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A significant feature of the modernised Global Navigation Satellite System (GNSS) signals is
that there are multiple signal components needing to be transmitted on a carrier frequency.
How to combine these signal components into a constant envelope composite signal is a chal-
lenge. Existing constant envelope modulation techniques have some limitations, and are not
effective enough. To solve this problem, we propose a quasi-constant-envelope multiplexing
technique in this paper. The proposed method is based on numerical optimisation, and
can work in two ways. The corresponding objective functions are provided. To verify the
performance of the proposed method, we present three application examples. Results show
that the first variation of our method can reach the same combining performance as
Phase-Optimised Constant-Envelope Transmission (POCET). In the second variation, the
combining efficiency can be pre-set. We can reach higher combining efficiency than
POCET, and the envelope of the composite signal becomes quasi-constant. Furthermore,
the inter-modulation signals in the final composite signal are adjustable. With the help of
the proposed method, we can learn more details of the combining scheme than with POCET.
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1. INTRODUCTION. For the modernised Global Navigation Satellite System
(GNSS) signals, there are more signal components needing to be transmitted on the
same carrier frequency compared with traditional Global Positioning System (GPS)
signals. However, in order to maximize efficiency of a nonlinear High-Power
Amplifier (HPA), it is preferred that the HPA operates at saturation of its nonlinear
region. To reduce Amplitude Modulation to Amplitude Modulation (AM/AM) and
Amplitude Modulation to PhaseModulation (AM/PM) distortions, constant envelope
modulation techniques are required (Dafesh andCahn, 2009). Traditional constant envel-
ope modulation techniques include Interplex (Butman and Timor, 1972), Majority Vote
(MV), Inter-vote (Spilker and Orr, 1988) and Coherent Adaptive Subcarrier Modulation
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(CASM) (Dafesh et al., 1999). Among them, CASM is mathematically equivalent to
Interplex (Fan et al., 2008). Inter-vote is a synthetic technique of MV and Interplex.
Nevertheless, the above techniques have some limitations. For example, when the
signal component with the highest power is orthogonal with other signal components,
CASM reaches the best performance (Dafesh et al., 1999). Majority vote can combine
an odd number of signals, and works best when every signal component has equal
power (Spilker and Orr, 1988). Inter-vote has the advantages of both Interplex and
MV, but the number of signal components is at least five.
A more general technique referred to as Phase-Optimised Constant-Envelope

Transmission (POCET) was proposed by Dafesh and Cahn (2009). This can
combineN binary Pseudo RandomNoise (PRN) code signals into a constant envelope
composite signal by a numerical optimisation process. This final composite signal can
be seen as a phase modulation signal. On this basis, POCET is further used to combine
GNSS signals at different carrier frequencies (Dafesh and Cahn, 2011), which is imple-
mented by phase rotation. In general, POCET can reach the highest combining ef-
ficiency by optimising the phases. Nevertheless, Dafesh and Cahn do not provide
the analytical expression of POCET. The composite signal of the POCET method
cannot be written into an expression of the useful signal components and Inter-
Modulation (IM) signals (Zhang et al., 2012a). This problem has been solved by
Zhang et al. (2012b). They derive the analytical expression of POCET by referring
to a classical problem in digital logic. Although the POCET method can be applied
for most cases, it still has the following drawbacks. Firstly, POCET is only applicable
for unrelated binary PRN signals (Zhang et al., 2011). In other words, POCET cannot
deal with the case when some signal components are related. Secondly, it is not poss-
ible for POCET to suppress some undesired IM product signals. Finally, POCET
cannot provide any information about how to achieve slightly better combining
efficiency.
The aim of this paper is to propose a more effective multiplexing technique for

GNSS signals, from which we can know more details of the combining. This proposed
method is based on numerical optimisation. In contrast to POCET, we optimise these
complex coefficients of the useful signal components and IM signals. This method can
work in two ways. In the first way, the multiplexing performance of our method is the
same as POCET. Then, the IM signals in the final composite signal are controllable. In
the secondway, the combining efficiency is adjustable. Namely, we can set the combin-
ing efficiency before the optimisation process. We can even obtain higher combining
efficiency than POCET. In this case, the envelope of the final composite signal
becomes quasi-constant.
The remainder of this paper is organised as follows. In Section 2, we recall the

POCET method, and describe the proposed quasi-constant-envelope multiplexing
method. Then our method is applied for the GPS L1 signals in the first way in
Section 3. In Section 4, the multiplexing example of non-independent signals is dis-
cussed. In Section 5, the Alternative Binary Offset Carrier (AltBOC) -like modulation
schemes with 85% and 86% combining efficiency are presented in the second way.
Conclusions are summarised in the last section.

2. DESCRIPTION OF THE PROPOSED METHOD. We first briefly review the
POCET method (Dafesh and Cahn 2009; Cahn and Defesh 2011). The POCET

792 TAO YAN AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463315000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000119


method can combine N binary PRN code signals into a constant envelope signal. The
final composite signal is equivalent to a phase shift-keying signal.

2.1. POCETmethod. For theN binary PRN code signals, there are a possible 2N

different signal vectors. Each signal vector corresponds to a phase value θk, k = 0,1,…,
2N−1. By optimising these 2N phase values, the designed power and phase constraints
between signal components are met.
In order to derive the correlation output of every PRN code signal, there are two

assumptions made in the POCET method (Zhang et al., 2011). Firstly, the N binary
PRN code signals are uncorrelated. Secondly, every PRN code is completely
random. Thus, the 2N phase values occur with equal probability. Then the average
correlation for the nth signal component is expressed as

corrn ¼ A
2N

X2N�1

k¼0

bn kð Þe jθk ð1Þ

whereA is the envelope of the composite signal. bn(k) = ±1 is the nth signal component
in the kth signal vector, and j ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit. In order to maximise the

combining efficiency, the objective of POCET is to minimise the envelope A subject to
the power and phase constraints.
The power constraints are given by

Pdn ¼ corrn θð Þj j2¼ A
2N

X2N�1

k¼0

bn kð Þe jθk
�����

�����
2

ð2Þ

where Pdn is the desired power level of the nth signal component. When the relative
phase difference between signal n and signal l is Δϕnl, the phase constraints between
these two signal components are

Im e�jΔfnl corrn θð Þcorrl θð Þ�� � ¼ 0

Re e�jΔfnl corrn θð Þcorrl θð Þ�� �
> 0

ð3Þ

By using the penalty function method, the constrained optimisation problem for
POCET is converted into the following unconstrained optimisation problem, i.e.

min

F θð Þ ¼ A2 þ μa
PN
n¼1

corrn θð Þj j � corrdnð Þ2

þμb
PN�1

n¼1

PN
l¼nþ1

Im e�jΔfnl corrn θð Þcorrl θð Þ�� �2

8>>><
>>>:

9>>>=
>>>;

ð4Þ

where corrdn ¼
ffiffiffiffiffiffiffi
Pdn

p
, μa and μb are positive penalty factors. We note that the second

part of Equation (3) is not considered in Equation (4), which may result in a 180° am-
biguity. Of course, this ambiguity can be solved by analysing the phase relationship cal-
culated from the optimum solution (Zhang et al., 2011). POCET requires that the
phase table is symmetrical. Namely, when two signal vectors are complementary,
the difference of the corresponding phase values is 180°. Thus, θk ¼ θ2N�1�k þ π. θ0
can be set to 0. Therefore, there are only 2N−1−1 unknown phase values.

2.2. The proposed method. According to the results of Zhang et al. (2012b), we
know that for N unrelated binary PRN signals s1 tð Þ; s2 tð Þ; � � �; sN tð Þf g, the general
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expression of constant envelope composite signal is expressed as

s tð Þ ¼c0 þ
XN
n¼1

cne jθn sn tð Þ þ
XN�1

n1¼1

XN
n2 ¼ n1þ1

cn1;n2e
jθn1 ;n2 sn1 tð Þsn2 tð Þ

þ
XN�2

n1¼ 1

XN�1

n2¼ n1þ1

XN
n3 ¼ n2þ1

cn1;n2;n3e
jθn1;n2;n3sn1 tð Þsn2 tð Þsn3 tð Þ

þ � � � þ c1;2;���;Ns1 tð Þs2 tð Þ � � � sN tð Þ;

ð5Þ

The composite signal s(t) may include an un-modulated carrier component, N desired
single signal components and 2N–1-N IM signals. The 2N complex coefficients are
denoted as A0ejθ0 ; A1ejθ1 ; � � � ; A2N�1ejθ2N�1, then Equation (5) can be written as:

s tð Þ ¼ S1×2N � C ð6Þ
where S1×2N is a 1 × 2N row vector, C is a 2N× 1 column vector composed of all these
complex coefficients. They are given by

S1×2N ¼ 1 s1 � � � sN s1s2 � � � sN�1sN � � � QN
n¼2

sn
QN
n¼1

sn

� �

C ¼ A0e jθ0 ; A1e jθ1 ; � � � ; ANe jθN ; ANþ1e jθNþ1 ; � � � ;
ANþN N�1ð Þ=2e jθNþN N�1ð Þ=2 ; � � � ; A2N�2e jθ2N�2 ; A2N�1e jθ2N�1

" #T ð7Þ

Since every binary PRN signal has two values, 1 or −1, S1×2N has 2N different states.
When taking these states into account, we obtain a 2N× 2N matrix S derived from
vector S1×2N. For a givenN, S is determined. For example, whenN= 3, S1×2N and S are

S1×2N ¼ 1 s1 s2 s3 s1s2 s1s3 s2s3 s1s2s3½ �;

S ¼

1 1 1 1 1 1 1 1

1 1 1 �1 1 �1 �1 �1

1 1 �1 1 �1 1 �1 �1

1 1 �1 �1 �1 �1 1 1

1 �1 1 1 �1 �1 1 �1

1 �1 1 �1 �1 1 �1 1

1 �1 �1 1 1 �1 �1 1

1 �1 �1 �1 1 1 1 �1

2
66666666666664

3
77777777777775
;

ð8Þ

respectively. According to Equation (6), we can see that s(t) has 2N possible values.
These values are expressed as a 2N × 1 column vector s, i.e.

s ¼ SC ¼

f1 A0; � � �;A2N�1;θ0; � � �; θ2N�1

� 	
� � �

fN A0; � � �;A2N�1;θ0; � � �; θ2N�1
� 	

� � �
f2N A0; � � �;A2N�1;θ0; � � �; θ2N�1

� 	

2
66664

3
77775 ¼ SCreal þ jSCimag ð9Þ
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where

Creal ¼Real C½ �¼ A0 cos θ0ð Þ � � � AN cos θNð Þ � � � A2N�2 cos θ2N�2ð Þ A2N�1 cos θ2N�1ð Þ½ �T
Cimag¼ Imag C½ �¼ A0 sin θ0ð Þ � � � AN sin θNð Þ � � � A2N�2 sin θ2N�2ð Þ A2N�1 sin θ2N�1ð Þ½ �T

Each element in s is a function of all the complex coefficients. Our method is to directly
optimise these complex coefficients in C to force the amplitude of every element in s to
be the same. Generally speaking, the power relationship between signal components is
designed. This is why POCET is subject to the power constraints. In our method,
however, the designed power relationship is easily satisfied. Only the following
equation is established, i.e.

A2
1 :A

2
2 : � � � :A2

N ¼P1 :P2 : � � � :PN ; ð10Þ

where the right part of Equation (10) is the designed power allocation ratio. Without
loss of generality, we set A1 = 1, then

An¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn=P1

p
;n¼1;2; � � �;N: ð11Þ

Clearly, if we expect that some IM product signals do not exist in the final composite
signal, we can directly set the corresponding coefficients to be zero.
In most cases, the phase relation between signal components has been designed. In

fact, when there are phase constraints, we can pre-set the following phase relation:

θn ¼ θl þ Δθn;l; n> l ð12Þ

where Δθn,l is the designed phase difference between signal n and signal l. For example,
we have the phase constraints Δθ2,1 and Δθ4,3, then we pre-set the phase relation follow-
ing the order,

θ2 ¼ θ1 þ Δθ1;2; θ4 ¼ θ3 þ Δθ3;4 ð13Þ

Evidently, θ2 and θ4 are determined by θ1 and θ3 respectively. We can see that there is
no 180° phase ambiguity in our method. Thus, we do not need the step to solve the
ambiguity. When the operation is performed, an additional advantage is that the
number of the variables decreases.
In order to keep the envelope of the composite signal s(t) constant, every element in s

should have the same amplitude, i.e.

f0j j ¼ f1j j ¼ � � � ¼ f2N�1j j ¼ Aenvelope; ð14Þ

whereAenvelope is the envelope value of the composite signal s(t). When Equation (14) is
true, we have the following constant envelope constraint:

Aenvelope ¼
ffiffiffiffiffiffiffiffiffi
sk k2
2N

s
; sj j � Aenvelope ¼ 02N×1; ð15Þ

where ||s|| is the Euclidean norm of vector s, it can be calculated by sk k ¼
ffiffiffiffiffiffiffi
sHs

p
. sH is

the conjugate transpose of s. ||s|| is the absolute value of vector s. 02N×1 is a 2N× 1 zero
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vector. Equation (5) is equivalent to the following equation, i.e.

sj j �
ffiffiffiffiffiffiffiffiffi
sk k2
2N

s












 ¼ 0: ð16Þ

If the N binary PRN signals are completely unrelated, substituting Equation (9) into
Equation (15), we derive that

A2
envelope ¼

sk k2
2N

¼ 1
2N

SCrealð ÞT SCrealð Þ þ SCimag
� 	T SCimag

� 	� �

¼ 1
2N

CT
real STS

� 	
Creal þ CT

imag STS
� 	

Cimag

� � ð17Þ

In this case, STS=2N ¼ I2N×2N (Zhang et al., 2012a), we have

A2
envelope ¼ CT

realCreal þ CT
imagCimag ¼

X2N�1

n¼0

A2
n ð18Þ

It is interesting that the envelope value Aenvelope is only determined by the 2N am-
plitude values of these complex coefficients, and is independent of the 2N phase
values.
The power of the desired signals is given by Equation (11). Then the combining ef-

ficiency is expressed as

η ¼
PN
n ¼ 1

A2
n

A2
envelope

¼
PN
n ¼ 1

A2
n

sk k2
2N

¼
2N

PN
n ¼ 1

A2
n

sk k2 ð19Þ

To maximise the combining efficiency, we should minimise Aenvelope
2 by optimising

these complex coefficients. At the same time, Equation (16) has to be satisfied. This
is a constrained nonlinear optimisation problem. Similar to the POCET method,
this optimisation problem can be converted into the following unconstrained optimi-
sation problem:

arg
An;θnf g

min
sk k2
2N

þ μa sj j �
ffiffiffiffiffiffiffiffiffi
sk k2
2N

s













2

0
B@

1
CA; ð20Þ

where μa is the positive penalty factor. To find out the optimal numerical solution
of Equation (20), we adopt the search strategy from Dafesh and Cahn (2009). The spe-
cific optimisation process is not discussed here. The number of variables {An} is 2N,
and the number of variables {θn} is also 2N. So the total number of the variables is
2N+1. However, due to Equation (11), the number of the variables to be determined
is 2N+1−N. When Equation (12) is used, the number of the variables would be
further reduced.
Equation (20) is the final objective function, in which only the constant envelope

constraint needs to be considered. Its solution can strictly meet the designed power
and phase constraints. Moreover, from Section 3, we will see that the combining
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efficiency is the same as the POCET technique. Compared with POCET, the main ad-
vantage of our method is that we can easily suppress some undesired IM signals in the
composite signal.
In contrast to the POCET method, our method can work in a second way. We can

pre-set the combining efficiency ηset before the optimisation process. By exploiting ηset,
the pre-set envelope value Aset is

Aset ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

A2
n

ηset

vuuut
: ð21Þ

The constant envelope constraint is simplified correspondingly as

Aset ¼
ffiffiffiffiffiffiffiffiffi
sk k2
2N

s
; sj j � Asetk k ¼ 0 ð22Þ

The objective function in the second way is written as

arg
Ai ;θif g

min sj j � Asetk k2þua Aset �
ffiffiffiffiffiffiffiffiffi
sk k2
2N

s0
@

1
A

2

ð23Þ

In the first method, when the power constraints and phase constraints of the signal
components are given, the optimal numerical solution can be obtained by solving
Equation (20). We denote the combining efficiency as ηopt. In the second method, if
the pre-set combining efficiency ηset≤ ηopt, the optimal numerical solution of
Equation (23) can keep the envelope of s(t) constant. If the pre-set combining efficiency
ηset > ηopt, the envelope of s(t) would become quasi-constant. The optimal numerical
solution in this case can ensure that the changes in the envelopes of s(t) have the
least root mean square error. Thus we call our method a quasi-constant envelope mul-
tiplexing technique. With the help of the second method, we can learn more details of
the combining.

3. THE APPLICATION OF THE FIRST METHOD. The example is about the
multiplexing scheme of GPS L1. There are four signal components. They are L1C/
A, L1P(Y), L1CP and L1CD respectively. We denote them as s1, s2, s3 and s4. The nor-
malised power of the four signal components are 0dBW, −3dBW, 0·25dBW and
-4·5dBW respectively (Dafesh and Cahn, 2009). The phase difference between s2
and s1 is θ2,1 = 90°. According to Equations (11) and (13), we set

A1 ¼ 1;A2 ¼ 0:708;A3 ¼ 1:029;A4 ¼ 0:596; θ2 ¼ θ1 þ 90
○ ð24Þ
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In this example, N= 4. The S1×2N and S are expressed as

S1×2N ¼ 1 s1 s2 s3 s4 s1s2 s1s3 s1s4 s2s3 s2s4 s3s4 s1s2s3 s1s2s4 s1s3s4 s2s3s4 s1s2s3s4½ �

S¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 �1 1 1 �1 1 �1 �1 1 �1 �1 �1 �1

1 1 1 �1 1 1 �1 1 �1 1 �1 �1 1 �1 �1 1

1 1 1 �1 �1 1 �1 �1 �1 �1 1 �1 �1 1 1 1

1 1 �1 1 1 �1 1 1 �1 �1 1 �1 �1 1 �1 �1

1 1 �1 1 �1 �1 1 �1 �1 1 �1 �1 1 �1 1 1

1 1 �1 �1 1 �1 �1 1 1 �1 �1 1 �1 �1 1 1

1 1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1

1 �1 1 1 1 �1 �1 �1 1 1 1 �1 �1 �1 1 �1

1 �1 1 1 �1 �1 �1 1 1 �1 �1 �1 1 1 �1 1

1 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

1 �1 1 �1 �1 �1 1 1 �1 �1 1 1 1 �1 1 �1

1 �1 �1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1

1 �1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 1 �1

1 �1 �1 �1 1 1 1 �1 1 �1 �1 �1 1 1 1 �1

1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 1

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

ð25Þ
By exploiting the objective function Equation (20), we obtain the optimal complex
coefficients, which are listed in Table 1. Without loss of generality, we set θ1 = 0.
Then the composite signal s(t) is expressed as

s tð Þ¼ s1þ j0:708s2� j1:029s3� j0:596s4þ0:395s1s2s3
�0:053s1s2s4�0:209s1s3s4� j0:541s2s3s4

ð26Þ

Based on Equation (9), we can calculate the vector s. Every element in s has the same
amplitude. The phase angles of all the elements in s can form the phase look-up table.
Results are listed in Table 2.
The envelope value Aenvelope of Equation (26) is 1·847. According to Equation (19),

we calculate the combining efficiency, which is 85·47%. The corresponding combining
loss is −0·68 dB, which is the same as POCET (Dafesh and Cahn, 2009). This example
verifies the correctness of our method in the first way. It shows that the combining
efficiency of the first way is equivalent to the POCET method.

4. THEMULTIPLEXING OF NON-INDEPENDENT SIGNALS. Our method
can also be used to combine non-independent signals to a certain extent. Namely, some
signals are related. We take the multiplexing scheme of Galileo E1 signals as an
example to demonstrate this. There are an Open Service (OS) signal and a Public
Regulated Service (PRS) signal at the Galileo E1 frequency. The PRS signal is
BOCc(15,2·5) modulation, denoted as sPRS(t). The OS signal is CBOC(6,1,1/11)
modulation, it includes a data component (CBOC+) and a pilot component
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(CBOC−). They are expressed as

sE1�D tð Þ ¼ cE1�D tð Þ scBOCð1;1Þ cos θ1 þ scBOCð6;1Þ cos θ2
� 	

;

sE1�D tð Þ ¼ cE1�D tð Þ scBOCð1;1Þ cos θ1 � scBOCð6;1Þ cos θ2
� 	

:
ð27Þ

respectively, where cE1−D(t) and cE1−P(t) are the PRN codes of the data component and
pilot component respectively. The constant envelope multiplexing scheme is Interplex
(Hein et al., 2005). The expression of the composite signal is:

s tð Þ ¼
ffiffiffiffiffiffi
2P

p

cE1�D tð Þ
2

scBOCð1;1Þ tð Þ cos θ1 þ scBOCð6;1Þ tð Þ cos θ2
� 	þ

cE1�P tð Þ
2

scBOCð1;1Þ tð Þ cos θ1 � scBOCð6;1Þ tð Þ cos θ2
� 	þ

j sPRS tð Þ � sin θ1 þ sin θ2
2

� sPRS tð ÞcE1�D tð ÞcE1�P tð Þ � sin θ2 � sin θ1
2

 �

2
6666664

3
7777775
:

ð28Þ
When cos θ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10=11

p
, cos θ2 ¼

ffiffiffiffiffiffiffiffiffiffi
1=11

p
, the power ratio of sE1-D(t), sE1-P(t), sPRS(t)

and sIM(t) is 1:1:1·575:0·425. The corresponding combining efficiency is 89·37%.
Now we try to obtain the multiplexing scheme using our method. Because the

CBOC modulation has four values, our method cannot be applied directly to this

Table 2. The corresponding phase look-up table.

s1 s2 s3 s4 Phase angle (degrees)

1 1 1 1 −52·1
1 1 1 −1 26·2
1 1 −1 1 65·7
1 1 −1 −1 75·9
1 −1 1 1 −75·9
1 −1 1 −1 65·7
1 −1 −1 1 −26·2
1 −1 −1 −1 52·1
−1 1 1 1 −127·9
−1 1 1 −1 153·8
−1 1 −1 1 114·3
−1 1 −1 −1 104·1
−1 −1 1 1 −104·1
−1 −1 1 −1 −114·3
−1 −1 −1 1 −153·8
−1 −1 −1 −1 127·9

Table 1. The optimal complex coefficients for GPS L1 signals.

1 s1 s2 s3 s4 s1s2 s1s3 s1s4

Ai 0·0 1 0·708 1·029 0·596 0·0 0·0 0·0
θi 10·4 0 90 −90·0 −90·0 −83·1 168·0 40·3

s2s3 s2s4 s3s4 s1s2s3 s1s2s4 s1s3s4 s2s3s4 s1s2s3s4
Ai 0·0 0·0 0·0 0·395 0·053 0·209 0·541 0·0
θi −155·5 13·0 −171·1 0·0 180·0 180·0 −90·0 104·1
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case. Fortunately, the data component of the OS signal can be seen as the sum of two
binary signals. The pilot component of the OS signal can be seen as the difference of
two binary signals. Therefore, the problem can be converted into the multiplexing of
five binary signals. The five signals are

s1 ¼ cE1�D tð ÞscBOCð6;1Þ tð Þ; s2 ¼ cE1�D tð ÞscBOCð1;1Þ tð Þ;
s3 ¼ cE1�P tð ÞscBOCð6;1Þ tð Þ; s4 ¼ cE1�P tð ÞscBOCð1;1Þ tð Þ;

s5 ¼ sPRS tð Þ:
ð29Þ

Their power ratio is 1:10:1:10:17·325. According to Equations (11) and (13), we set

A1 ¼A3 ¼ 1;A2 ¼ A4 ¼
ffiffiffiffiffi
10

p
¼ 3:162;A5 ¼ 4:162;

θ4 ¼ θ2 ¼ θ1; θ3 ¼ θ1 þ 180○; θ5 ¼ θ1 þ 90
○

:
ð30Þ

There are 32 different possible states for five binary signals. However, in this case,
s1 and s2 are related, s3 and s4 are related. Moreover, s1 · s3 = cE1−D(t) · cE1−P(t) = s2 ·
s4. Thus, there are only 16 different states. The matrix S is a 16 × 32 matrix here.
Vector s in Equation (20) becomes a 16 × 1 vector. We do not expect that the following
IM signals exist in the composite signal, because

s1s2 ¼ s3s4 ¼ scBOCð1;1Þ tð ÞscBOCð6;1Þ tð Þ;
s1s2s3 ¼s4; s1s2s4 ¼ s3; s1s3s4 ¼ s2; s2s3s4 ¼ s1;

s1s2s5 ¼ s3s4s5 ¼ s5scBOCð6;1Þ tð ÞscBOCð1;1Þ tð Þ;
s1s2s3s4 ¼ 1; s1s2s3s4s5 ¼ s5:

ð31Þ

Thus we pre-set the corresponding coefficients to be zero before the optimisation
process, i.e.

A6 ¼ A13 ¼ A16 ¼ A17 ¼ A18 ¼ A19 ¼ A22 ¼ A25 ¼ A26 ¼ A31 ¼ 0 ð32Þ

At the same time, the un-modulated carrier component is also undesired, namelyA0 = 0.
By exploiting the objective function Equation (20), we obtain the optimal complex

coefficients, which are listed in Table 3. The corresponding phase look-up table is listed
in Table 4. When the five signals are multiplexed by using these coefficients, combining
efficiency is also 89·37%, which is the same as Equation (28). The final composite
signal is

s tð Þ¼s1þ3:162s2�s3þ3:162s4þ j4:162s5þ0:634e�jπ97:1180 s1s3þ2:038e�jπ112:1180 s1s4

þ 1:25e�jπ55:5180 s1s5þ2:238ejπ
67:9
180 s2s3þ0:634ejπ

82:9
180 s2s4þ1:209e�jπ83:9180 s1s3s5

þ 0:438ejπ
144:0
180 s1s4s5þ0:438e�jπ36:0180 s2s3s5þ0:968e�jπ97:6180 s2s4s5þ1:25ejπ

124:5
180 s2s3s4s5

ð33Þ
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Since

s1s3¼s2s4¼cE1�D tð ÞcE1�P tð Þ;
s1s4¼s2s3¼cE1�D tð ÞcE1�P tð ÞscBOCð1;1ÞscBOCð6;1Þ;

s1s5¼s2s3s4s5¼cE1�D tð ÞscBOCð1;1ÞsPRS tð Þ;
s1s3s5¼s2s4s5¼cE1�D tð ÞcE1�P tð ÞsPRS tð Þ;s1s4s5¼s2s3s5

ð34Þ

Equation (33) is simplified as

s tð Þ¼3:317cE1�D tð Þ 0:953scBOCð1;1Þ tð Þþ0:302scBOCð6;1Þ tð Þ
� 	

þ3:317cE1�P tð Þ 0:953scBOCð1;1Þ tð Þ�0:302scBOCð6;1Þ tð Þ
� 	

þ3:317j 0:953þ0:302ð ÞsPRS tð Þ
�j3:317 0:953�0:302ð ÞcE1�D tð ÞcE1�P tð ÞsPRS tð Þ

ð35Þ

Table 4. The phase look-up table for Galileo E1 signals.

s1 s2 s3 s4 s5 Phase angle (degrees)

1 1 1 1 1 17·5
1 1 1 1 −1 −17·5
1 1 −1 −1 1 72·5
1 1 −1 −1 −1 −72·5
1 −1 1 −1 1 162·5
1 −1 1 −1 −1 −162·5
1 −1 −1 1 1 72·5
1 −1 −1 1 −1 −72·5
−1 1 1 −1 1 107·5
−1 1 1 −1 −1 −107·5
−1 1 −1 1 1 17·5
−1 1 −1 1 −1 −17·5
−1 −1 1 1 1 107·5
−1 −1 1 1 −1 −107·5
−1 −1 −1 −1 1 162·5
−1 −1 −1 −1 −1 −162·5

Table 3. The optimal complex coefficients for Galileo E1 signals.

1 s1 s2 s3 s4 s5 s1s2 s1s3

Ai 0 1 3·162 1 3·162 4·162 0 0·634
θi 0 0 0 180 0 90 0 −97·1

s1s4 s1s5 s2s3 s2s4 s2s5 s3s4 s3s5 s4s5
Ai 2·038 1·250 2·038 0·634 0·0 0 0·0 0·0
θi −112·1 −55·5 67·9 82·9 86·6 0 −86·7 −161·5

s1s2s3 s1s2s4 s1s2s5 s1s3s4 s1s3s5 s1s4s5 s2s3s4 s2s3s5
Ai 0 0 0 0 1·209 0·483 0 0·483
θi 0 0 0 0 −83·9 144·0 0 −36·0

s2s4s5 s3s4s5 s1s2s3s4 s1s2s3s5 s1s2s4s5 s1s3s4s5 s2s3s4s5 s1s2s3s4s5
Ai 0·968 0 0 0·0 0·0 0·0 1·250 0
θi −97·6 0 0 133·7 131·2 −50·1 124·5 0
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Considering that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
10=11

p
≈0:953, and

ffiffiffiffiffiffiffiffiffiffi
1=11

p
≈0:302, Equation (35) is equivalent to

Equation (28).
As a comparison, we also obtain the optimal phase values of POCET,which are listed

in Table 5. The power constraints and phase constraints are given by Equation (30).
Following the method proposed by Zhang et al. (2012a), we translate the results of

POCET into an analytical expression, i.e.
sPOCET tð Þ ¼ 0:1490e�j0:3287s1 þ 0:4712e�j0:3287s2 þ 0:1490e j2:8129s3

þ 0:4712e�j0:3287s4 þ 0:6203e j1:2421s5 þ 0:0020e�j0:3287s1s2s3

þ 0:1363e j2:8129s1s2s4 þ 0:0178e�j1:8995s1s2s5 þ 0:0020e�j0:3287s1s3s4

þ 0:0411e j1:2421s1s3s5 þ 0:0178e�j1:8995s1s4s5 þ 0:1363e�j0:3287s2s3s4

þ 0:0178e�j1:2421s2s3s5 þ 0:2904e�j1:8995s2s4s5 þ 0:0178e j1:2421s3s4s5

þ 0:0482e�j1:8995s1s2s3s4s5

ð36Þ

Table 5. The optimal phase values of POCET for Galileo E1 signals.

s1 s2 s3 s4 s5 Phase angle (degrees)

1 1 1 1 1 0
1 1 1 1 −1 322·3
1 1 1 −1 1 71·2
1 1 1 −1 −1 251·2
1 1 −1 1 1 356·6
1 1 −1 1 −1 325·8
1 1 −1 −1 1 36·4
1 1 −1 −1 −1 286·0
1 −1 1 1 1 71·2
1 −1 1 1 −1 251·2
1 −1 1 −1 1 142·3
1 −1 1 −1 −1 180·0
1 −1 −1 1 1 36·4
1 −1 −1 1 −1 286·0
1 −1 −1 −1 1 137·1
1 −1 −1 −1 −1 185·3
−1 1 1 1 1 5·3
−1 1 1 1 −1 317·1
−1 1 1 −1 1 106·0
−1 1 1 −1 −1 216·4
−1 1 −1 1 1 360·0
−1 1 −1 1 −1 322·3
−1 1 −1 −1 1 71·2
−1 1 −1 −1 −1 251·2
−1 −1 1 1 1 106·0
−1 −1 1 1 −1 216·4
−1 −1 1 −1 1 145·8
−1 −1 1 −1 −1 176·6
−1 −1 −1 1 1 71·2
−1 −1 −1 1 −1 251·2
−1 −1 −1 −1 1 142·3
−1 −1 −1 −1 −1 180·0
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Considering the relation between signal components, we have s1s2s3 = s4, s1s2s4 = s3,
s1s3s4 = s2, s2s3s4 = s1, s1s2s5 = s3s4s5, s1s3s5 = s2s4s5, s1s4s5 = s2s3s5 and s1s2s3s4s5 = s5.
Then Equation (36) is simplified as

sPOCET tð Þ ¼ 0:2853e�j0:3287s1 þ 0:4714e�j0:3287s2 þ 0:2853e j2:8129s3

þ 0:4714e�j0:3287s4 þ 0:5721e j1:2421s5 þ 0:5721e j1:2421s1s3s5
ð37Þ

We find that the power ratio of signal components is 1:2·7301:1:2·7301:4·0211, not the
designed power ratio 1:10:1:10:17·325! Because the POCET method assumes that all
the PRN code signals are uncorrelated, a single signal component is also unrelated
with IM signals. In other words, Equation (1) is established only when all the PRN
code signals are uncorrelated. However, some signal components are related in this
case. The IM signals change the power of single signal components, which results in
the failure of POCET.

5. THE APPLICATION OF THE SECOND WAY. In this section, we obtain the
AltBOC-like modulation schemes with 85% and 86% combining efficiency by the
second way. The baseband expression of the Galileo AltBOC signal is shown in
Equation (1). s1 and s2 denote the data and pilot component at lower sideband,
respectively. s3 and s4 denote the data and pilot component at upper sideband,
respectively. scS(t) and scP(t) represent the four-valued subcarrier for the single
signals and the product signals, respectively, whose waveforms in a period are
illustrated in Figure 1 (Galileo OS SIS ICD, 2010). Ts is the period of periodic
side-band subcarrier functions.

s tð Þ ¼ 1

2
ffiffiffi
2

p ðs1 þ js2Þ½scSðtÞ � jscSðt� Ts=4Þ�

þ 1

2
ffiffiffi
2

p ðs3 þ js4Þ½scSðtÞ þ jscSðt� Ts=4Þ�

þ 1

2
ffiffiffi
2

p ðs2s3s4 þ js1s3s4Þ½scPðtÞ � jscPðt� Ts=4Þ�

þ 1

2
ffiffiffi
2

p ðs1s2s4 þ js1s2s3Þ½scPðtÞ þ jscPðt� Ts=4Þ�

ð38Þ

Figure 1 shows that each four-valued subcarrier period is sub-divided in eight equal
sub-periods. In each sub-period, s(t) can be seen as a constant envelope composite
signal of four binary PRN code signals. The combining efficiency of AltBOC is
85·36%. Equation (38) is rewritten as (Lestarquit et al., 2008):

s tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp

4
s1 þ js2ð Þe�jπ 1

8þ1
4kð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
pp

4
s3 þ js4ð Þe jπ 1

8þ1
4kð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

2
pp

4
s2s3s4 þ js1s3s4ð Þe�jπ 5

8�3
4kð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

2
pp

4
s1s2s4 þ js1s2s3ð Þe jπ 5

8�3
4kð Þ

ð39Þ

803A QUASI -CONSTANT ENVELOPE MULTIPLEXING TECHNIQUENO. 4

https://doi.org/10.1017/S0373463315000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000119


k = 0,1,2,…,7 represents the eight sub-periods. In each sub-period, the power
and phases of four signal components can been obtained by Equation (39).
From the results of Zhang (2012b), we know that the combining efficiency
of POCET is also 85·36% when the power and phase constraints in Equation (39)
are met.
Now we first begin to generate the AltBOC-like modulation with 85% combining

efficiency. We exploit the objective function Equation (23). The combining efficiency
is set to ηset= 85%. In the first sub-period, we pre-set

A1 ¼ A2 ¼ A3 ¼ A4 ¼ 1; θ1 ¼ � 1
8
π; θ3 ¼ 1

8
π; θ2 ¼ θ1 þ 90

○

; θ4 ¼ θ3 þ 90
○ ð40Þ

Then we obtain

s ¼ s1 þ js2ð Þe�jπ8 þ s3 þ js4ð Þe jπ8 þ 0:4201 s2s3s4 þ js1s3s4ð Þe�jπ123:9180

þ 0:4201 s1s2s4 þ js1s2s3ð Þe jπ101:1180

ð41Þ

In the second sub-period, we set θ1 ¼ � 3
8
π; θ3 ¼ 3

8
π, then we obtain

s ¼ s1 þ js2ð Þe�j3π8 þ s3 þ js4ð Þe j3π8 þ 0:4201 s2s3s4 þ js1s3s4ð Þe jπ11:1180

þ 0:4201 s1s2s4 þ js1s2s3ð Þe�jπ33:9180

ð42Þ

Figure 1. One period of the two subcarriers in AltBOC Modulation.
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After we obtain all the expressions of the eight sub-periods, the AltBOC-like modu-
lation with 85% combining efficiency is expressed as

s tð Þ ¼ s1 þ js2ð Þe�jπ 1
8þ1

4kð Þ þ s3 þ js4ð Þe jπ 1
8þ1

4kð Þ

þ 0:4201 s2s3s4 þ js1s3s4ð Þe�jπ 123:9
180 �3

4kð Þ

þ 0:4201 s1s2s4 þ js1s2s3ð Þe jπ 101:1
180 �3

4kð Þ; tmod Ts ¼ kTs

8
;
k þ 1ð ÞTs

8

� � ð43Þ

Figure 2(a) shows the constellation diagram of AltBOC-like modulation with 85%
combining efficiency. Its envelope value is constant, which is equal to 2·1698.
Figure 2(b) shows the constellation diagram of AltBOC modulation with 85·36% com-
bining efficiency. We can see that there are only eight different phase values for
AltBOC modulation. However, when the combining efficiency is reduced to 85%,
there are up to 24 different phase values for the AltBOC-like modulation. It appears
that each point in Figure 2(b) splits into four points in Figure 2(a).
Next we begin to generate the AltBOC-like modulation with 86% combining

efficiency. The objective function Equation (23) is used. In the first sub-period, the
expression of the composite signal is expressed as

s ¼ s1 þ js2ð Þe�jπ4 þ s3 þ js4ð Þe jπ8 þ 0:4035e�j58π s2s3s4 þ js1s3s4ð Þ
þ 0:4035e j

5
8π s1s2s4 þ js1s2s3ð Þ

ð44Þ

After we obtain all the expressions of the eight sub-periods, the AltBOC-like modu-
lation with 86% combining efficiency is expressed as

s tð Þ ¼ s1 þ js2ð Þe�jπ 1
8þ1

4kð Þ þ s3 þ js4ð Þe jπ 1
8þ1

4kð Þ

þ 0:4035 s2s3s4 þ js1s3s4ð Þe�jπ 5
8�3

4kð Þ þ 0:4035 s1s2s4 þ js1s2s3ð Þe jπ 5
8�3

4kð Þ ð45Þ

where k = 0, 1,…, 7.
Figure 2(c) shows the constellation diagram of AltBOC-like modulation with 86%

combining efficiency. Its envelope value is quasi-constant. There are eight different
phase values and two different envelope values for this AltBOC-like modulation.
The average envelope value is 2·1567. The maximum and minimum envelope values
are 2·1765 and 2·1368 respectively. Compared with AltBOC modulation, it seems
that every point in Figure 2(b) splits in the radial direction into two points in
Figure 2(c).
Figure 3 depicts the normalized Auto-Correlation Functions (ACF) of the above

three modulations in the case of 92·07 MHz bandwidth. Figure 3(a) clearly shows
that the ACFs of AltBOC-like modulations are similar to that of AltBOC modulation.
With the increase of the combining efficiency, Figure 3(b) shows that the main-peak of
the ACF becomes higher.

6. CONCLUSIONS. In this paper, a quasi-constant envelope multiplexing tech-
nique is proposed. Our method is more effective than the POCET method. The pro-
posed method can work in two ways. The main advantages of our method are that
the combining efficiency and IM signals are adjustable. When we slightly relax this
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constraint of constant envelope, we can even achieve higher combining efficiency
than POCET. The multiplexing applications of GPS L1 signals, Galileo E1
signals and AltBOC-like modulations verify the correctness and effectiveness of
the proposed method. Based on the three examples, we summarise the following
conclusions:
The example of GPS L1 signals shows that the first variation of our method is

equivalent to POCET in terms of combining efficiency. The result also shows that
for N unrelated binary PRN signals, when the constant envelope constraint is strictly
met, the POCET method does reach the highest combining efficiency.
The example of Galileo E1 signals shows our method can be applied to this case that

some signal components are related to a certain extent. Due to the correlation between

Figure 2. The constellation diagram. (a) AltBOC-like modulation with 85% combining efficiency.
(b) AltBOC modulation. (c) AltBOC-like modulation with 86% combining efficiency.
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signal components, when POCET is used, the IM signals may change the power of
single signal components, which results in the failure of POCET.
The last example shows that the second variation of our method is helpful to present

more details of the combining. We can generate some AltBOC-like modulations with
different combining efficiency. These AltBOC-like modulations have a similar function
to AltBOC. Among them, AltBOC has the highest combining efficiency when keeping
the envelope constant. Moreover, there are the least number of phase values in the con-
stellation diagram of AltBOC. When we reduce the combining efficiency, the envelope
is still constant. If the combining efficiency is higher than 85·36%, the envelope
becomes quasi-constant. Higher combining efficiency means a stronger main-peak
in the ACF. However, the effect of quasi-constant envelope on signal performance
should be further analysed before it is practically used.
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