J 

-0.008 

-0.010 • 
-0 .012 

800 km3 
-0.014 

0 4 5 6 7 8 9km 

Distance from line of symmetry 

Fig. 9. Side shear versus distance from the line of 
symmetry. cubed. in the nascent area ( transect 1) . Data 
are from measurements of 9 on Figure 6 and the solution 
of Equation (7) for ux .y 

beyond that distance are oriented with 9 > 45
0

, which is 
inconsistent with our model. Presumably, the true nascent 
zone for these crevasses is farther up-glacier. Crevasses 
up-glacier of transect I are not visible in the photographs, 
but they could be present and be small enough to be 
bridged with snow. A further difficulty is that the angle 9 
is difficult to estimate because the crevasses are not entirely 
regular in orientation. The uncertainty in Ux y in Figure 9 
increases with distance, y, and reaches 0.002 a- I. Ignoring 
these complications, the plot indicates that the data can be 
represented by the usual value of n = 3. The value of c is 
provided by the slope of this line (c = -2 x 10-5 a-I km- 3) . 

Somewhat different exponents in Equation (6) or 
inclusion of other stresses, or a more complex lateral 
variation in side-shear stress, could also be consistent with 
observation. However, the case of n = 3 and Equation (6) 
is simple and is a good first model for the crevasse pattern 
in the nascent area. 

A further test of the model is provided by considering 
the translation and rotation of crevasses from transect I to 
transect 2. The crevasses, once formed, are carried with the 
ice flow and are rotated because the center of the ice 
stream moves faster than nearer the margins. These effects 
are shown in Figure 10. For reference, the corresponding 
orientations for transect I, as used in Figure 9, are also 
plotted. Some agreement is obtained between model and 
observation for crevasses far from the line of symmetry. 

~ 80 
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'" ::l 20 
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Distance. y. from line of symmetry (km) 

Fig . 10. Crevasse orientation as a function of distance from 
the line of symmetry. The transects are shown in Figure 
6. Transect 1 is near the nascent area for the crevasses 
and the solid curve represents values calculated using 
Equation (7). Transect 2 is 14 km farther down-glacier. 
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Deficiencies in the match between model and 
observation occur in the first few kilometers from the line 
of symmetry. This could be repaired simply by redefining 
the position of that line of symmetry. About 5 km farther 
south would be suitable and still be consistent with the 
crevasse pattern (Fig. 6). 

An important assumption in the model is that side drag 
varies linearly across the ice stream. This assumption is 
valid if there are no major vanatlOns in basal drag, ice 
thickness, or surface slope in the area. A suitable case is 
where the ice is afloat. 

This seems to be the situation here. Bindschadler and 
others (1987a) conducted a force-budget study and found 
that basal drag is near zero. The bed must be well
lubricated . Robin and others (1970) termed such a region "a 
pseudo-ice shelf". Bindschadler and others found that the 
driving stress, which is only 2.6 kPa, is mainly balanced by 
gradients in side drag. Back pressure from the ice shelf is 
unimportant. This is consistent with the model results here. 

Bindschadler and others assumed that the region 
immediately down-glacier from the splaying pattern has 
near-zero side shear. This is inconsistent with the present 
results, that find very large side shearing, that reaches 
0.014 a-I (Fig. 9). Including this finding in the force-budget 
analysis indicates that the resistance to flow is even more 
completely dominated by side drag than Bindschadler and 
others concluded. 

Modelling the region of splaying crevasses as a pseudo
ice shelf and using the present crevasse model seems to 
work adequately. Other more complex interpretations have 
not been exhaustively explored. However, we believe that 
the existence of splaying crevasses is a useful indication that 
the flow regime is dominated by lateral spreading and 
maybe by a near-linear variation in side drag. 

We have not attempted to model splaying crevasses on 
a valley glacier. Presumably, one could also learn about the 
lateral variation in basal drag from such a study. 

EXAMPLE OF TRANSVERSE CREY ASSES 

The surface of most of Ice Stream B is dominated by 
transverse crevasses (Fig. I) . These form as a result of 
longitudinal extension. Their lengths are typically in the 
range 0.25-2.0 km, and crevasses up to 10 km long are 
observed. As shown in Figures I and 11, these crevasses are 
commonly grouped in bands or trains. Each band contains 
crevasses of similar length and is separated from adjacent 
bands by narrow crevasse-free zones. 

The cause of crevasse banding is not understood. 
Yornberger and Whillans (1986) speculated that each band 
of crevasses originates over a basal obstruction. The up
glacier end of the band is at the obstruction, and as the ice 
is carried away, a new crevasse is formed and joins the 

band . Alternatively, the bands may be associated with rafts 
of inland ice that are carried by the ice stream (cf. 
Whillans and others, 1987). The precise cause of the 
banding is, however, not believed to be important to the 
crevasse model used here. 

It was hoped that the change in the along-flow spacing 
of transverse crevasses could be used to indicate the 
longitudinal strain-rate of inter-crevasse blocks. However, as 
Meier (1958) found for a site in north-west Greenland, the 
spacing between successive crevasses is often very irregular. 
This may be caused by an unsteady process of crevasse 
formation, or by inhomogeneities in the ice. The irregularity 
in spacing in one part of a crevasse band can be greater 
than the average spacing along the band. For example, 
crevasse spacing along a flow line less than 10 km long can 
vary between 100 and 500 m, where the average ice velocity 
is about 400 m a-I. On Ice Stream B, the longitudinal 
stretching computed in this way varies between 0.004 and 
0.040 a-I, depending on the particular crevasses or groups of 
crevasses selected. This variation is much greater than the 
uncertainty due to measurement error. It seems unlikely that 
longitudinal strain-rates can vary so much and so 
meaningful values cannot be obtained from crevasse spacing 
on Ice Stream B. 

Crevasse spacing is thus not helpful, but the shape and 
orientation of individual crevasses may indicate the values 
of certain other velocity gradients. Superimposing side shear, 
u x y' on longitudinal stretching, u,'{ x, causes the crevasse to 
opim at an orientation different trom transverse stretching. 
More important to this application, it also causes the 
crevasse to change orientation as it is carried down-glacier 
because one end of the crevasse is carried faster than the 
other (Fig. 12, top). The rotation is uniform along the 
length of the crevasse, and so the crevasse remains straight 
as it is turned . We now investigate whether the progressive 
rotation of transverse crevasses can provide useful infor
mation. 

The lower part of Figure 12 shows how the crevasse 
turning rate changes with distance down-glacier from its 
nascent area. The angle a is measured with respect to a 
practical axis X, which is approximately along-flow. The 
initial turning rate is, from elementary principles, 

where ux(O,O) is the value of Ux at crevasse formation. 
Figure 12 shows results for the case of uy x = O. 

The crevasse turning rate often' increases with 
progressive translation and rotation of the crevasse. Basic 
principles and the model experiments show that it can reach 
a maximum of 

I aa/ 8X(max) I larger of [I Ux ,y I, I uy,x 11Iui (9) 

Fig. 11. Detail of Ih e celllrai pari of Ice Slream B, showing pari of one band of transverse crevasses 
("3" in Figure 1). The flow and wind direction are right to left and illumination is from the top. 
Length depicted is 3.7 km. Also evident are drift mounds, formed by the collection of snowdrift behind 
stat ionary wind eddies associated with collapsed crevasse bridges. Some drift mounds no longer have 
an associated open crevasse. ( U.S.G.S. flight TMA-2509-V, exposure number 10-056, lot , 83°35' S., 
long. 143°W.), 
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crevasse turning rate versus distance for the values of 
u as indicated in a-I . 
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in which ui is the value of Ux at the place where 
8S/ 8X(max) occurs. Crevasses which are oriented perpen
dicularly to the x-axis undergo the fastest turning, and 
those parallel to the x -axis undergo no turning, and for 
some velocity fields, there is no maximum. 

Lateral extension or compression (uy y) affects the 
initial crevasse orientation but has no effect 'on the value of 
8S/ 8X(max). 

Equation (9) has been applied to Ice Stream B to 
estimate lateral shearing , U x v' using the maximum rate of 
change in crevasse orientation. (Flow-line turning, uy x' is 
obtained from the change in direction of crevasse ' bands, 
and is small.) There are, however, practical limitations to 
the application of the theory. 

The main problem is, again , measurement uncertainty. 
The crevasses are not truly straight. Instead, they are 
stepped and kinked, and some are slightly curved. This 
leads to an uncertainty in crevasse orientation of about 0.0 I 
rad and , for lee Stream B, the crevasse rotation is within 
this measurement limitation . This leads to the conclusion 
that lux 1'1 in the center of the ice stream must be less 
than b.002 a- I. This is not a helpful conclusion because we 
already know, from the absence of diagonal crevasses, that 
this velocity gradient is very much smaller than twice the 
critical strain-rate (0.002 a- I). 

The initial orientation and initial value for crevasse 
turning rate could be helpful. This, however, requires 
correctly identifying the nascent area for the crevasse band , 
which, because small crevasses are obscured by drifted 
snow, cannot be done with confidence. 

The crevasse bands, however, seem to be indicators of 
flow-line turning, u y X ' Crevasses in the band remain 
perpendicular to these' flow lines, indicating that , within 
measurement error, the crevasse turning is the same as the 
flow-line turning. This flow-line turning agrees with that 
inferred from the orientation of the ice-stream margins and 
indicated by direct velocity measurement. 

CONCLUSIONS 

The model accounts for the observed curved marginal 
crevasses. Uncertainties in measuring the radius of curvature 
of the crevasses lead to a range of 4 in values of side 
shearing, which is an acceptable uncertainty for 
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reconnaissance studies. The estimate agrees with direct 
measurement. 

The model also accounts for the splaying crevasses at 
the lower end of the ice stream. Observations are 
satisfactorily simulated with uniform lateral extension, and 
side shearing varying approximately as the cube of distance 
from the line of symmetry of the crevasse pattern. This 
pattern is as expected for a simple, ice-shelf -style stress 
distribution and a third-power constitutive relation. The rate 
of side shearing needed to reproduce the pattern compares 
reasonably well with direct measurements. 

As a final example, the model is applied to transverse 
crevasses in the main body of the ice stream. Theory shows 
that the initial and maximum values of crevasse turning rate 
are related to the side-shearing rate and flow-line turning . 
However, for Ice Stream B, the crevasses are bent and 
stepped, and the overall change in orientation of crevasses 
is less than these short-scale orientation variations along a 
single crevasse. Because of this, meaningful measurements 
for calculating side shearing cannot be made . 

Changes in crevasse spacing are linked to the stretching 
rate. But, here too, local variability exceeds any general 
pattern, and measurements of crevasse spacing are not 
useful. 

Except for the problem of local variability, the crevasse 
model seems to work well. The model is based on the 
assumptions of steady flow, linearly varying velocity field, 
and that there exists a critical strain-rate for crevasse 
formation . None of these assumptions has been fully tested 
and it is possible that other models may account for the 
observed crevasses. For example, geologists model sigmoidal 
extension gashes similar to our marginal crevasses using a 
non-steady model (e.g. Wilson, 1982, fig . 5.3; Ramsay and 
Huber, 1983, fig . 2.13). However, the ease with which the 
present model simulates the observed crevasse patterns is 
encouraging and suggests that the underlying assumptions are 
not unreasonable. 

The major practical limitation is due to the local 
irregularity in crevasse spacing and shape. This is especially 
true of transverse crevasses, whose irregular spacing suggests 
an unsteady process of formation , irregular ice flow, or 
irregular ice strength. The variations in orientation along 
single crevasses may be due to local inhomogeneities in ice 
strength when the crevasse formed or to stress distortions 
near the tip of the growing crevasse due to its own growth 
or the effect of a neighboring crevasse. These local 
variations mean that regional trends, as used in this work, 
contain important measurement uncertainties. 

Despite this practical limitation, the study of crevasse 
patterns seems to have great potential. The method may be 
particularly valuable in reconnaissance studies of outlet 
glaciers and ice streams in Antarctica and Greenland for 
which only satellite images are available. One might use 
balance velocities together with the crevasse pattern to infer 
the transverse variation in velocity and the relative role of 
side drag. That result could be important in assessing 
whether the glacier is decoupled from its bed and for 
recognizing unusual flow styles. 
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APPENDIX 

DERIVATON OF PARTICLE TRAJECTORIES 

Equations (I) and (2) are rewritten as 

(d / dt - ux,x)x - (uX,y)y - ux(O,O) = ° (A I) 

(A2) 

where t represents time. These simultaneous equations are 
solved for the trajectory of the particle [x(t), y(l)]. 

Solving for y by eliminating x from Equations (A 1) 
and (A2), and recognizing that uy(O,O) is constant, leaves 

d
2
y/dt

2 
- [ux,x + uy,y]dy/dt + [ux ,xUy,y - Ux ,yUy,x]y 

(A3) 

This is a linear, non-homogeneous, second-order equation of 
the form 

d2y/ dt 2 + ady/ dt + by = S 

with a and b constants. It describes the y-position of the 
particle as a function of time, and has the solution (Spiegel, 
1968) 

y fe mt + gent + (emt / (m - n») f e -mtSdt + 

+ (ent / (n - m») fe-ntSdt (A4) 

in which m and n are the roots of M2 + aM + b = 0, and 
f and g are constants to be determined using boundary 
conditions. As applied here, S is also constant, and that 
allows direct integration of the final terms in Equation 
(A4). 

This solution applies if m and n are real and distinct. 
Other solutions apply when m and n are complex numbers. 
Additional special cases arise if some of the velocity 
gradients are zero and make the denominator of the 
expression for m or n zero. In the latter cases, zero is 
substituted for the appropriate velocity gradients in Equation 
(A3), and a special solution is obtained. All these different 
solutions arise in the application to Ice Stream B 
(Vornberger, unpublished). Here, only the derivation of the 
most straightforward solution is presented, but the others 
are similarly derived. 

Substituting for S in Equation (A4) and completing the 
integrations gives: 

(A5) 

with m,n = {(ux,x + Uy,y] 

± [(ux,x + Uy ,y)2 - 4(ux,xuy,y - Ux ,yUy ,X)]1/2)/ 2. 

Substituting the first boundary condition (3) into 
Equation (A5) provides: 

and the second boundary condition (4) yields: 

Eliminating f from Equations (A6) and (A 7) results in 

g = (uy<O,O) + uy,xxo + Uy,yYo - myo + 

+ [uy ,xux(O,O) - ux,xuy<O ,O)]/n) / {n - m) 

and the remaining constant, f, is found using Equation 
(A6). 

The equation for the x-position of a particle as a 
function of time is most simply derived in a similar 
manner, beginning by solving for x by eliminating y from 
Equations (A I) and (A2). 
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