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Abstract

We construct compact quantum metric spaces starting from a C∗-algebra extension with a positive
splitting. As special cases, we discuss Toeplitz algebras, quantum SU(2) and Podleś spheres.
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1. Introduction

In noncommutative geometry, the natural way to specify a metric is by a ‘Lipschitz
seminorm’. Connes suggested this idea in [2], and developed it further in [3]. He
pointed out that one may obtain an ordinary metric on the state space of a C∗-algebra
in a simple way from a Lipschitz seminorm. A natural question in this context is
whether this metric topology coincides with the weak* topology. Rieffel [7, 8, 10]
identified a larger class of spaces, namely order unit spaces, in his search for an answer
to this question. He introduced the concept of compact quantum metric spaces as
a generalization of compact metric spaces, and in [10] used this new concept for the
rigorous study of convergence questions of algebras in the spirit of Gromov–Hausdorff
convergence. A natural question in this regard is whether there are many such spaces.

Rieffel [7, 8] gave some general principles for constructing compact quantum metric
spaces. In [1], we used one of his principles to construct examples thereof. In
fact, Rieffel [9] has shown that there are indeed many examples. But in concrete
C∗-algebras one would like to have a more explicit description of these structures.
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Our objective here is to construct compact quantum metric spaces out of quantum
SU(2) and Podleś spheres. To do this, we develop a more general construction and
produce compact quantum metric spaces starting from C∗-algebra extensions.

This paper is organized as follows. In the next section we recall the basics of these
spaces. In Section 3 the basic construction is described. In the final section we employ
the principle developed in Section 3 to special cases.

2. Compact quantum metric spaces: preliminaries

We recall some of the definitions from [10].

D 2.1. An order unit space is a real partially ordered vector space A with a
distinguished element e, the order unit, with the following properties.

(i) For each a ∈ A, there is r ∈ R such that a ≤ re (order unit property).
(ii) If a ∈ A and if a ≤ re for all r ∈ R with r ≥ 0, then a ≤ 0 (Archimedean property).

R 2.2. We may define a norm on an order unit space as follows:

‖a‖ = inf{r ∈ R : −re ≤ a ≤ re}.

D 2.3. By a state of an order unit space (A, e) we mean an element µ ∈ A′, the
dual of (A, ‖ · ‖), such that µ(e) = 1 = ‖µ‖′. Here ‖ · ‖′ stands for the dual norm on A′.
The collection of states on (A, e) is denoted by S (A).

R 2.4. States are automatically positive.

E 2.5. The motivating example for this concept is the real subspace of self-
adjoint elements in a C∗-algebra with the order structure inherited from the algebra.

D 2.6. Let (A, e) be an order unit space. By a Lip-norm on A we mean a
seminorm L on A with the following properties.

(i) If a ∈ A, then L(a) = 0 if and only if a ∈ Re.
(ii) The topology on S (A) coming from the metric

ρL(µ, ν) = sup{|µ(a) − ν(a)| : L(a) ≤ 1}

is the weak* topology.

D 2.7. A compact quantum metric space is a pair (A, L) consisting of an order
unit space A and a Lip-norm L defined on it.

The following theorem of Rieffel will be of crucial importance.

T 2.8 [10, Theorem 4.5]. Let L be a seminorm on the order unit space A such
that L(a) = 0 if and only if a ∈ Re. Then ρL gives S (A) the weak* topology exactly
when both the following conditions hold.

(i) (A, L) has finite radius, that is, ρL(µ, ν) ≤C for all µ, ν ∈ S (A) for some constant
C.

(ii) The set B1 = {a : L(a) ≤ 1, ‖a‖ ≤ 1} is totally bounded in A for ‖ · ‖.
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3. Extensions to compact quantum metric spaces

In this section we describe the general principle of construction of compact quantum
metric spaces from certain C∗-algebra extensions. Let A be a unital C∗-algebra. Fix
a faithful representation A⊆ B(H). Suppose that we have a dense order unit space
Lip(A) ⊆As.a, containing the unit 1A of A, where As.a denotes the real partially
ordered subset of self-adjoint elements in A. Let L be a Lip-norm on Lip(A) such
that ((Lip(A), I), L) is a compact quantum metric space. Let ν be a state on A,
and define Ãν to be the collection of all ((ai j)) ∈ K(L2(N)) ⊗A with the following
properties:

(i) ai j ∈ Lip(A);
(ii) ai j = a ji;
(iii) supi≥1, j≥1 (i + j)k(L(ai j) + |ν(ai j)|) <∞ for all k.

ClearlyAν := Ãν ⊕ RI, where I is the identity onB(L2(N) ⊗H), is an order unit space.
Define Lk :Aν→ R+ by Lk(I) = 0,

Lk((ai j)) = sup
i≥1, j≥1

(i + j)k(L(ai j) + |ν(ai j)|).

L 3.1. Let d be the diameter of ((Lip(A), I), L), given by

d = sup{µ(a) − µ′(a) : a ∈ Lip(A), L(a) ≤ 1, µ, µ′ ∈ S (Lip(A))}.

Then, for all ‘Lipschitz functions’ a ∈ Lip(A),

‖a‖ ≤ (L(a) + |ν(a)|)(1 + d).

P. Let µ be an arbitrary state onA. Since sup{|µ(a) − ν(a)| : L(a) ≤ 1} ≤ d,

|µ(a)| ≤ |µ(a) − ν(a)| + |ν(a)|

≤ L(a)d + |ν(a)|

≤ (L(a) + |ν(a)|)(1 + d),

as required. �

L 3.2. There exists a constant C > 0 such that for all ((ai j)) ∈ Ãν,

‖((ai j))‖ ≤CL2((ai j)).

P. Let {ei}i≥1 be the canonical orthonormal basis for L2(N). Let
∑

i λiei ⊗ ui and∑
i µiei ⊗ vi be generic elements in L2(N) ⊗H . Here ui, vi ∈ H are unit vectors. Then

clearly ∥∥∥∥∥∑
i

λiei ⊗ ui

∥∥∥∥∥2

=
∑

i

|λi|
2

and
∥∥∥∥∥∑

i

µiei ⊗ ui

∥∥∥∥∥2

=
∑

i

|µi|
2
.
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Now observe that∣∣∣∣∣〈∑
i, j

λiei ⊗ ui, ((ai j))
∑
i, j

µ je j ⊗ v j

〉∣∣∣∣∣
≤

∑
i, j

|λi||µ j||〈ui, ai jv j〉|

≤
∑
i, j

|λi||µ j|(L(ai j) + |ν(ai j)|)(1 + d)

≤ (1 + d)
∑
i, j

|λi||µ j|
L2((ai j))

(i + j)2

≤ (1 + d)
∑
i, j

|λi||µ j|
L2((ai j))

i j

≤ L2((ai j))(1 + d)
∞∑

n=1

1
n2

(∑
i

|λi|
2
)1/2(∑

i

|µi|
2
)1/2

.

This proves the lemma with C = (1 + d)
∑∞

n=1 n−2. �

L 3.3. The set B1 = {a ∈ Aν : Lk(a) ≤ 1, ‖a‖ ≤ 1} is totally bounded in norm if
k > 2.

P. Let ε > 0, and choose N such that N2−k < ε. For G = ((gi j)) ∈ Aν, define the
element PN(G) ∈ K(L2(N)) ⊗A by

PN(G)i j =

gi j if i, j ≤ N,

0 otherwise.

Now observe that

Lk(G − PN(G)) = sup{(i + j)k(L(gi j) + |ν(gi j)|) : i > N or j > N}

≥ Nk−2 sup{(i + j)2(L(gi j) + |ν(gi j)|) : i > N or j > N}

= Nk−2L2(G − PN(G)).

Note that Lk(G − PN(G)) ≤ 1 for all G ∈ B1, and therefore

‖G − PN(G)‖ ≤ CL2(G − PN(G))

≤ CN−(k−2)Lk(G − PN(G)) <Cε.

Here the constant C is that obtained in the previous lemma. Note that C does not
depend on N. By Theorem 2.8, there exist N × N matrices ((a(r)

i j )) ∈ MN(A), where
r = 1, . . . , l, such that for any N × N matrix ((ai j)) ∈ B1, there exists r such that
‖((ai j)) − ((a(r)

i j ))‖ < ε. Now for G ∈ B1, take ((a(r)
i j )) such that ‖PN(G) − ((a(r)

i j ))‖ < ε.
Then

‖G − ((a(r)
i j ))‖ ≤ ‖G − PN(G)‖ + ε ≤ (1 + C)ε.

This completes the proof. �
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T 3.4. ((Aν, I), Lk) is a compact quantum metric space when k > 2.

P. Note that if ((ai j)) ∈ Ãν, then Lk((ai j)) = 0 implies that L(ai j) = 0 and ν(ai j) = 0
for all i, j. As L is a Lip-norm, this implies that ai j is a scalar. Since ν(ai j) = 0, this
scalar must be zero. Hence ((ai j)) is the zero matrix. Therefore Lk(a) is zero if and only
if a is a scalar multiple of the identity. Now, in view of Theorem 2.8 and the previous
lemma, we only have to show that (Aν, Lk) has finite radius. Take µ1, µ2 ∈ S (Aν) and
a ∈ Ãν such that Lk(a) ≤ 1. By Lemma 3.2, ‖a‖ ≤C, because L2(a) ≤ Lk(a). Hence
|µ1(a) − µ2(a)| ≤ 2C, that is, diam(Aν, Lk) ≤ 2C. �

P 3.5. Let
0 −→ A0

i
−−→ A1

π
−−→ A2 −→ 0

be a short exact sequence of C∗-algebras, with A1 and A2 unital, and letσ : A2→ A1 be
a positive linear splitting. Let φ : A′1→ A′0 ⊕ A′2 and ψ : A′0 ⊕ A′2→ A′1 be the bounded
linear maps given by

φ(µ) = (µ1, µ2) where µ1 = µ|i(A0), µ2 = µ ◦ σ,

ψ(µ1, µ2) = µ where µ(a) = µ2(π(a)) + µ1(a − σ ◦ π(a)).

Then φ and ψ are inverse to each other.

P. Suppose that φ(µ) = (µ1, µ2) and ψ(µ1, µ2) = µ′. Then

µ′(a) = µ2(π(a)) + µ1(a − σ ◦ π(a))

= µ(σ ◦ π(a)) + µ(a − σ ◦ π(a))

= µ(a).

Therefore ψ ◦ φ = IA′1
. Similarly, one can show that the other composition is also the

identity. �

Let A, Lip(A), L be as above. Suppose that we have a short exact sequence of
C∗-algebras

0 −→K ⊗A
i
−−→ Ã1

π
−−→ Ã2 −→ 0

with Ã1, Ã2 unital, and a positive unital linear splitting σ : Ã2→ Ã1. Let (A2, L2) be
a compact quantum metric space containing the unit of Ã2 as its order unit, withA2 a
dense subspace of self-adjoint elements of Ã2. DefineA1 = i(Ãν) ⊕ σ(A2).

T 3.6. In the setting above, L1 :A1→ R+, given by

L1(a) = L2(π(a)) + Lk(a − σ ◦ π(a))

is a Lip-norm for all k > 2.

P. We break the proof down into several steps.

Step (i): L1(a) = 0 if and only if a ∈ R1A1 . The ‘if’ part is obvious, and for the ‘only
if’ part note that if L1(a) = 0 then π(a) = λ1A2 for some λ ∈ R and Lk(a − λ1A1 ) = 0.
Hence a = λ1A1 .
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Step (ii): (A1, L1) has finite radius. Suppose that (µ1, µ2) = φ(µ) and (λ1, λ2) = φ(λ),
where µ, λ ∈ S (A1) and φ is as in Proposition 3.5. Then we have the norm estimates
‖µi‖, ‖λi‖ ≤ 1 for all i = 1, 2. This is because ‖µi‖ ≤ ‖µ‖ and µ2 is a positive unital
linear functional and hence a state. Similar arguments hold for ‖λ1‖ and ‖λ2‖. Let
x ∈ A1 with L1(x) ≤ 1; then

|µ(x) − λ(x)| = |µ2(π(x)) + µ1(x − σ ◦ π(x)) − λ2(π(x)) − λ1(x − σ ◦ π(x))|

≤ |µ2(π(x)) − λ2(π(x))| + |µ1(x − σ ◦ π(x)) − λ1(x − σ ◦ π(x))|

≤ diam(A2, L2) + 2C,

where C is the constant found in Lemma 3.2. This proves that (A1, L1) has finite
radius.

Step (iii). It suffices to show that the set B1 = {a ∈ A1 : ‖a‖ ≤ 1, L1(a) ≤ 1} is totally
bounded, in view of Theorem 2.8. Since (Aν, Lk) and (A2, L2) are compact quantum
metric spaces, it follows that if we have a sequence an ∈ B1, then there exists a
subsequence ank such that both π(ank ) and ank − σ ◦ π(ank ) converge in norm. Hence
ank is Cauchy in norm, implying the required total boundedness. �

4. Examples

E 4.1. This example is not an illustration of this construction but rather the
motivating example of compact quantum metric spaces. In some of the following
examples this is utilized implicitly. Let X be a compact metric space. Let A be the
space of Lipschitz continuous functions with the associated Lipschitz seminorm L.
Then (A, L) is a compact quantum metric space [8].

E 4.2. Let Ω be a strongly pseudoconvex domain in Cn with smooth boundary
∂Ω endowed with normalized surface measure. Let H2(∂Ω) be the closure in L2(∂Ω)
of the space of boundary values of holomorphic functions that can be continuously
extended to Ω̄. For f ∈C(∂Ω), let T f be the associated Toeplitz operator, that is, the
compression of the multiplication operator M f on L2(∂Ω) on H2(∂Ω). Let T(∂Ω) be
the associated Toeplitz extension, that is, the C∗-algebra generated by the operators
T f along with the compact operators. Then [4, Definition 2.8.4] there is a short exact
sequence of C∗-algebras

0 −→K(H2(∂Ω))
i
−−→ T(∂Ω)

π
−−→C(∂Ω) −→ 0.

Since this sequence admits the positive unital splitting f 7→ T f , we get a compact
quantum metric space structure on T(∂Ω) by Theorem 3.6.

E 4.3. The C∗-algebra of continuous functions on the quantum version of
SU(2), which we denote by C(SUq(2)), is the universal C∗-algebra generated by two
elements α and β satisfying the following relations:

α∗α + β∗β = I, αα∗ + q2ββ∗ = I,

αβ − qβα = 0, αβ∗ − qβ∗α = 0,

β∗β = ββ∗.
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The C∗-algebra C(SUq(2)) introduced in [12] can be described more concretely as
follows. Let {ei}i≥0 and {ei}i∈Z be the canonical orthonormal bases for L2(N0) and L2(Z)
respectively. We denote by the same symbol N the operator ek 7→ kek (where k ≥ 0) on
L2(N0) and ek 7→ kek (where k ∈ Z) on L2(Z). Similarly, denote by the same symbol
` the operator ek 7→ ek−1 (where k ≥ 1), e0 7→ 0 on L2(N0), and the operator ek 7→ ek−1

(where k ∈ Z) on L2(Z). Now take H to be the Hilbert space L2(N0) ⊗ L2(Z), and
define the representation π of C(SUq(2)) onH by

π(α) = `

√
I − q2N ⊗ I, π( β) = qN ⊗ `.

Then π is a faithful representation of C(SUq(2)), so that one can identify C(SUq(2))
with the C∗-subalgebra of B(H) generated by π(α) and π( β). The image of π contains
K ⊗C(T) as an ideal with C(T) as the quotient algebra, that is, we have a useful short
exact sequence:

0 −→K ⊗C(T)
i
−−→A

σ
−−→C(T) −→ 0. (4.1)

The homomorphism σ is explicitly given by σ(α) = ` and σ( β) = 0. It is easy to
see that the above short exact sequence admits a positive splitting taking zn ∈C(T)
to `n ⊗ I for all n ≥ 0. Hence we get a compact quantum metric space structure
on C(SUq(2)).

E 4.4. Podleś [6] introduced the quantum sphere. This is the universal C∗-
algebra, denoted by C(S 2

qc), generated by two elements A and B subject to the
following relations:

A∗ = A, B∗B = A − A2 + cI,

BA = q2AB, BB∗ = q2A − q4 + cI.

Here the deformation parameters q and c satisfy |q| < 1 and c > 0. We can write down
two irreducible representations whose direct sum is faithful. Let H+ = L2(N0) and
H− =H+. Define π±(A), π±(B) :H±→H± by

π±(A)(en) = λ±q2nen where λ± = 1
2 ± (c + 1

4 )
1/2
,

π±(B)(en) = c±(n)1/2en−1 where c±(n) = λ±q2n − (λ±q2n)
2

+ c and e−1 = 0.

Now π = π+ ⊕ π− is a faithful representation, so from [11],

C(S 2
qc) �C∗(T) ⊕σ C∗(T) := {(x, y) : x, y ∈C∗(T), σ(x) = σ(y)},

where C∗(T) is the Toeplitz algebra and σ : C∗(T)→C(T) is the symbol homo-
morphism. Further, we have a short exact sequence

0 −→K
i
−−→C(S 2

qc)
α
−−→C∗(T) −→ 0. (4.2)

As in the earlier case, this short exact sequence is also split exact. Here a positive
splitting is given by ` ∈C∗(T) 7→ (`, `). To apply the basic theorem, note that, by
the earlier example on Toeplitz extensions, we already have a Lip-norm on a dense
subspace of C∗(T).
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R 4.5. These two examples were treated by Li in [5]. He produces compact
quantum metric spaces using ergodic actions of compact quantum groups.
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