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A two-dimensional finite-element study of flow in the
transition zone between an ice sheet and an ice shelf

RENAUD LESTRINGANT
Laboratoire de Glaciologie et de Gr!opf~y:)iquede I'Environnement, 38402 Saint-lHartin-d'Heres Cedex, Franer

ABSTRACT. A numerical study has been carried out on the flow of ice in the
transition zone bet ween an ice sheet' and an ice shelf. The study was motivated bv the
need for global ice-sheet-ice-shelf modelling to determine th~ characteristics of the
transition zone. The problem is dealt with from an academic viewpoint, and the study
especially focuses on two-dimensional vertical sharp transition zones. Stokes equations
are solved using a finite-element method. Conclusions include: (I) in iee-sheet-ice-shelf
modelling, each of the two components can be computed separately then linked by a
jump-boundary condition [or the horizontal velocity; (2) as shown by studies on the
response of an ice shelf to tidal forcing, the surface elevation/thickness ratio passes
through the hydrostatic equilibrium value.

1. PRESENTATION

Numerical and theoretical studies of ice sheets and icc
shelves are numerous. The numerical studies model past,
present or future large ice masses, while the theoretical
work tries to derive the main characteristics of these flows.
The theoretical approach generally uses perturbation
methods to solve the equations describing either the ice
sheet or the ice shelf I t has been possible to determine the
relative magnitude of the main physical quantities
(stresses, strain rates and their gradients; for both ice
sheets and ice shelves (see, for example, Smith and
.\lorland, 1981; YIorland and Shoemaker, 1982). These
studies show that ice-sheet flow is dominated by shear
stress while ice-shelf now is dominated by longitudinal
deviatoric stress. I t is therefore possible to use reduced
equations for each of these flows. This is, however, not
possible in a transition zone. In view of the supposed
complexity of such flow, a numerical method has been
chosen to solve the steady-flow equations. With this
approach, non-reduced Stokes equations can be used.
Furthermore, as the primary aim of this work is to derive
the main features of the flow, the transition zone has been
modelled by simplifying characteristics such as the
geometry and the temperature field.

A transition zone is characterized by the more-or-less
gradual change in basal-boundary conditions. Two
limiting cases can be considered: either the change in
basal drag occurs at the grounding line (called the TZno.

,lip case) or it occurs over very long distances compared to
the ice thickness. The latter case corresponds to nearly
floating ice streams. The present study considers only a
steady sharp transition zone.

2. MODELLING THE TRANSITION ZONE

The usual assumptions are made: the ice is considered to

be an isotropic rna terial (no text ure), a homogeneous and
continuous medium (constant density and no crevasses)
and incompressible. Its rheology is described by a non-
linear flow law. The dynamics of the now are governed by
steady Stokes equations.

Further assumptions are:

(I) The flow is studied in a longitudinal vertical section
considering that the lateral margins are far from
the cen ter (the thickness/wid th ratio is very small).

(2) The ice is isothermal.

(3) The bedrock geometry is very simple in order to
use simple basal-boundary conditions.

(4) No accumulation/ablation processes arc used.

The non-linear flow law used in this work is the one
deduced by data-fitting by Morland and Shoemaker
(1982). Large ice-mass flows are opened flows. Free
surfaces therefore have also to be computed. This will be
done by solving the associated kinematic equations.
Various geometries have been used in the numerical
cxperiments. The one presented here has the following _
features: bedrock slope (2 x 10 4), mean ice thickness
(843 m) and width (40 km). This geometry and the
reference frame arc prcsented in Figure I and the above
characteristics are summarized in Table I.

3. NUMERICAL METHOD

The numerical method used to solve the Stokes equations
and their associated boundary conditions is a mixed
finite-elemcnt method using the Galerkine approach.
Presentations of the unite-element method can be found
in Reddy (1984) and Dhatt and Touzot (1984). ".\:1ixed"
means that the computed unknowns are the two velocities

67
https://doi.org/10.3189/1994AoG20-1-67-72 Published online by Cambridge University Press

https://doi.org/10.3189/1994AoG20-1-67-72


Lestringant: Flow in transition zone between ice sheet and ice shelj

z

sea

o
earth gravity --- flow direction

grounding point

f
\,

level

----- ...•.

wa t c r
"... ---- •..

x

Fig. 1. Geometr'y and reference frame of the transition.

U (horizontal) and W (vertical) and the pressure P.
Stresses and strain rates are then deduced from the
computed U and TV values. This mixed method is very
often used in incompressible Huid mechanics (for a review
see I\"orrie and de Vries (1978)). Respecting the rules for
numerical stability (Hood and others, 1974; Kawahara
and others, 197·!; Sani and others, 1981; Gunzburger,
1990;, a six-node triangular element was chosen. \Vith

Table 1. Equations and definitions

this element, velocities and pressure are continuously
interpolated respectively by second- and first-order
polynomials. Because of the dependence of the viscosity
on the strain rates (i.e. on the computed velocities), the
equation system resulting from this method is not linear
and requires the use of an iterative scheme.

The fre~ surfaces z = f(x, t) are governed by a
kinematic equation with the following analytical form:

aflat + usaf I ax = Ws (Us and Ws surface velocities).

W
P

orr, ..[. orr[,"-'" +-'"=0
Ox az

arrxz arrzz--;:;-+ ::l~ = Pig
uX UN

au aH/
-+-=0ax az

a,) = 2/l.eY)d/]

Stress components
Strain-rate components
Deviatoric stress components
lee density
Earth gravity
Viscosity
Horizontal velocity
Vertical velocity
Pressure

Stokes equations

Incompressibility

Pressure definition

Constitutive law

Second strain-rate invariant

Various numerical schemes (finite-diflerence or finite-
element methods) have been tested to solve this non-
linear equation. The scheme used to obtain the results
presented in this study is a finite-difference method with
implicit temporal and left-side spatial derivatives. For
each iteration, the free surfaces are calculated with the
computed surface velocities. The program stops when a
convergence _criterion (relative error in the horizontal
velocity between two steps of the iteration) is satisfied. To
be sure that the results for the transition zone are as
accurate as possible, the program was fully tested. The
sub-routines were either tested separately (for example,
the solver) or the program was used to provide the
solution of various known Hows. These flows are either
described by a theoretical solution (Poiseuille flow for ice
and water) or they are known by computed solutions: for
instance, the driven cavity flow for low Reynolds number,
rectangular-channel ilow (Nye, 1965) and ice-divide ilow
(Raymond, 1983).

As the derivatives calculated using the computed
velocities are discontinuous, a smoothing technique was
needed. The one used in the program is based on the mean
over each node: one node is common to several elements
and each element has its derivatives; so, for one given
node, the value of a given derivative (for instance aulax)
is the mean of the element derivatives. This techniq ue has
been compared \-vith that of Lee and others (1979).

105

jJeY = -. {1.15arctg(0.929i) + 2.479arctg(0.01185i)}
r,/

Viscous law (Morland and Shoemaker, 1982)

68

4. PREVIOUS STUDY

The only study published up to now on the transition
zone is by Herterich (1987). In his numerical study, he
simplified the basic steady Stokes equations and con-
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sidered the TZno_slipcase. There was no sliding on the
bedrock up to the grounding point. The vertical velocity
was imposed on the Hoating surface. An ice-sheet-like
velocity profile was imposed at the rear vertical section
and an ice-shelf-like velocity gradient was imposed at the
front. The numerical method used was a finite-difference
scheme. Nevertheless, the geometry was fixed (i.e. no
change of the free surfaces). Furthermore, the zero
vertical-velocity constraint on the floating surface was
not natural and strengthened artificially the vertical-
velocity field. The results obtained are strongly dependent
on the no-change assumption for the free surfaces and on
the chosen boundary conditions. The orders of magnitude
of the vertical velocity arc not valid and the imposed
horizontal velocity does not obey global mass balance.
The present study eliminates almost all these problems.
The first tests performed for the present study give results
in line with those of Herterich. However, rapidly, the
discrepancies in the vertical velocity showed that some-
thing was inconsistent in the model, either in the
boundary conditions or concerning the fixed-geometry
assumption. It is indeed very important to take into
account the free-surface changes.

5. BOUNDARY CONDITIONS

The numerical tests were made usmg two sets of
boundary conditions. The first set was used for the no-
sliding problem, while the second takes into account a
sliding effect. The two sets differ only by the basal-
boundary conditions. The different parts of the How
boundary arc shown in Figure 2.

The common boundary conditions of the two kinds of
tests are described as follows. On the inlet AB, the velocity
is set by the Poiseuille theoretical solution. At the outlet
DC, we still impose the velocities: U is constant and follows
the global mass balance, and W = O. On the floating
surface GC, the Archimedes force is imposed. The upper
free surface AD is traction-free. With regard to the basal-
boundary conditions, we chose to use either no-sliding
velocities (U = W = 0) or a mixing of vertical velocity and
the x component of the force. For the latter case, the
bedrock was divided into two parts. From B to I, the x
component of the basal force is set to its no-sliding value,

traction free
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and on IG we have used a linearly decreasing x component
of the force from the no-sliding value to the free-sliding
value. Furthermore, from B to G the vertical velocity -
updated at each iteration - is imposed. The value of the
force imposed at the grounding point G is updated
iteratively with the value of the ice thickness above G.

For practical computing reasons, G was chosen so as
to give a symmetrical transition-zone geometry.

6. THE NO-SLIDING EXPERIMENT

a. Presentation

This first category of test concerns the no-sliding basal-
boundary condition. The numerical method provides the
velocities (U, IF) and the pressure (P). Then, the shear
stress (axz) and the longitudinal deviatoric stress ((J~;r) are
calculated using the computed velocity field. The free
surfaces evolve to a steady state to define the final
geometry.

b. How to read the diagrams?

The quantities U, W, axz, a~x are displayed on three-
dimensional diagrams. The reading of this kind of
diagram generally needs some experience. An explanation
is therefore given. As shown in section 2, the physical
geometry is defined in a vertical plane with Cartesian
coordinates x and z: x indicates the flow direction (from
upstream to downstream) and z is upward. U, W, axz; a'r;!,
are functions of these two variables and define two-
dimensional surfaces in three-dimensional space. This
three-dimensional space has as basal plane the physical
plane Oxz (0 is the frame origin) and its third dimension is
defined by the two-dimensional surfaces. Each diagram is
displayed from a different viewpoint in order to give the
best possible observation. The reader must locate the depth
direction (from top to bottom) and the flow direction
pointed out by arrows in the axis text. The two-
dimensional surfaces are also displayed using a grey scale
which shows at a first glance the gradients.

Finally, the steady profiles of the free surfaces are
presented in the usual manner: (x,z = f(x)) dia-
grams.

upper surface
D

Fig. 2. BoundQl~Yconditions.

grounding point
:; { U = constant__ w=o

floating surface c
~, ,

Archimedes"force

x
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c. Description of the results

This section describes all the computed quantItIes. The
aim of the present work is to provide information on flow
within the transition zone. Thus, each physical quantity
has been listed and analysed in order to bring out the
features which are useful in this respect.

The horizontal velocity field U (Fig. 3), upstream of
the grounding point G, shows the expected profile
(i.e. the profile ofa grounded ice sheet). Furthermore,
this field does not show any penurbations, indicating
that the inlet-boundary conditions are reliable. The
same conclusions hold for the outlet-boundary cond-
itions. A decrease of the surface velocity occurs only
over a short distance (several kilometres) around the
transition point G. This behaviour was observed in all
tests performed with different geometries.

The vertical velocity T-V (Fig. 4) shows surpnsmg
behaviour around point G. Though it is a steady-state
field, the variations shown in the diagram arc too
strong. Throughout the tests T-V was always very
sensitive. \levertheless, the quality of VV never really
influenced the other results. 'What strongly affects ~Vis
the evolution or the non-evolution of the free surfaces.
If they arc steady, lV is very poor and, according to
the test, the other fields can be perturbed. From some
viewpoints, the evolving process for the fi'ee surfaces
fails to produce the most reliable geometry.

Figure 5 shows the pressure P. P is vertically linear
with a gradient equal to the hydrostatic gradient.

~:1ore interesting is the shear stress (Jxz displayed 1Il
Figure 6. The (J xz field shows no discrepancies. That
means that the boundary conditions used for this
problem are still rclevant. Upstream (from top to
bottom) (Jxz increases linearly from ncar zero to the
usual basal shear for grounded ice-sheet flow. On the
floa ting part, (J xz is near zero as expected in an ice
shelf. Once again, a change between the two kinds of
flows occurs only over several kilometres around point
G, showing a strong horizontal gradient.

The horizontal deviatoric stress (J~.x. (Fig. 7) shows a
strong change that agrees well with the horizontal
velocity changes.

The last results deal with the free-surface changes.
Figures 8 and 9 show respectively the upper and the
floating surfaces. Comparing these two figures shows
that the ice shelf dips slightly under the floating
eq uilibrium level downstream of the grounding point
G before returning to hydrostatic equilibrium. Though
the magnitude of this effect is very small (~O.l'Yo), it
appears to be real. T ndeed, studies dealing with the
elastic bending of icc shelves due to tidal forcing show
the same result (Stephenson, 1984; Smith, 1991).
Furthermore, in situ measurements also demonstrate
this effect (personal communication from A. Hom-
bosch). Very recen tly, G PS missions over a grounding
line have measured such a deflection (Vaughan, 1994).
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Fig. 3. !-Ion::,ol//af lI!'foci£!'.

Fig. 4. Va/ical vefoci/v.
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Fig. 5. Pressur!'.

Fig. 6. Shear stress.
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A Weertman-like sliding law (linking the basal velocity to
the basal shear stress) was tested. Tfthe sliding component
is small compared to the total velocity (~IO%), the
results are satisfactory. But, if sliding predominates, then
the solution is not at all valid. This sliding law
exaggerates the variations of the basal force, producing
unsuitable variations of the basal velocity (used as a
boundary condition on the bedrock). This introduces
spurious behaviour in the boundary conditions and the
system is excessively stressed. This suggests that these
basal-boundary conditions arc not those expected by the
system. Some authors (personal communication from C.
Ritz) consider that this kind of sliding law is only valid for
small basal velocities, a possibility that may be supported
by our results.

that the velocity field is not perturbed by the boundary
conditions. That shows their suitability.

Fig. 10. HorizontaL ve/oeit)'.

Remark

8. CONCLUSIONS

In this numerical study, we have tried to answer the
question: what arc the mechanical features (velocities,
stresses, pressure and free surfaces) in a sharp transition
zone between an ice sheet and an ice shelf?

\Ve have defined the transi tion zone not as the place
where an ice sheet becomes an ice shelf but rather the
place where the basal drag changes from a high to a small
value. "High drag" means no-slip or nearly no-slip drag,
and "small drag" means free-slip or nearly free-slip drag.
With this definition, the results of this study can be
extended to other transition zones: transition between an
ice sheet and an ice stream, sticky spots, etc. The difiiculty
is to define a realistic basal-boundary condition. In this
study, the change in basal drag has been introduced by
way of the forces and not by way of a sliding law. This
method has given correct results.

The main results of this study are as follows:

The horizontal velocity shows two distinct regimes:
the icc-sheet and the ice-shelf regimes. The change
from the former to the latter occurs in a very narrow
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Fig. 8. Upper swfaee after evolution.

Fig. 9. FLoating swface after elwLution.

7. THE BASAL. SLIDING EXPERIMENT

In this second test, sliding was introduced in the basal-
boundary conditions by way of the forces. The aim of this
was (0 show the influence of sliding on the solutions given
in the previous section. This sliding has been described in
section 5. The only quantity which has been slightly
changed is the horizontal velocity U. U shows (Fig. 10)
the same properties as in the no-slip experiment, except
on the bedrock. There, it increases slightly and its ;7:

gradient is smoother than for the no-sliding case. Note
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zone over the grounding line. The surface velocity
decreases smoothly [rom one re,gime to the other.

The pressure is linearly dependent in the vertical
coordinate with a gradient equal to the hydrostatic
gradient.

The shear stress also changes from an ice-sheet regime
to an ice-shelf regime. This transition is smooth with a
strong horizontal gradient.

The free surfaces have been allowed to evolve to a
steady state. The present study shows that, downstream
of the grounding line over several kilometres, the
surface elevation/thickness ratio passes through the
hydrostatic equilihrium value. This result is in
agreement with in situ measurements of the deflection
due to tidal forcing. Nevertheless, the magnitude of this
effect is very small (",0.1 %) when only due to the flow.

These results lead to the following conelusions:

(1) It seems impossible to use reduced Stokes
equations in the transition zone.

(2) The results concerning the horizontal velocity and
the shear stress suggest that, in global ice-sheet-ice-
shelf modelling, the former and the latter can be
uncoupled; the ice sheet and the ice shelf are then
linked by a jump-boundary condition for the
horizontal velocity.

Limit of the study: this two-dimensional transItIOn
zone has been modelled assuming that no drag effect
comes from the sides. That means that the ice shelf does
not affect the upstream flow, as ifit were unconfined. In a
realistic transition zone, an ice stream or an outlet glacier
flows into a confined ice shelf. The anchorage of a
confined ice shelf on the sides causes strong drag and the
ice shelf then becomes a velocity sink for the input flow.
Confirmation of these effects will require a three-
dimensional study to be taken into account. :"Jever-
theless, the uncoupling of the icc sheet and the ice shelf
should remain valid.
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