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Abstract Given an embedded hypersurface M in R
4 we consider families of projections H of M to lines

and families of projections P of M to 3-spaces. We characterize generically the singularities of these
projections. We also show that there is a duality relation between some strata of the bifurcation sets of
H and P , and deduce geometric properties about these sets.
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1. Introduction

The contact of smooth varieties with degenerate objects (lines, planes, hyperplanes, cir-
cles, spheres, etc.) is measured locally by the K-classes of the singularities of some map
germs [11]. In practice (right–left) A equivalence classes are sought as they yield a finer
classification and more geometric information. This approach allowed the discovery of
beautiful geometric results on surfaces in R

3 that are being extended to surfaces and
hypersurfaces in R

4 (see [3] and [12] for references).
In this paper we study the local flat geometry of a generic hypersurface M embedded in

R
4 using singularity theory. In [13] we considered the contact of M with two-dimensional

planes. Here we deal with the contact with lines and hyperplanes, so we study the A-
classes of the singularities of projections to lines and to 3-spaces. These projections are
parametrized by the 3-sphere S3 ⊂ R

4. It follows from the transversality theorem of
Looijenga [8] that we can expect, in general, (local) singularities of Ae-codimension less
than or equal to 3 to occur. (In the presence of moduli, the generic cases are when the
union of the orbits along the moduli parameters form a set of Ae-codimension less than
or equal to 3.)

In § 2 we deal with the contact of M with hyperplanes. We obtain necessary and suffi-
cient conditions for the height function in a normal direction to have a generic singularity
and for these to be versally unfolded by the family of height functions. We adapt the
techniques of Bruce in [1] to describe the sets in M with a given singularity type of the
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height function. Finally, we give the geometric characterization of the singularities of the
height function.

In § 3 we study the contact of M with lines and give a geometric characterization of
the generic singularities of the projection to 3-spaces.

We prove in § 4 a duality result between the families H and P , analogous to that in [4],
and study the behaviour of the projections P around a flat partial umbilic point.

2. Contact with hyperplanes

Given an embedded hypersurface M in R
4, the family of height functions (projections to

lines) is given by H : M × S3 → R, where H(p, u) = 〈p, u〉 and S3 is the unit sphere in
R

4. For a fixed u ∈ S3, the height function Hu measures the contact of the surface M

with the hyperplane normal to u.
We write M in Monge form in a neighbourhood of a point p, that is, we consider M

given locally by the graph of a function w = f(x, y, z) near the origin, with w = 0 as the
tangent hyperplane at the origin. If we parametrize locally the sphere S3 by (a, b, c, 1)
near the normal to the surface at the origin, we obtain the following expression for the
family of height functions

H(x, y, z, a, b, c) = ax + by + cz + f(x, y, z).

In particular, H0(x, y, z) = f(x, y, z).
In the rest of the paper we will write the Taylor expansion of f of order 5 at the origin

as follows (we choose the principal directions as the coordinate axes):

j5f = a1x
2 + a2y

2 + a3z
2 + b1x

3 + b2x
2y + b3xy2 + b4y

3 + b5y
2z + b6yz2

+ b7z
3 + b8z

2x + b9zx2 + b10xyz + c1x
4 + c2x

3y + c3x
2y2 + c4xy3 + c5y

4

+ c6y
3z + c7y

2z2 + c8yz3 + c9z
4 + c10z

3x + c11z
2x2 + c12zx3 + c13x

2yz

+ c14xy2z + c15xyz2 + d1x
5 + d2x

4y + d3x
3y2 + d4x

2y3 + d5xy4 + d6y
5

+ d7y
4z + d8y

3z2 + d9y
2z3 + d10z

4y + d11z
5 + d12z

4x + d13x
2z3 + d14x

3z2

+ d15x
4z + d16x

3yz + d17x
2y2z + d18x

2yz2 + d19xy2z2 + d20xy3z + d21xyz3.

We recall some concepts on the geometry of the hypersurfaces in R
n. Let M be an

embedded manifold of dimension n in R
n+1 with a unit normal vector field N , and

consider p ∈ M . The Weingarten function Lp : TpM → TpM , given by Lp(v) = −dpN(v),
measures how M is curved in R

n+1 in the direction v. When ‖v‖ = 1, the number
k(v) = 〈Lp(v), v〉 is called the normal curvature of M at p in the direction v. The
eigenvalues k1(p), . . . , kn(p) of Lp are called the principal curvatures of M at p and the
unit eigenvectors of Lp are the principal directions.

The second fundamental form of M at p, Lp, is the quadratic form associated with the
function Lp, defined by

Lp(v) = 〈Lp(v), v〉 = 〈α̈(t0), N(p)〉,
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where α : I → M is any parametrized curve in M with α(t0) = p and α̇(t0) = v. In
particular, when ‖v‖ = 1, Lp(v) is equal to the normal curvature of M at p in the
direction v.

A point p in M is an umbilic point if all principal curvatures at p are equal. If they are
all 0, then p is a flat umbilic point. If at least two principal curvatures at p are 0, then p

is called a partial flat umbilic point.
Consider the particular case where M is a hypersurface in R

4 and let p ∈ M . As before,
we take M in Monge form

w = f(x, y, z) with j2f(x, y, z) = a1x
2 + a2y

2 + a3z
2,

where ai = ki/2 (the ki being the principal curvatures). Then p is a parabolic point if
ki(p) = 0 for some i. Away from the parabolic set, if the three principal curvatures at p

have the same sign, then p is an elliptic point, otherwise it is a hyperbolic point.
A direction u ∈ TpM is an asymptotic direction at p if the normal curvature along u

is 0. Since j2f(x, y, z) = a1x
2 +a2y

2 +a3z2 the vector (u1, u2, u3, 0) of the tangent space
is an asymptotic direction if and only if a1u

2
1 + a2u

2
2 + a3u

2
3 = 0. At a hyperbolic point

the set of asymptotic directions form a cone. At an elliptic point there is no asymptotic
direction. At a parabolic point when only one ai is 0 (we can always rearrange variables
and assume a3 = 0) the asymptotic directions are given by two planes whose intersection
is the ui-axis or consists of the ui-axis. In both cases we call the direction of the ui-axis
the principal asymptotic direction.

As pointed out in the introduction, the generic local singularities of H0 = f(x, y, z)
are those of Ae-codimension less than or equal to 3. So, locally at the origin, we expect
H0 to have a singularity of type Ak, 1 � k � 4, or D4 (using Arnold’s notation). We
identify these singularities in the following result.

Proposition 2.1. The height function H0 has one of the following singularities.

(i) Away from partial flat umbilic points:

A1 ⇔ a1a2a3 �= 0;

A2 ⇔ a1a2 �= 0, a3 = 0, b7 �= 0;

A3 ⇔ a1a2 �= 0, a3 = 0, b7 = 0, 4a1a2c9 − b2
8a2 − b2

6a1 �= 0;

A4 ⇔ a1a2 �= 0, a3 = 0, b7 = 0, 4a1a2c9 − b2
8a2 − b2

6a1 = 0,

4a1a2d11 − 4a2c10b8 − 2a1c8b6 + b6b8b10 �= 0.

(ii) At a partial flat umbilic point:

D4 ⇔ a1 �= 0, a2 = a3 = 0, b7 �= 0, b5 �= 0,

4b3
6b4 + 27b2

4b
2
7 − 18b4b7b5b6 − b2

5b
2
6 + 4b3

5b7 �= 0.
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These singularities are versally unfolding by the family of height functions if and only if
A�2: always,

A3 ⇔ b6 �= 0 or b8 �= 0,

A4 ⇔ ϕ(ai, bi, ci, di) �= 0, where ϕ is a polynomial of degree 13 in ai, bi, ci, di (see [12]),

D4 ⇔ 6b3b5b7 − 2b3b
2
6 − 9b4b10b7 + 6b4b8b6 + b5b10b6 − 2b8b

2
5 �= 0.

Proof. The proof follows by relatively straightforward calculations. �

We now describe the sets in M where the height function has one of the singularity
types in Proposition 2.1. We follow Bruce’s method in [1].

Let p be a point on M and choose three smooth orthogonal tangent vector fields in a
neighbourhood U of p, so that together with the normal vector field, they form a system
of coordinates at each point in U . The surface can then be given locally at q ∈ U in
Monge form (x, y, z, fq(x, y, z)). We denote fp by f .

Let Vk denote the set of polynomials in x, y, z of degree greater than or equal to 2 and
less than or equal to k. We obtain a smooth map, the Monge–Taylor map θ : U → Vk,
where θ(p) = jkfp, which associates with each point q in U the k-jet of the functions
fq at the point q. The set Vk has a natural GL(3, R)-action given by a linear change of
coordinates. It is shown in [5] that the flat geometry of smooth manifolds in a Euclidean
space is affine invariant. A subset Z (say, representing one of the singularity types in
Proposition 2.1) of Vk which is of any geometric significance will be GL(3, R)-invariant.
Moreover, if Z is furnished with a Whitney regular stratification, then for any generic M

the map germ M, p → Vk will be transverse to the strata of Z (see [1] for details). We
then determine the diffeomorphism type of θ−1(Z) at p.

To carry out the calculations explicitly in Vk we need to compute the tangent space to
the GL(3, R)-orbit of f and the generators of the image of dθ.

Lemma 2.2. The generators of the tangent space to the GL(3, R)-orbit of f in Vk, at
f , are

u1 = xfx, u2 = yfx, u3 = zfx, u4 = yfy, u5 = xfy,

u6 = zfy, u7 = xfz, u8 = yfz, u9 = zfz.

Proof. To obtain the generators, we calculate

d
dt

f(At(x, y, z))|t=0,

where At is a path in GL(3, R) with A0 being the identity. �

Proposition 2 in [1] can be extended to cover the case of hypersurfaces in R
4 and give

the generators of the image of dθ (see [12] for the proof).
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Proposition 2.3. The image of dθ(p) is generated by v1, v2, v3 such that

v1 = jk

(
dθ

(
∂

∂x

))

= jk(fx(x, y, z) − fx(x, y, z)fxx(0, 0, 0)f(x, y, z)

− fy(x, y, z)f(x, y, z)fxy(0, 0, 0) − fz(x, y, z)f(x, y, z)fxz(0, 0, 0)

− fxx(0, 0, 0)x − fxy(0, 0, 0)y − fxz(0, 0, 0)z),

v2 = jk

(
dθ

(
∂

∂y

))

= jk(fy(x, y, z) − fx(x, y, z)fxy(0, 0, 0)f(x, y, z)

− fy(x, y, z)f(x, y, z)fyy(0, 0, 0) − fz(x, y, z)f(x, y, z)fyz(0, 0, 0)

− fxy(0, 0, 0)x − fyy(0, 0, 0)y − fyz(0, 0, 0)z),

v3 = jk

(
dθ

(
∂

∂z

))

= jk(fz(x, y, z) − fx(x, y, z)fxz(0, 0, 0)f(x, y, z)

− fy(x, y, z)f(x, y, z)fyz(0, 0, 0) − fz(x, y, z)f(x, y, z)fzz(0, 0, 0)

− fxz(0, 0, 0)x − fyz(0, 0, 0)y − fzz(0, 0, 0)z).

Proposition 2.4.

(1) The parabolic set (i.e. the set of points in M where the height function along the
normal has an A2-singularity) is locally a smooth two-dimensional surface.

(2) The A3-singularities of the height function H occur generically on a smooth curve
on the parabolic set, labelled the A3-curve.

(3) The A4-singularities of H occur generically at isolated points on the A3-curve.

Proof. (1) Suppose that f has an A2-singularity at the origin and write, without loss
of generality, j2f = a1x

2 + a2y
2 with a1a2 �= 0. Then a transversal to this orbit is given

by the elements j2f + ā3z
2, where ā3 ∈ R. Therefore, on this transversal the A2-stratum

is given by ā3 = 0 (see Proposition 2.1). So it is a smooth manifold of codimension 1 in
V2. It is not hard to show that the tangent space of the A2-stratum in V2 is given by
the kernel of the differential form ξ = da3. On the other hand, the generators v1, v2, v3

of the tangent space to the image of θ in V2 are given by Proposition 2.3. The image of
θ fails to be transverse to the A2-stratum if and only if v1, v2, v3 belong to the kernel
of ξ. Since ξ(v3) = b7 �= 0 at an A2-singularity, we conclude that the image of θ is always
transversal to the A2-stratum. Hence the parabolic set, θ−1(A2), is a smooth manifold
of codimension 1 in M .

For (2) and (3) we proceed as above. The only difference here is that the tangent
space to the A3 (respectively, A4) stratum is given by the intersection of the kernels of 2
(respectively, 3) 1-differential forms. �
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Remark 2.5.

(i) The fold/cusp/swallowtail singularities of the Gauss map M → S3 correspond,
respectively, to A2/A3/A4 singularities of the height function. However the Monge–
Taylor approach yields more information. For instance, it follows from the proof of
Proposition 2.4 that the parabolic set is singular if and only if the Monge–Taylor
map fails to be transverse to the A2-stratum in V2, if and only if the height function
has an A3-singularity not versally unfolded by the family of height functions.

(ii) Following the same labelling as for a surface in R
3, we call the A3-curve on M the

cuspidal edge curve and the A4-points swallowtail points.

Proposition 2.6. The D4-singularities of H occur generically at isolated points on M .
The parabolic set is locally a cone at these singularities. At a D+

4 the A3-set is a single
line through the cone and at a D−

4 it consists of three lines through this cone.

Proof. Without loss of generality we set a2 = a3 = 0 at a D4 singularity. Then an
element of a transversal to the orbit of f in V2 is given by a1x

2 + ā2y
2 + ā3z

2 + ā6yz,
where ā2, ā3, ā6 ∈ R and the D4-stratum on this transversal is given by ā2 = 0, ā3 = 0
and ā6 = 0. We show that the tangent space of the D4-stratum in V2 is given by the
intersection of the kernel of the differential forms ξ1 = da3, ξ2 = da2 and ξ3 = da6.
The generators of the tangent space to the image of θ in V2 are v1, v2 and v3 with
ā2 = ā3 = ā6 = 0, given by Proposition 2.3. Since ker ξ1∩ker ξ2∩ker ξ3 has codimension 3,
the image of θ fails to be transverse to the D4-stratum if and only if there is a non-zero
vector v = λv1 + µv2 + βv3 such that ξ1(v) = 0, ξ2(v) = 0 and ξ3(v) = 0. It means that
the family of height functions fails to versally unfold the D4-singularity at the origin (see
Proposition 2.1). However, for generic embedding of M , the D4-set consists generically
of isolated points on M .

The A2-stratum is given by ā2
6 − 4ā2ā3 = 0 in the above transversal, which is a cone

in V2. Since θ is generically transverse to the D4-stratum, θ(R3)∩A2 is a cone in V2, and
therefore θ−1(A2) is also a cone in M .

We shall now study the A3-set on this cone. We need to work in V3. At a D4 singularity
we can write j3f = x2 + C(x, y, z), where the cubic C(x, y, z) = z3 ± y2z + xa(x, y, z). A
transversal to the orbit of f in V3, after a change of coordinates, can be written as

j3f̄ = X2 + ā2y
2 + ā3z

2 + ā6yz + z3 ± y2z.

The singularity is A3 if and only if ā2y
2 + ā3z

2 + ā6yz = L2 (that is, L = αy + βz) and
L | (z3 ± y2z). Therefore, j3f̄ = X2 + L2 + LW , where W = (z3 ± y2z)/L. With the
change of variable L = l − 1

2W , we have j3f̄ = X2 + l2. Therefore we have the following.

(i) If L | (z3 + y2z), then L | z or L | (z2 + y2). The last case does not hold because L

is of degree 1, hence L = λz. Now L2 = ā2y
2 + ā3z

2 + ā6yz; therefore ā2 = ā6 = 0.
This is a manifold of codimension 2 in V3, which intersects the cone ā2

6 −4ā2ā3 = 0
in a line. So on M we have a smooth A3-curve on the parabolic set.
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(ii) If L | (z3 − y2z), then L | z ⇒ L2 = λ2z2, L | (z − y) ⇒ L2 = λ2(z − y)2, or
L | (z + y) ⇒ L2 = λ2(z + y)2. Since L2 = ā2y

2 + ā3z
2 + ā6yz, in the first case

we have ā2 = ā6 = 0, in the second case we have ā3 − ā2 = 0 and ā6 + 2ā2 = 0,
and in the third case we have ā6 − 2ā2 = 0 and ā3 − ā2 = 0. That is, we have three
manifolds of codimension 2 (which intersect the cone ā2

6 − 4ā2ā3 = 0 in V2 in a
line). Then the A3-set on M consists of three smooth curves on the parabolic set
passing through the cone point.

�

We give geometric characterizations of the generic singularities of the height function
below.

Proposition 2.7. The generic singularities of the height function in the normal direc-
tion u at p ∈ M occur when

(A1) p is not a parabolic point;

(A2) p is a parabolic point, the principal asymptotic direction is transverse to the
parabolic set;

(A3) p is a parabolic point, the principal asymptotic direction is tangent to the parabolic
set but transverse to the A3-curve;

(A4) p is a parabolic point, the principal asymptotic direction is tangent to the A3-curve;

(D4) the parabolic set is a cone—at a D+
4 , the A3-set is a line on the cone and at a D−

4 ,
it consists of three lines on this cone.

Proof. We write M in Monge form w = f(x, y, z). We choose the principal directions
as a coordinate system in the tangent plane so j2f = a1x

2 + a2y
2 + a3z

2. Note that
ai = κi/2 (i = 1, . . . , 3), where κi is the principal curvature along the corresponding
principal direction. It follows that A1 singularities occur at non-parabolic points and
A�2 and D4 singularities occur at parabolic points. The parabolic set is also the set of
points where the determinant of the Hessian matrix of f vanishes. Assuming that a3 = 0
and a1a2 �= 0, the 1-jet of this equation (after scaling) is given by b8x + b6y + 3b7z.
The principal asymptotic direction is along (0, 0, 1). Therefore, it is transverse to the
parabolic set if and only if b7 �= 0, that is, if and only if the singularity is A2 but not A3.
At an A3-singularity this direction is tangent to the parabolic set.

A calculation shows that the tangent direction to the A3-curve is along the vector
(u1, u2, u3) with

u1 = −b6(b2
8a2 + b2

6a1 − 4a1a2c9),

u2 = b8(b2
8a2 + b2

6a1 − 4a1a2c9)

and

u3 = b6(b8b9a2 + 1
2b6a1b10 − a1a2c10 − a1b5b8) + b8(a1a2c8 − 1

2a2b8b10).
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Table 1. Singularities of Ae-codimension less than or equal to 3

name normal form Ae-codimension

II (x, y, z2) 0
3∗ (x, y, z3 + h(x, y)z) µ(h)
4k
1 (x, y, z4 + xz ± ykz2), k � 1 k − 1

4k
2 (x, y, z4 + (y2 ± xk)z + xz2), k � 2 k

51 (x, y, z5 + xz + yz2) 1
52 (x, y, z5 + xz + y2z2 + yz3) 2
53 (x, y, z5 + xz + yz3) 3
54 (x, y, z5 + yz + x2z2 ± z6 + az7) 3
61 (x, y, z6 + yz + xz2 ± z8 + az9) 2
62 (x, y, z6 + yz + xz2 + z9) 3

∗h is one of ±x2 ± yk+1(Ak), x2y ± yk−1(Dk), x3 ± y4(E6), x3 + xy3(E7) or x3 + y5(E8); µ

denotes the Milnor number.

From the proof of Proposition 2.4 (2) the parabolic set is smooth at an A3-singularity
(b7 = 0) if and only if b6 �= 0 or b8 �= 0. Then the principal asymptotic direction
(0, 0, 1) is tangent to the A3-curve if and only if b2

8a2 + b2
6a1 − 4a1a2c9 = 0 (i.e. f has an

A4-singularity).
The characterization of the D4-singularity follows from Proposition 2.6. �

3. Contact with lines

The family of projections to 3-spaces is given by P : M × S3 → B with P (p, u) =
(u, p−〈u, p〉u), where B = {(u, y) ∈ S3 ×R

4; 〈u, y〉 = 0}, that is, B is the tangent bundle
of S3. We take M in Monge form w = f(x, y, z) and assume that we are projecting along
u = (a, b, 1, c), where (a, b, c) is close to the origin. Then it is not hard to show that the
above family of projections can locally be written in the following form: Pu(x, y, z) =
(x − az, y − bz, f(x, y, z) − cz). In particular, P0(x, y, z) = (x, y, f(x, y, z)), which is a
corank 1 germ. As pointed out in the introduction, the A-classes of the singularities of
P0 that can occur generically are those of Ae-codimension less than or equal to 3.

Theorem 3.1 (see [6] and [9]). The A-classes of singularities of map germs R
3,

0 → R
3, 0 of corank 1 and of Ae-codimension less than or equal to 3 are given in Table 1.

We now seek to identify geometrically the generic singularities of the projection. The
critical set of Pu is denoted by Σ and its image, the discriminant of Pu, by ∆. The curve
on Σ whose image is the self-intersection curve of ∆(Pu) is called the double point curve.
The curve on Σ that is mapped to the singular set of ∆(Pu) is called the cuspidal edge
curve. We say that a line through a point p along a direction u has a k-point contact
with M at p if the projection of M along the direction u has an Ak-singularity.

Theorem 3.2. The generic singularities of the projection Pu at p ∈ M occur when
the following conditions hold.
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(II) u ∈ TpM but is not an asymptotic direction. In particular, only singularities of this
type occur at elliptic points.

(3A0) p is a hyperbolic or a parabolic point; u has 2-point contact with M at p; u is an
asymptotic direction in the hyperbolic case and not a principal asymptotic direction
in the parabolic case; Σ(P ) is a smooth surface.

(3Ak
) (1 � k � 3) p is a parabolic point; u has 2-point contact with M at p; u is a

principal asymptotic direction and is transverse to the parabolic set; Σ(P ) is a
surface with an Ak-singularity at p.

(4k
1) (1 � k � 4) p is a hyperbolic point; u has 3-point contact with M at p; u is an

asymptotic direction; Σ(P ) is a smooth surface; the cuspidal-edge curve has an
Ak−1-singularity.

(42
2, 4

3
2) p is a parabolic point; u has 3-point contact with M at p; u is a principal asymp-

totic direction and is tangent to the parabolic set; Σ(P ) is a surface with an A1-
singularity at p.

(51) p is a hyperbolic point; u has 4-point contact with M at p; u is an asymptotic
direction; Σ(P ) is a smooth surface; the double point curve has an A5-singularity;
the cuspidal edge curve is smooth.

(5k) (2 � k � 4) p is a hyperbolic point; u has 4-point contact with M at p; u is an
asymptotic direction; Σ(P ) is a smooth surface; the cuspidal edge curve has an A1

(k = 2, 3) or an A2 (k = 4) singularity at p.

(61, 62) p is a hyperbolic point; u has 5-point contact with M at p; u is an asymptotic
direction; Σ(P ) is a smooth surface; the cuspidal edge curve is smooth at p.

The proof is straightforward once we write M in Monge form with p the origin and
P0 = (x, y, f(x, y, z)). We observe that the singularities 42

2 and 43
2 (respectively, 52 and 53)

can be distinguished by some algebraic invariants [7,9].

4. The duality result

A duality relation between the family of height functions and projections of surfaces in
R

3 has been established in [4] and extended later in [2] and [5]. In this section we prove
a similar result for hypersurfaces in R

4.
We have, as in [4], the following duality for surfaces in S3. Given a smooth surface N

in S3 and a point a ∈ N there is an unique equatorial 2-sphere in S3 tangent to N at a,
and a corresponding pair of poles a∗. As a varies in N the poles trace out a surface Ň ,
which is the dual of N . In S3 we have two copies of the dual of N , but if we consider N

in P
3, we have only one copy of the dual surface.

It follows by Thom’s Transversality Theorem that, for most points u ∈ S3, the height
function Hu and the projection Pu are stable. The bifurcation set of each family is given
by Bif(F ) = {u ∈ S3 : Fu is not stable}, where F is the family H or P .
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The bifurcation set of the family of height functions H consists of the directions u ∈ S3

where the function Hu has a local singularity of type A2 (or worse), or a multi-local
singularity of type 2A1 (or worse). So the bifurcation set of H is given by two strata
where one is given by normal directions at parabolic points and the other by normal
directions to bi-tangent hyperplanes. We denote by Bif(H, A2) the regular part of the
local stratum of Bif(H) and by Bif(H, 2A1) the regular part of the multi-local strata.

The bifurcation set of the family of projections P consists of the directions u ∈ S3

where the projection Pu has a local singularity of type 3A1 or worse (i.e. 3A2 , 3A3 , 42
2

or 43
2), of type 42

1 or worse (i.e. 43
1 or 44

1), or has a multi-local singularity of type 2II
(or worse). We denote by Bif(P, 3A1), Bif(P, 42

1) and Bif(P, 2II) the regular parts of the
respective strata in Bif(P ). We observe that the subset Bif(H, 42

1) does not correspond
to parabolic points, therefore it bears no relation to the strata of Bif(H).

We establish below the duality relation between the regular strata of Bif(H) and
Bif(P ). (The relation between the local strata is also proved in [10] using a different
approach.)

Theorem 4.1. Let M be a generic embedded hypersurface in R
4. Then

ˇBif(H, A2) = Bif(P, 3A1) and ˇBif(H, 2A1) = Bif(P, 2II).

Similarly,
Bif(H, A2) = ˇBif(P, 3A1) and Bif(H, 2A1) = ˇBif(P, 2II).

Proof. We work as before with M given in Monge form at the origin. If H0 has a
singularity more degenerate than A1, then the origin is a parabolic point. The degenerated
hyperplane at the origin is then given by w = 0 with (0, 0, 0, 1) the unit normal. We write,
without loss of generality, j2f = a2y

2 + a3z
2, with a2a3 �= 0.

We need to identify the dual direction of u0 = (0, 0, 0, 1), that is, we need to find
the tangent plane to the A2-stratum in S3. We can parametrize normals near u0 by
u = (R, S, T, 1), The surface M has a singular contact with the hyperplane normal to u

if R + fx = 0, S + fy = 0 and T + fz = 0. Furthermore, this contact is degenerated when
the determinant of the Hessian of H vanishes, and the 1-jet of this equation is given
by 8a1a2b8x + 8a1a2b6y + 24a1a2b7z. Since b7 �= 0 (we have a genuine A2-singularity,
Proposition 2.1), we can write z as a function of (x, y), and thus R, S, T are also
functions of x, y: R = −2a1x + O2(x, y), S = −2a2y + O2(x, y) and T = O3(2). Hence
the stratum A2 is a smooth surface (a1a2 �= 0). The tangent hyperplane to this stratum
is given by T = 0, therefore the dual direction of u0 = (0, 0, 0, 1) is u∗

0 = (0, 0, 1, 0).
We now consider the projection in the dual direction u∗

0 that belongs to the tan-
gent hyperplane, so Pu∗

0
is singular. We have the 3-jet of Pu∗

0
(x, y, z) equivalent to

(x, y, b5y
2z+b6yz2+b7z

3+b8xz2+b9x
2z+b10xyz). As b7 �= 0, we change coordinates and

set Pu∗
0

= (X, Y, (AX2 + BXY + CY 2)Z + b7Z
3). This is equivalent to (X, Y, (±X2 ±

Y 2)Z+Z3) if and only if B2−4AC �= 0, that is 3b2
10b7−4b10b6b8+4b2

6b9−12b5b7b9+4b5b
2
8 �=

0, and this means that Pu∗
0

has a singularity of the type 3A1 .
We now consider the set Bif(P, 2II) (multi-local case). Let u(x, y) be a parametrization

of this stratum. Let p1 = α(x, y) and p2 = β(x, y) denote the points in M where the height
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function has an A1-singularity at the same level. Projecting M locally at p1 and p2 in a
direction u(x, y) ∈ Tp1M = Tp2M , which is along p1−p2, yields tangential surfaces in R

3.
Since α(x, y)−β(x, y) is a multiple of u(x, y) we have 〈α(x, y)−β(x, y), N(α(x, y))〉 = 0,
where N(α(x, y)) is the normal vector to M at α(x, y). We also have N(α(x, y)) =
±N(β(x, y)). The tangent space to the stratum Bif(P, 2II) is generated by α−β, αx −βx

and αy − βy. These vectors generate the same space as u(x, y), ux(x, y) and uy(x, y), as
α(x, y) − β(x, y) = λ(x, y)u(x, y) with λ(x, y) �= 0. Now αx, βx, αy and βy belong to
TpiM , i = 1, 2, so

〈α(x, y) − β(x, y), N(α(x, y))〉 = 0,

〈αx(x, y) − βx(x, y), N(α(x, y))〉 = 0,

〈αy(x, y) − βy(x, y), N(α(x, y))〉 = 0.

Therefore, the normal vector N(α(x, y)) is dual to u(x, y), so ˇBif(P, 2II) = Bif(H, 2A1).
The other two equalities in the theorem follow in the same way as above. �

We have the following consequences of the main duality result.

Proposition 4.2. Let u ∈ Bif(H, A2) and let u∗ be its dual direction that determines
a projection P : M, p → R

3. Suppose that the parabolic set is smooth. Then Hu has

(i) an A2-singularity if and only if Pu∗ has a singularity 3Ak
, k � 1;

(ii) an Ak-singularity (k � 3) if and only if Pu∗ has a singularity 42
2 at p.

We now study the projection in the dual direction at a partial flat umbilic point p,
that is, where Hu has a singularity D4. Then j3f(x, y, z) = a1x

2 + C(x, y) with a1 �= 0
and

C(x, y, z) = b1x
3 + b2x

2y + b3xy2 + b8xz2 + b9x
2z + b10xyz + y3 ± yz2.

Hence (0, β, γ, 0) in the tangent hyperplane to M are asymptotic directions and they are
parametrized by the unit circle C in the (y, z)-plane. If γ �= 0, the 3-jet of the projection
P along (0, β, 1, 0) is A-equivalent to

(X, Y, (β3 ± β)Z3 + (b9 + b2β)X2Z + (b10 + 2b3β)XY Z

+ (b8 + b10β + b3β
2)XZ2 + (3β)Y 2Z + (3β2 ± 1)Y Z2).

In the case where β3 ± β = C(0, β, 1) �= 0, we have j3P A-equivalent to (X, Y, (±X2 ±
Y 2)Z + Z3) (a 3A1-singularity) if and only if λ0 + λ1β + λ2β

2 + λ3β
3 = 0. If γ = 0,

then projecting along (0, 1, 0, 0) yields generically a singularity of type 3A1 . Therefore,
we have the following result.

Proposition 4.3. Let p be a partial flat umbilic point on M . There is a circle of
directions in TpM where the projection has generically a singularity of type 3A1 . There
are three (at a D−

4 ) or one (at a D+
4 ) directions on this circle where the singularity is of

type 3A2 and three or one directions where it is of the type 42
2.
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