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Abstract

This paper presents a short survey of convergence results and properties of the Lebesgue
function kmn(x) for (0, 1 , . . . , m) Hermite-Fejer interpolation based on the zeros of the nth
Chebyshev polynomial of the first kind. The limiting behaviour as n -*• oo of the Lebesgue
constant Amn = max{Xm n(x) : — 1 < x < 1} for even m is then studied, and new results
are obtained for the asymptotic expansion of Amn. Finally, graphical evidence is provided
of an interesting and unexpected pattern in the distribution of the local maximum values of
^•m.nix) if m > 2 is even.

1. Introduction

Suppose X = {xk,n : k = 1,2,... , n; n = 1, 2, 3, . . .} is a triangular array of nodes
such that for each n

1 > Xhn > X2,n > • > *„,„ > - 1 , (1)

and l e t / be a continuous real-valued function defined on the interval [—1, 1]. Then,
for each integer m > 0, there exists a unique polynomial Hmn(X,f,x) of degree at
most (m + l)n — 1 which satisfies

. 1 < * < n, 0 < r < m.

"Division of Mathematics, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia.
© Australian Mathematical Society 2000, Serial-fee code 0334-2700/00

98

https://doi.org/10.1017/S1446181100011639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011639


[2] The Lebesgue function for Hermite-Fej6r interpolation 99

Hm,n(X,f,x) is known as the (0, 1 , . . . , m) Hermite-Feje'r (HF) interpolation poly-
nomial off(x), and it can be expressed as

Hm,n{XJ,x) =
k=\

where Akmn(X, x) is the unique polynomial of degree at most (m + l)n — 1 such that

A£J,,«(*. xi.n) = So,r SkJ, 1 < * , ; < n, 0 < r < m.

The Ak<m,n(X, x) are referred to as the fundamental polynomials for (0, 1 m) HF
interpolation on X. The function

and the quantity

Am,n(X) = max km,n(X,x),
- 1 < J T < 1

which are known as the Lebesgue function and Lebesgue constant, respectively, for
( 0 , 1 , . . . , m) HF interpolation on X, play a fundamental role in discussion of the
convergence of Hm,n(X, f, x) t o / (x) as n -»• oo.

Now, HOn(X, f, x) is the well-known Lagrange interpolation polynomial off (x).
For Lagrange interpolation it is known (see Rivlin [14, Section 1.3] and the references
therein) that there exists a constant c, with 1/2 < c < 3/4, such that

2
Ao,n(X) > - l o g n + c, « = 1,2, 3 (2)

for any X. By the principle of uniform boundedness, a consequence of (2) is the
classic result, due to Faber [7], that for any matrix X, there exists / e C[—1, 1]
so that HOn(X, f,x) does not tend uniformly to /(x) on [—1,1] as n -*• oo. This
result, and other key developments in the history of the convergence theory for La-
grange interpolation, are described in the very readable paper by Elliott [6], while the
monograph by Szabados and Vertesi [23] offers a more recent (and more technical)
discussion of these matters.

Although Faber's result is quite negative in character, more positive results are
available if particular node systems are chosen. For instance, if T denotes the matrix
of Chebyshev nodes

T= \cos(-^-n) : * = 1.2 n; II = 1,2, 3 1,
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then

2
A O n ( T ) < - l o g « + 1 , n = l , 2 , 3 , . . . . (3)

n

(See Rivlin [14, Theorem 1.2] for a proof of this result.) Thus the Chebyshev node
system provides a simple set of nodes whose Lebesgue constants are close to best
possible. Further, if the modulus of continuity o>(<5;/) of / is defined by

w(S;/) = m a x { | / 0 s ) - / ( O | : {*,*} C [-1,1], |* - t\ < S),

then from (3) (cf. Rivlin [13, Section 4.1]) it follows that if/ € C [ - l , 1] satisfies
the relatively weak condition a;( l /n; / ) logn —>• 0 as n —> oo, then the sequence
of Lagrange interpolation polynomials HOn(T,f, x) converges uniformly t o / (x) on
[— 1, 1] as n -*• oo. In view of these results, it can be seen that the Chebyshev nodes
T are a good choice if uniform approximation by Lagrange interpolation polynomials
is required.

A key step in the proof of (3) is the observation, proved by Ehlich and Zeller [5],
that

Ao,n(r) = xo,n(r,±i). (4)

A detailed analysis of the representation

then leads to the asymptotic expansion (established independently by Dzjadyk and
Ivanov [4], Giinttner [9, 10] and Shivakumar and Wong [19])

A0,n(T) = — logri + Co H—^———Yk~- @)

Here

where y denotes the Euler-Mascheroni constant, and the Bk are the Bernoulli numbers.
Further, the error in truncating the series on the right-hand side of (5) has the same sign
as, and has absolute value less than, the first term neglected. For a more detailed survey
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of properties of the Lebesgue function and constant for Lagrange interpolation on T
(and on other node systems), the reader is referred to the recent paper by Brutman [2].

The initial motivation for generalising Lagrange interpolation to ( 0 , 1 , . . . , m)
HF interpolation (m > 1) came from Fejer's result [8] that Hhn(T,f,x) -+ f(x)
uniformly in [ -1 , 1] for all / e C [ - l , 1]. Thus the (0,1) HF process has better
uniform convergence properties than the Lagrange method, at least on the node system
T. A key step in Fejer's proof was the observation that the fundamental polynomials
Ak,\,n(T,x) are non-negative for —1 < x < 1. For the Lebesgue function, this has the
consequence that

n

\Un(T,x) = J~*AkXn(T,x),
k=\

where the right-hand side is a polynomial of degree 2/i — 1 or less which assumes
the value 1, and has vanishing derivative, at each of the n Chebyshev nodes. By
uniqueness considerations, khn(T, x) is identically 1, and so the issue of the Lebesgue
constant for (0, 1) HF interpolation on T is resolved immediately.

For (0, 1, 2) HF interpolation, Szabados and Varma [22] showed there is a positive
constant c\ so that for any system of nodes X,

^2,n(X) > C\ logrt.

This result was extended by Szabados [21], who showed there are constants cm > 0
so that

AimAX) >cmlogn, m = 0,1, 2 , . . . . (6)

Thus, for any system of nodes X, there exists / e C[—1,1] so that H2m,n(X,f,x)
does not converge uniformly t o / (x ) on [—1, 1] as n —>• oo. Szabados also showed
that the order of magnitude on the right-hand side of (6) is best possible, because there
exist constants dm so that

A2m,n(T) <dmlogn, m = 0,1,2

These results illustrate the generally observed fact that the Lagrange interpolation
process and the Hermite-Fejer processes of even order share many properties in
common.

An extensive study of (0, 1 , . . . , m) HF interpolation on the Chebyshev nodes (and
on their generalization, the Jacobi nodes) has appeared in papers by Sakai [15, 16],
Ve"rtesi [24,25] and Sakai and VeYtesi [17,18]. Among other results, they showed that
if m is odd, then Hm,n(T,f,x) - • f(x) uniformly in [ -1 , 1] for a l l / e C [ - l , 1],
and hence the Lebesgue constants Amn(T) are uniformly bounded in n. This latter
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observation was refined recently by Smith [20], who established that if m is odd,
the fundamental polynomials Akimn{T,x) are non-negative for — 1 < x < 1, and so
the Lebesgue function Xmn{T,x) is 1 for all x. Results such as these illustrate the
principle that the Hermite-Fejer processes of odd order tend to have similar properties
to those of the original Hermite-Fejer method (that is, to (0, 1) HF interpolation).

If we return the discussion to that of the Hermite-Fejer processes of even order,
Byrne, Mills and Smith [3] were able to generalize (4) by showing that for m =
0 , 1 , 2 , . . . ,

n

A2m,n(T) = X2m,n(T, ±1) = Y,(-Vk~lAk,2»>.n(T, 1). (7)-

By using estimates for the coefficients in the fundamental polynomials Ak,2m,n(T, x)
that were developed by Sakai and Vertesi [17, 18], they were also able to obtain the
asymptotic result as n —> oo,

TC 22m(m!)2log/i + O(l). (8)

Now, the coefficient estimates of Sakai and Vertesi that were used to develop (8) are
in fact valid for (0, 1 , . . . , 2m) HF interpolation on a wide class of Jacobi nodes,
and not just for interpolation on the Chebyshev nodes. This suggests that significant
improvements to the asymptotic result (8) will follow only if a different approach to
estimating the A k-2m,n (T, 1) is employed, whereby properties specific to the Chebyshev
nodes are used. We have been able to achieve this by using explicit formulas for
Hermite trigonometric interpolation based on equidistant points that were developed
by KreB [11]. The following results, which are proved in Section 2 of this paper, have
been obtained.

THEOREM 1. Suppose the constants ar = anm are the coefficients in the Laurent
expansion

1 1 °°
= Y"*ar9

2r 0 < \0\ < n (9)
s i n 2 m + I 0 02 m + 1 ^ i i . w

r=0

and let
2k — 1

0k = 0k,n = — n, k = 1, 2 , . . . , n; n = 1, 2, 3 , . . . .
2n

Then, for m = 0, 1, 2 , . . . , the Lebesgue constant A2m,n(T) can be written as

;
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THEOREM 2. //£(£) denotes the Riemann zeta function £(&) = Y.°L\ ""*> then as

n -> oo,

2 (2m)!

n 22m(m\)2

r=x *2r*

2. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. Consider the cosine polynomial tk^niO), of degree no
greater than (2nt + Y)n — 1, which is defined by

Then for 1 < k < n, tKlm,n(d) satisfies

tklm.niej) = < V Skj, l<j<n,0<r<2m,

and is the unique cosine polynomial of degree (2m + l)n — 1 or less which has these
properties. Further, from (7),

^ O ) . (12)

Now, by KreB [11, Theorem 1.1], there is a unique trigonometric polynomial
Sim,n(Q) of the form

^sin k6

k=O t=l

such that

£ = *o.r*oj. 0 < 7 < 2n - 1, 0 < r < 2m.

Since (S^iO) + S^^-O)) /2 also has these properties, it follows that S2m,n(9) is
even. Next, for 1 < k < n consider the function

Sk,2m,n(0) = SzmAO ~ &) + S^^O + 6k), (13)

which is even. Thus sktlmn(9) is a cosine polynomial of degree no greater than
(2m + l)n. However, direct calculation shows that the coefficient of cos(2m + Y)n8
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in skt2m,n{0) is zero, and so s*,2m,n(#) is a cosine polynomial of degree (2m + l)n — 1
or less which satisfies

4r}m.n %) = So.r kj . 1 <./ < «, 0 < r < 2m.

By the uniqueness properties of tki2mn(9) it follows that tk2m,n{9) = sk,2m,n(9), and so
from (12) and (13) we obtain the representation

n

A2m.nm = 2 ^( - l )* - 1 ^ . , ,^ ) . (14)
/t=i

An explicit formula for S2m,n(0) is

am-r d2r 0
cot —,

where the am_r are defined by (9) (see KreB [11, Theorem 1.1]). From this formula
and the representation (14), the required expression (10) for the Lebesgue constant
A2m,n(r) follows immediately.

PROOF OF THEOREM 2. We begin with the well-known expansion

2j~\ O< |0 |<7T. (15)

Thus

and so by (10),

2r+l

a - r l ^ l (2^-l)2>-2r-' ,Jt\V-2r-l

h h jiti J VJ - 2r - 1)! (2r)!
= 5, - 52, (16)

say, where Si denotes the double sum and 52 the triple sum. To interpret the right-hand
side of (16) we will employ the results (cf. Giinttner [9] or Shivakumar and Wong [19])

X^3T = 2
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and, fotj > / • + ! ,

0 jAn)

Now, from (17) and (18), it follows that the term Si on the right-hand side of (16)
can be written in the form

m 22r+1 1
r — _ _ f ( 2 r + l)+c(n), (20)it - ' n ~ ' £ f "• ' ?r2r+1

where, by the estimates for S(n) and </>(n) in (17) and (18), it is evident that

(2 m / ^ \ 2 r + 1 \

With regard to the triple sum 52 on the right-hand side of (16), by (19) we can write

^ 2am.r I ^ \Bv\n
2j \ 1

"2 = / —z I / —; ; I

— V^ V^ am-r\B2j\ /7T \2^-2r-1 1

h^jhixi (2/ - 2 r -1)' (2r)! ^2^ «*"
3 ~ -J4t

say. For 53, we use the expansion (obtained by integrating (15))

log(sin0) = log* - J P ^ 02i, 0<6< n,

to obtain

For 54, it follows from the estimate for r//jr(n) in (19) that

~ ~ \2n £j n*'(2r)\ . ^ , 2/ (2/ -2r-2)\
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Hence

If this result and the results (20) and (21) are substituted into (16), the required
expansion (11) will be obtained, provided it can be shown that

(2m)!
am = . (22)

22m(m!)2

One way of verifying (22) is to note that by (9), am is the residue of sin~(2m+1) 6 at
0. Thus if CR denotes the rectangle with sides x = ±7r/2 and y = ±iR, and we let
R -> oo, a standard application of the residue theorem shows that

- -r
njo

f i A - - r i A
j cosh2m+1;c

This latter integral can be evaluated by substituting u = (coshx) 2, and then the proof
of Theorem 2 is complete.

REMARK. By using more precise asymptotic expansions than those in (17)—(19)
(see Shivakumar and Wong [19]), the result (11) can be improved to an expansion of
the form

, 2 (2m)!

n 22m(m\)

A result of this form for A2,n(T) is given by Byrne, Mills and Smith [3, Theorem 3].

3. Local maxima of the Lebesgue function

For any system of nodes X = {xkn : k = 1, 2 , . . . , n; n = 1, 2, 3 , . . .} satisfying
(1), it is known (see, for example, Luttmann and Rivlin [12]) that for n > 3 the
Lebesgue function A.0,n(X, x) for Lagrange interpolation is a piecewise polynomial
satisfying ko,n(X, x) > 1, with equality only at the nodes xkitl (k = 1, 2 , . . . , n).
Between consecutive nodes X0.n(X, x) has a single maximum, while in (—1, *„,„) and
(jti>B, 1), it is monotonic decreasing and increasing, respectively. These properies are
illustrated in Figure 1, which shows a graph of the Lebesgue function kOig(T, x) for
Lagrange interpolation on eight Chebyshev nodes. (The graph also illustrates the
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FIGURE 1. The Lebesgue function A.0,8(r, x)

FIGURE 2. Section of the graph of \o,»(T,x)
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1.47

[11]

1.44

FIGURE 3. Section of the graph of X2,s(T, x)

result (4) that the maximum of XOn(T, x) on [ -1 , 1] occurs at ±1 . However, it is not
true in general that the maximum of A.0,n(X, x) is achieved at ±1.)

Figure 2 contains an enlargement of a section of the graph in Figure 1. It reveals an
interesting pattern in the local maximum values of A.o,8(7\ x), which appear to strictly
decrease as we move from the endpoints towards the centre of the interval [—1, 1].
This behaviour of the local maximum values of ko,n(T, x) was observed (as a result
of numerical computations) by Luttmann and Rivlin [12] and proved by Brutman [1].
(See also Giinttner [9].)

Now, as noted earlier, the Lagrange interpolation method and the Hermite-Fejer
processes of even order have many properties in common. However, this similarity
does not seem to extend to the behaviour of the local maximum values of the Lebesgue
function on the Chebyshev nodes. As an illustration of this, consider Figure 3, which
contains a section of the graph of ^ ( T , x). (The figure, like the earlier figures,
was produced using the computer algebra system Maple.) The graph shows that the
local maximum values in the interval (— 1, 1) appear to increase as we move from the
endpoints towards the centre of the interval. This is in direct contrast to the behaviour
of the local maxima of X0,n (T, x). It is interesting to conjecture whether this observed
behaviour of the local maximum values of \2,& (T,x) extends to X2m,n (T, x) for general
m > 1 and n > 3. (Computer-generated graphs of A.2mn(r, x) for several values of m
and n appear to support the conjecture.)
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