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Abstract

Consider a holomorphic submersion between compact Kähler manifolds, such that each fibre admits a con-

stant scalar curvature Kähler metric. When the fibres admit continuous automorphisms, a choice of fibrewise

constant scalar curvature Kähler metric is not unique. An optimal symplectic connection is a choice of fibrewise

constant scalar curvature Kähler metric satisfying a geometric partial differential equation. The condition gener-

alises the Hermite-Einstein condition for a holomorphic vector bundle through the induced fibrewise Fubini-Study

metric on the associated projectivisation.

We prove various foundational analytic results concerning optimal symplectic connections. Our main result proves

that optimal symplectic connections are unique, up to the action of the automorphism group of the submersion,

when they exist. Thus optimal symplectic connections are canonical relatively Kähler metrics when they exist. In

addition, we show that the existence of an optimal symplectic connection forces the automorphism group of the

submersion to be reductive and that an optimal symplectic connection is automatically invariant under a maximal

compact subgroup of this automorphism group. We also prove that when a submersion admits an optimal symplectic

connection, it achieves the absolute minimum of a natural log norm functional, which we define.

1. Introduction

Consider a holomorphic submersion c : - → � between compact complex manifolds, with U a

relatively Kähler class on - and V a Kähler class on �. The question that motivates the present work is:

what does it mean for l- ∈ U to be a canonical relatively Kähler metric? This question has well-known

answers in the following situations:

1. � is a point, so that (-, U) is a compact Kähler manifold. In this case, a constant scalar curvature

Kähler (cscK) metric l- ∈ U is the natural choice of canonical metric. Kähler-Einstein metrics are

a special case.

2. All fibres -1 for 1 ∈ � have discrete automorphism group. In this case, on each fibre a cscK metric

is unique, so a natural choice is a form l- ∈ U, which restricts to the cscK metric on each fibre -1 .

3. - = P(�) and U = 21 (OP(�) (1)). Then a Hermite-Einstein metric ℎ on � induces a form l- ∈ U,

which restricts to a Fubini-Study metric on each fibre, which is therefore also cscK on each fibre.

Then this l- is a natural choice of relatively Kähler metric.

While one has natural answers in the above situations, they are rather sparse examples. Most sub-

mersions of interest in higher dimensions are certainly not of the above form.
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In each of the above cases, one obtains a uniqueness statement: the canonical choice of metric is

actually unique up to a natural class of automorphisms. In the first, uniqueness is up to the action of

Aut(-) [15, 2]. In the second, one obtains uniqueness up to pullback of a form from �. In the third, one

has uniqueness up to the action of the global endomorphisms of � [13]. These uniqueness statements,

which are the best possible, are really what is meant by having a canonical metric. One also sees from

the projective bundle situation that, to understand the geometry of the submersion, it is natural to fix a

Kähler metric on the base �, and so we fix one throughout.

In previous work, we introduced a candidate answer for our motivating question, in the form of an

optimal symplectic connection [11]. This is a relatively Kähler metric l- ∈ U, which restricts to a cscK

metric on each fibre and satisfies an additional geometric partial differential equation described explicitly

in Section 2.2. Briefly, the equation is a fully nonlinear second-order elliptic PDE on a vector bundle

parametrising the fibrewise holomorphic vector fields; the PDE involves the symplectic curvature of the

form l- together with a relative version of the Ricci curvature. The condition generalises the Hermite-

Einstein equation when - = P(�), and as we show in Section 2.2, also simplifies to a generalised

Hermite-Einstein type equation when all fibres -1 are Kähler-Einstein Fano manifolds.

Note that when the fibres admit continuous automorphisms, there is an infinite-dimensional family

of relatively Kähler metrics, which are cscK on each fibre. We conjectured that solutions of the optimal

symplectic connection equation are unique, meaning that optimal symplectic connections do give a

canonical choice of l- ∈ U when they exist [11, Conjecture 1.2]. Here we prove that conjecture.

Theorem 1. Suppose l- , l
′
-
∈ U are two optimal symplectic connections. Then there is a 6 ∈ Aut0(c)

and a function i� ∈ �∞ (�,R) such that

l- = 6∗l′
- + c∗(8mm̄i�).

Here Aut0(c) denotes biholomorphisms of - preserving c. This is the best possible uniqueness result

and implies that optimal symplectic connections do give a canonical choice of relatively Kähler metric

on submersions when they exist. The result generalises and recovers Donaldson’s uniqueness of Hermite-

Einstein metrics [13], with a completely different method.

Analytic objects, arising from differential geometry, that one can uniquely associate with holomorphic

objects are often extremely useful: a typical example is the use of constant curvature metrics in the study

of the moduli space of compact Riemann surfaces, which is essentially Teichmüller theory. Uniqueness

statements also play a crucial role in the analytic approach to forming moduli of polarised manifolds

admitting canonical metrics in higher dimensions [7, 23], so it is natural to expect our uniqueness result

to be useful in forming moduli of submersions over a fixed base (compare also the use of Hermite-

Einstein metrics in the study of moduli of holomorphic vector bundles).

We also prove the following results that demonstrate how optimal symplectic connections reflect the

geometry of submersions.

Theorem 2. Suppose c : (-, U) → (�, V) admits an optimal symplectic connection l- . Then

1. The Lie algebra of holomorphic vector fields preserving c and vanishing somewhere is reductive.

2. The isometry group Isom0 (c, l- ) is a maximal compact subgroup of Aut0(c).

These are analogues of foundational results for cscK metrics due to Matsushima, Lichnerowicz and

Calabi. More precise statements can be found in Section 4.4.

Our final main result concerns a natural log norm functionalN, a real-valued functional defined on the

space of relatively Kähler metrics that are cscK on each fibre. When c : - → � admits automorphisms,

we restrict to relatively Kähler metrics invariant under a maximal compact subgroup of Aut0(c); if

c : (-, U) → (�, V) admits an optimal symplectic connection l- , we take this maximal compact

subgroup to be Isom0(c, l- ). Our functional N is the analogue of the Mabuchi functional, which

detects the existence of cscK metrics, and the Donaldson functional, which determines the existence of

Hermite-Einstein metrics.
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Theorem 3. Suppose c : (-, U) → (�, V) admits an optimal symplectic connection l- . Then the

absolute minimum of N is achieved by N(l- ), and hence N is bounded below.

We conjecture that the existence of an optimal symplectic connection is equivalent to a stronger notion

of properness of the functional N on the space of relatively Kähler metrics that are cscK on each fibre.

Focusing for the moment on our uniqueness results, there are two strategies to proving the uniqueness

of classes of metrics in Kähler geometry. The first relies on convexity properties for infinite-dimensional

log norm functionals; this was Donaldson’s approach to proving uniqueness of Hermite-Einstein metrics

[13] and is the approach used by Berman-Berndtsson to establish uniqueness of cscK metrics [2]

(following Donaldson’s programme [14]). The second, which applies only when the Kähler manifolds

are projective, is to perturb to an easier finite-dimensional problem; this approach was used by Donaldson

to prove the uniqueness of cscK metrics [15].

We use a different approach that blends the two ideas by perturbing to another infinite-dimensional

problem where uniqueness is already known. In prior work, we explained how to construct extremal

metrics on the total space of submersions using a canonical twisted extremal metric on � and optimal

symplectic connections [11]. Such twisted extremal metrics do not always exist on �, and moreover,

morally, one should not use canonical objects on � to study the geometry of submersions over �; the

metric chosen on � should, in some sense, be irrelevant.

Here, given any form l� on �, we use that l� can always be seen as a twisted cscK metric for an

appropriate twist to construct twisted extremal metrics on - itself, in the class :V + U. This requires

developing some novel techniques in the study of adiabatic limit problems, which in Kähler geometry

originated with work of Hong and Fine [22, 16]. In particular, we show that the twisted extremal metrics

we produce are sufficiently well approximated by the approximate solutions we construct that one can

pass from statements about twisted extremal metrics to statements about each term in our approximate

solution. Thus in some sense, we perturb from uniqueness of twisted extremal metrics to uniqueness of

optimal symplectic connections. The precise statement is the following.

Theorem 4. Suppose l- is an optimal symplectic connection. Then there is a Kähler metric b on �

such that :V + U admits a twisted extremal metric with twist c∗b for all : ≫ 0.

Twisted extremal metrics are best viewed as canonical metrics on maps between complex manifolds

[10, 9]; in our case, the map is c : - → �. Uniqueness statements for twisted extremal metrics are

proved in [24, 2, 10], and when Aut0(c) is the identity, combined with Theorem 4 and our new adiabatic

limit techniques, are enough to prove uniqueness of optimal symplectic connections. In the case Aut0(c)

is non-trivial, we have to work harder and employ techniques concerning the action of the automorphism

group on the space of Kähler potentials developed in the important work of Darvas-Rubinstein [4].

Theorem 1 proves uniqueness of optimal symplectic connections, but not existence. We conjectured

in [11, 12] that existence is equivalent to a notion of stability of algebro-geometric fibrations. This

also motivates our conjecture that one should be able to form a moduli space of submersions over a

fixed base � that admit an optimal symplectic connection; as mentioned above, uniqueness results are

crucial in the analytic approach to such questions. We also remark that our algebro-geometric conjecture

would imply that the existence of solutions is actually independent of l� chosen; as one sees from the

Hermite-Einstein situation, this has no relevance for uniqueness questions, as one obtains uniqueness

of l- after choosing l�.

Finally, we remark that Theorem 4 provides the following purely algebro-geometric statement:

Corollary 1.1. Suppose � is a stable vector bundle over (�, !), where ! is ample on �. Then for all

: ≫ 9 ≫ 0, the map

c : (P(�), :! + OP(�) (1)) → (�, 9 !)

is a K-semistable map.
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Here K-semistability of maps is meant in the sense of [9]. This provides a strong, and perhaps surprising,

link between the stability of bundles and the K-stability of maps. The above follows from Theorem 4 by

using that the existence of a twisted cscK metric implies K-semistability of the map c [6, 9].

Outline: Section 2 contains material on cscK metrics, optimal symplectic connections and twisted

extremal metrics that will be essential later. The only new material is a simplification of the optimal

symplectic connection condition for Fano submersions, in Proposition 2.2. Section 3 proves Theorem 4,

together with some crucial estimates bounding the twisted extremal and approximately twisted extremal

metrics constructed there. We prove our main results, Theorems 1, 2 and 3, in Section 4.

2. Preliminaries

2.1. Constant scalar curvature Kähler metrics

Let - be an =-dimensional compact Kähler manifold, and let U be a Kähler class on - . The scalar

curvature of - is the contraction

((l) = Λl Ricl

of the Ricci curvature

Ricl = −8mm̄ logl=.

Thus

((l)l= = =Ricl ∧ l=−1.

Definition 1. We say that l is a constant scalar curvature Kähler metric (cscK) if ((l) is constant.

CscK metrics give a canonical choice of Kähler metric, when they exist, in the following sense. Denote

by Aut0 (-) the connected component of the identity inside the group of biholomorphisms Aut(-) of - .

Theorem 5 ([15, 2]). Suppose l, l′ ∈ U are cscK metrics. Then there is a 6 ∈ Aut0(-) with 6∗l = l′.

Thus there is a close relationship between cscK metrics and automorphisms. Going further, denote by

h ⊂ �0(-,)-1,0)

the Lie algebra of holomorphic vector fields that vanish somewhere. Via the natural isomorphism

)-1,0
� )- , holomorphic vector fields correspond to real holomorphic vector fields: vector fields

whose flows preserve the complex structure. Denote by k ⊂ h the Lie subalgebra of vector fields that

correspond to real holomorphic vector fields that are Killing.

Theorem 6 ([20, Theorem 3.5.1, Theorem 3.6.1]). Suppose l ∈ U is a cscK metric. Then

1. h = k ⊕ �k, so h is reductive.

2. Isom0(-, l) is a maximal compact subgroup of Aut0 (-).

In the case - is projective and U = 21 (!), then h can be characterised as the Lie algebra of Aut(-, !),

the automorphisms that linearise to !. Thus in the projective setting, the first item of the above states

that this Lie group is reductive.

The final result we require is of a more analytic nature. For i ∈ �2(-,C), denote by

Di = m̄∇1,0i (1)

with ∇1,0 the (1, 0)-part of the gradient of i with respect to l. Let D∗ be the !2-adjoint of D with

respect to the !2-inner product

〈i, k〉 =

∫

-

ik̄l=.
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Theorem 7. Suppose l is a cscK metric. The operator

D
∗
D : �:,U (-,C) → �:−4,U (-,C)

with : ≥ 4 is a real fourth-order elliptic operator and hence invertible orthogonal to its kernel. Its

kernel satisfies

kerD∗
D = kerD � g,

via

5 → ∇1,0 5 .

To say that D∗D is a real operator means it sends real functions to real functions. If l is not cscK, it

is no longer even true that D∗D is a real operator. Elements of the kernel of D are called holomorphy

potentials, as if i ∈ kerD, then ∇1,0i ∈ g is a holomorphic vector field.

We end the section with the following elementary Lemma (see e.g. [29, Lemma 4.10]), describing

the dependency of the holomorphy potential on the metric within a fixed class.

Lemma 2.1. If a is a holomorphic vector field with potential ℎ with respect to l, then ℎ + a(i) is a

holomorphy potential with respect to l + 8mm̄i.

2.2. Optimal symplectic connections

Consider now a holomorphic submersion c : - → � between compact Kähler manifolds, with � of

dimension = and the fibres of dimension <. To discuss metric properties of the submersion, we recall

that a relative Kähler class U on - is an element U ∈ �2(-,R) such that its restriction to each fibre

-1 = c−1 (1), which we write as U1 , is a Kähler class. Thus if V is Kähler on �, then :V + U is Kähler

for all : ≫ 0.

Suppose l- ∈ U is a relatively Kähler metric, so that l is closed and l1 = l|-1
is Kähler for all

1 ∈ �. We say that l- is relatively cscK if l1 is cscK for all 1 ∈ �. When all fibres (-1 , U1) admit a

cscK metric, one can show that the class U admits a relatively cscK metric [11, Lemma 3.8]. It is easy

to see from Theorem 5 that when Aut(-1) is discrete for all 1 ∈ �, such a relatively cscK metric is

actually unique. However, when the fibres -1 have continuous automorphisms, absolute uniqueness no

longer holds, and it is natural to ask if there is a canonical choice of relatively cscK metric.

Much as a canonical choice of Kähler metric is given by a solution to a geometric partial differential

equation, our answer to this question will be phrased analytically. Thus it will be necessary to assume a

sort of smoothness hypothesis, namely that dim h1 is independent of 1 ∈ �, with h1 the Lie algebra of

holomorphic vector fields that vanish somewhere on -1 .

To each fibre (-1 , U1), one can associate a real vector space �1 ⊂ �∞
0
(-1 ,R) by setting �1 = kerD1 ,

with D1 the operator defined via Equation (1) and �∞
0
(-1 ,R) denoting functions of integral zero with

respect to l=
1
. Thus �1 can be thought of as parametrising holomorphic vector fields on (-1 , U1).

Going further, one can naturally define a smooth vector bundle � → � associated with the submersion

c : - → � with fibre �1 [11, Section 3.1]; this is the step at which our assumption that dim h1
is independent of 1 ∈ � enters. Thus a section of � over � corresponds to a function on - whose

restriction to each fibre -1 is a mean-value zero holomorphy potential with respect to l1 . We will

denote �∞
�
(-,R) the space of global sections of � ; note that one has a natural inclusion

�∞
� (-,R) ⊂ �∞(-,R).

This also defines a natural splitting of the space �∞ (-,R) [11, Section 3.1] into three components;

one is �∞
�
(-,R) described above. The map

�∞ (-1 ,R) → R, i →

∫

-1

il=1
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induces a projection

�∞(-,R) → �∞ (�,R), i →

∫

-/�

il=- ,

where by definition the fibre integral is defined by
(∫
-/�

il=
-

)
(1) =

∫
-1
il=

1
.

The third component is defined as follows. On each fibre, there is a natural !2-inner product on

functions. Denoting �∞
'
(-1 ,R) the !2-orthogonal complement of �1 ⊂ �∞

0
(-1 ,R), we define a space

�∞
'
(-,R) ⊂ �∞ (-,R) to be functions whose restriction to -1 lies in �∞

'
(-1 ,R). This produces the

desired decomposition

�∞ (-,R) = �∞(�) ⊕ �∞
� (-) ⊕ �

∞
' (-),

where we have omitted the fact that these are real valued functions in the notation. It will be useful to

denote the natural projection of functions onto the �∞
�
(-)-component by

? : �∞ (-,R) → �∞
� (-).

We now return to the equation defining a canonical choice of relatively Kähler metric. The partial

differential equation is called the optimal symplectic connection equation, introduced by the authors

[11, Section 3]. This equation can be viewed as an elliptic partial differential equation on the bundle

� . The condition is phrased in terms of curvature quantities associated with l- , which we now briefly

recall. We refer to [11, Section 3] for further details and basic results.

The relatively Kähler metric l- defines a hermitian metric on the relative tangent bundle, which is

a holomorphic vector bundle of rank < by the hypothesis that c : - → � is a holomorphic submersion.

Taking the top exterior power, l- therefore induces a hermitian metric on the relative anticanonical

class − -/�, with curvature that we denote d ∈ 21 (− -/�).

The form l- induces a smooth splitting of vector bundles

)- � H ⊕ V,

with V = ker 3c the vertical tangent bundle and H the l- -orthogonal complement of V; in this

context, l- is usually called a symplectic connection. This further induces a splitting on all tensors.

Thus l- induces an Ehresmann connection, which has curvature �H, a two-form on � with values

in fibrewise Hamiltonian vector fields. Let `∗ denote the fibrewise co-moment map, sending on each

fibre a Hamiltonian vector field to its integral zero associated Hamiltonian function. `∗ thus allows us

to construct `∗�H, a two-form on � with values in fibrewise Hamiltonian functions. The “minimal

coupling” equation states that

(l- )H = `∗�H + c∗[, (2)

with (l- )H the purely horizontal component of l- and [ two-form on �.

Let l� ∈ V be a Kähler metric on �. Then l� induces a contraction operator Λl�
on purely

horizontal forms, and thus, for example, Λl�
dH is naturally a function on - .

On each fibre l1 induces a Laplacian operator on functions Δ1; these glue to form the vertical

Laplacian operator ΔV defined by

ΔVi|-1
= Δ1 (i|-1

).

Definition 2 ([11]). We say that a relatively cscK metric l- is an optimal symplectic connection if

?(ΔV (Λl�
`∗�H) + Λl�

dH) = 0.

We showed in [11, Proposition 3.17] that when - = P(�), the optimal symplectic connection

condition reduces to the Hermite-Einstein condition. The fibre in that situation, namely projective
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space, is the simplest example of a Kähler-Einstein Fano manifold. We call we call c : (-, U) → (�, V)

a Fano submersion if each fibre -1 is a Fano manifold, with U = 21 (− -/�) the relative anti-canonical

class. The optimal symplectic connection also simplifies considerably for Fano submersions:

Proposition 2.2. Suppose (-, U) is a Fano submersion. Then l- ∈ U is an optimal symplectic

connection if and only if

?(Λl�
`∗�H) = 0.

Proof. It is shown in [11, Proposition 3.10] that in this case d = l- + c∗b for some form b on �, and

so the equation simplifies to

?(ΔVΛl�
`∗�H + Λl�

`∗�H) = 0

by Equation (2).

We claim that

?(ΔVΛl�
`∗�H) = ?(Λl�

`∗�H),

which will prove the desired result. Since the projection ? : �∞ (-,R) → �∞
�
(-,R) is the orthogonal

projection onto fibrewise holomorphy potentials, by non-degeneracy of the !2-inner product it is enough

to show that

〈k, ?(Λl�
`∗�H)〉 = 〈k, ?(ΔVΛl�

`∗�H)〉,

where k ∈ �∞
�
(-,R) and by definition the inner product is given by

〈k, i〉 =

∫

-

kil<- ∧ l=� =

∫

�

(∫

-/�

kil<-

)
l=� .

But since k ∈ �∞
�
(-,R) is a fibrewise holomorphy potential, we have

〈k, ?(ΔVΛl�
`∗�H)〉 = 〈k,ΔVΛl�

`∗�H〉,

= 〈ΔVk,Λl�
`∗�H)〉,

= 〈k,Λl�
`∗�H)〉,

= 〈k, ?(Λl�
`∗�H)〉,

where we have used in turn that ? is an orthogonal projection, the vertical Laplacian is self-adjoint with

respect to 〈·, ·〉 as it is self-adjoint on each fibre, and elements of �∞
�
(-) are eigenfunctions of ΔV since

each fibre is Fano Kähler-Einstein [30, Remark 6.13]. �

The manner in which the optimal symplectic connection condition first arose was through the

following:

Proposition 2.3 ([11]). The scalar curvature of l: = :l� + l- admits a � 9 -expansion in powers of

: for any 9

((:l� + l- ) = ((l1) + :
−1 (k� + k� + k') +$ (:−2),

with k� ∈ �∞ (�), k� ∈ �∞
�
(-), k' ∈ �∞

'
(-). Moreover, we have

k� = ?(Λl�
ΔV (`

∗�H) + Λl�
dH).

Invariantly, as the kernel of D1 consists of (real) holomorphy potentials, one can consider � → �

as the vector bundle with fibres consisting of real holomorphic vector fields (with real holomorphy

potential); a relatively Kähler metric then allows one to consider this as the vector bundle whose fibres

are the associated holomorphy potentials. For another relatively Kähler metric l- + 8mm̄i, for clarity
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we will thus denote �i the associated vector bundle whose fibres consist of holomorphy potentials with

respect to l1 + 8mm̄i1 . Of course, there is a natural identification between �i and � .

We now consider the linearisation of the optimal symplectic connection operator at li = l + 8mm̄i

i → ?i (Λl�
ΔVi

(Λl�
`∗�Hi

) + Λl�
dHi

) ∈ �∞
�i

(-,R),

using the obvious notation. Denote by ∇V the vertical gradient operator

∇V : �∞ (-,R) → Γ(V),

where Γ(V) denotes smooth sections of the vertical tangent bundle V, defined fibrewise by

∇V (i) |-1
= ∇l1

(i|-1
),

and then gluing. The vector bundle V1,0 ⊂ )-1,0 is a holomorphic subbundle, so one can define

R = m̄∇1,0

V
.

Note that for i ∈ �∞
�
(-), if R(i) = 0, since ∇1,0

V
is already holomorphic on each fibre, i is the potential

for a global holomorphic vector field on - . Similarly, by holomorphicity on each fibre, the component

of m̄∇1,0

V
i lying in the vertical (holomorphic) tangent bundle automatically vanishes, so asking that

R(i) = 0 asks for holomorphicity in the remaining horizontal directions.

The metrics (l- ) |V and l� induce a metric on V1,0 ⊗ c∗Λ0,1�; note R(i) ∈ Γ(V1,0 ⊗ c∗Λ0,1�) for

i ∈ �∞
�
(-).

Denote by

L: = L0 + :
−1
L1 + . . .

the linearisation of the scalar curvature of l: .

Proposition 2.4 ([11, Theorem 4.9]). Let l- be an optimal symplectic connection. Then for i, k ∈

�∞
�
(-), the operator

? ◦ L1 : �∞
� (-) → �∞

� (-)

satisfies
∫

-

i(? ◦ L1) (k)l
<
- ∧ l=� =

∫

-

〈R(i),R(k)〉l<- ∧ l=�,

where the 〈R(i),R(k)〉 is taken using the natural metric on V1,0 ⊗ c∗Λ0,1� described above.

Moreover, the operator ? ◦L1 is a second-order self-adjoint elliptic operator on the bundle � , whose

kernel consists of fibrewise holomorphy potentials that correspond to global holomorphy potentials on

- itself.

In particular, the operator ? ◦ L1 is real, and its kernel agrees with that of the operator R.

2.3. Relatively cscK metrics

In this short section, we discuss the leading-order term L0 of the expansion of the linearisation of the

scalar curvature of l: .

Similarly to the vertical Laplacian operator ΔV defined above, we can define a vertical Lichnerowicz

operator D∗
V
DV in such a way that

D
∗
V
DVi|-1

= D
∗
l1

Dl1
(i|-1

).
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These glue to form a smooth operator, as the metrics are varying smoothly, with a kernel of constant

dimension.

In the decomposition

�∞ (-,R) = �∞(�) ⊕ �∞
� (-) ⊕ �

∞
' (-),

the first two components consist of the kernel of D∗
V
DV. On the component �∞

'
(-), on the other hand,

for any i the restriction i|-1
is in the image of D∗

l1
Dl1

. In fact, there is a unique k1 orthogonal to

the kernel of D∗
l1

Dl1
such that D∗

l1
Dl1

(k1) = i|-1
. The functions k1 glue together to a smooth

function k ∈ �∞
'
(-) such that D∗

V
DV (k) = i, again using that the kernel of the operator is of constant

dimension. The function k is the unique function with this property, as it is uniquely determined on

each fibre by the condition that the restriction is orthogonal to D∗
l1

Dl1
. In conclusion, this proves:

Proposition 2.5. If l- is relatively cscK, the operator D∗
V
DV is invertible on �∞

'
(-,R).

2.4. Twisted extremal metrics

We now turn to the base manifold (�, V). We do not impose any conditions whatsoever on the Kähler

metric l�, but nevertheless, it will be important that one can view l� as a ‘canonical metric’ in its own

right. The manner in which we do this, following [12, 21], is via twisted cscK metrics. Twisted extremal

metrics will also play an important role in the present work, so we discuss these metrics at that level of

generality.

Definition 3. Let Z be a closed, semi-positive form on �. We say that l� ∈ V is a

1. Twisted cscK metric if ((l�) − Λl�
Z is constant

2. Twisted extremal metric if

m̄∇1,0 (((l�) − Λl�
Z) = 0

If l� is a twisted extremal metric, the associated holomorphic vector field

∇1,0 (((l�) − Λl�
Z)

is called the twisted extremal vector field.

Twisted extremal vector fields are best viewed geometrically as arising from morphisms between

manifolds. Let

@ : (�, V) → (M, WM)

be a morphism, with WM a Kähler class on M. Then if ZM ∈ WM, its pullback Z = @∗ZM is a closed

semi-positive form on �.

Definition 4. We define the automorphism group of @ to be

Aut(@) = {6 ∈ Aut � : @ ◦ 6 = @}.

The connected component of the identity in Aut(@) is denoted Aut0(@). The Lie algebra h@ ⊂ h is

defined to consist of holomorphic vector fields whose flow lies in Aut0(@).

We will assume throughout that the twisted extremal vector field lies in h@; it seems this is the only case

of geometric interest and will always be satisfied in our constructions.

The automorphism group of the map then gives a geometric understanding of the geometry of twisted

extremal metrics. Denote by

Isom0(@, l�) = Isom(l�) ∩ Aut0 (@)

the isometry group of the map with respect to l�.
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Theorem 8. Suppose l� is a twisted extremal metric. Then

1. Isom0(@, l�) is a maximal compact subgroup of Aut0(@).

2. If l�, l
′
�
∈ V are twisted extremal metrics with the same twisted extremal vector field, then there is

a 6 ∈ Aut0 (@) with 6∗l� = l′
�
.

The first statement is due to the authors [10, Corollary 4.2]. The uniqueness result is originally due to

Keller in the case that either Aut(�, V) is discrete or [ is positive, with V = 21 (!) the first Chern class

of an ample line bundle [24]. In general the uniqueness statement follows from the work of Berman-

Berndtsson [2], and the geometric version of the uniqueness statement can be found as [10, Corollary

3.8]. We will require, and hence will prove, more precise uniqueness statements in Section 4. One can

also find results concerning reductivity of the relevant Lie algebras of holomorphic vector fields in [10,

Theorem 4.1] and [5, Proposition 7]; these will not be needed in the present work.

We return now to the setting of Section 2.2, so that c : (-, U) → (�, V) is a holomorphic submersion

and l- ∈ U is a relatively cscK metric.

Theorem 9 ([11, Proposition 4.3][17, 10]). Let

Z =

∫

-/�

dH ∧ l<- .

Then Z is a closed, semi-positive (1, 1)-form on �, which is independent of choice of relatively cscK

metric l- .

The manner in which this is proved is to show that Z is the pullback to � of the Weil-Petersson metric

via the moduli map @ : � → M, with M the moduli space of polarised manifolds admitting a constant

scalar curvature Kähler metric constructed in [18, 7].

Thus in some sense, for holomorphic submersions, the most natural requirement for l� would be

to ask that ((l�) − Λl�
Z is a constant function, with Z as above given through the fibre integral.

This is precisely the condition used in [16, 10]. However, the purpose of this paper is to study optimal

symplectic connections in general, without any hypotheses onl�. Thus we rely on the following crucial

result, which allows us to view an arbitrary l� as a twisted cscK metric with a different twist.

Proposition 2.6. For all 9 ≫ 0, there is a Kähler metric b ∈ 9 V such that

((l�) − Λl�
Z = Λl�

b + 2Ω,

with 2Ω the appropriate topological constant.

This is due to Hashimoto when Z = 0 [21, Proposition 1]; the proof in the general case is identical [12,

Proposition 2.5].

We end our discussion with the linearisation of the operator. Let h be a non-negative closed (1, 1)-

form on a compact Kähler manifold . . For our applications, we will consider the two cases when . = �

and h = Z + b, and when . = - and h = c∗b. For a Kähler metric l on . , define an operator

Lh = Lh,l : �:,U (.,C) → �:−4,U (.,C)

by

Lh = −D∗
D +

1

2
〈∇Λlh,∇i〉 + 〈8mm̄i, h〉.

Theorem 10. Suppose l is a twisted cscK metric, with twist h. The operator Lh with : ≥ 4, is a real

fourth-order self-adjoint elliptic operator, with kernel given by the holomorphy potentials ℎ for l such

that ‖ℎ‖h = 0, where ‖ · ‖h is the semi-norm defined by h. Moreover, Lh : �∞ (�,R) → �∞ (�,R) is

the linearisation of the twisted scalar curvature at the twisted cscK metric l.
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This result was originally proved by Keller [24] and later reproved in slightly more generality by

Hashimoto [21] and the authors [10, Proposition 4.3].

Corollary 2.7 ([10, Proposition 3.5]). Suppose @ : . → , is a morphism, and h is the pullback of a

Kähler metric from, . Then kerLh corresponds to holomorphic vector fields h@ ⊂ h whose flow lies in

Aut0(@).

In the case when . = �, the twist h will, in our situation of interest, be Kähler (which can be

interpreted geometrically via the identity map (., l) → (., h), which for example has no non-trivial

automorphisms). The kernel is then simply the constants.

When h is not positive (but still non-negative), the kernel of Lh will not necessarily consist of just

the constants. To rectify this, letting h be the kernel of Lh at l, we will consider the operator

Ψ : �:,U (. ) × h → �:−4,U (. ),

or its analogue between Sobolev spaces, given by

(i, ℎ) ↦→ (
(
l + 8mm̄i

)
− Λl+8mm̄i (h) −

1

2
〈∇ℎ,∇i〉 − ℎ.

Note that a zero of Ψ is precisely a twisted extremal metric, by Lemma 2.1. The linearisation at (0, 5 ) is

(i, ℎ) ↦→ Lh (i) −
1

2
〈∇ (((l) − Λl (h) − 5 ) ,∇i〉 − ℎ. (3)

In particular, at a twisted extremal metric, with 5 being the potential for the extremal vector field, the

linearisation is

(i, ℎ) ↦→ Lh (i) − ℎ.

3. Twisted extremal metrics on submersions

Our setup throughout this section is as follows:

1. - → � is a holomorphic submersion between compact complex manifolds.

2. U is a relatively Kähler class on - , and V is a Kähler class on �.

3. l- ∈ U is a relatively Kähler metric, which is cscK on -1 for all 1 ∈ �.

4. l� ∈ V is a Kähler metric on �.

5. l- is an optimal symplectic connection.

6. b is a Kähler metric on � such that b + Z also is Kähler, and l� solves the equation

((l�) − Λl�
(Z + b) = 2 b

with 2 b ∈ R and Z the Weil-Petersson metric.

For any Kähler metric l� on �, Proposition 2.6 produces a b such that the twisted cscK equation of

(E8) holds. So this is notation, rather than a true hypothesis.

In this situation, our aim is to construct twisted extremal metrics on - itself. We will produce such

metrics in the Kähler class :V + U with : ≫ 0, with twist c∗b. This was achieved in [11] in the case

b = 0, and many of the techniques are similar. There are two steps: the first is to construct an approximate

solution to the twisted extremal equation, and the second is to perturb the approximate solution to a

genuine solution. For the first step, the main point is that one can understand the twisted scalar curvature

on - itself, when the twist is a pullback from the base, through the twisted scalar curvature of the

base and the geometry of the fibres. For the second step, the key point is to understand the mapping

properties of a right inverse of the linearised twisted extremal operator on -; this requires developing

new techniques, in comparison with previous work on related questions.
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3.1. The approximate solution

We begin by constructing approximately twisted extremal metrics on - .

Proposition 3.1. For each A ∈ N, there are functions

51, . . . , 5A ∈ �
∞ (�,R), 31, . . . 3A ∈ �

∞
� (-,R), ;1, . . . , ;A ∈ �

∞
' (-,R),

fibre holomorphy potentials

ℎ1, . . . , ℎA ∈ �
∞
� (-)

and a constant 2 ∈ R such that denoting

i:,A =

A∑

9=1

5 9 :
2− 9 , X:,A =

A∑

9=1

3 9 :
1− 9 , _:,A =

A∑

9=1

; 9 :
− 9 , [:,A = 2 +

A∑

9=1

ℎ 9 :
− 9 ,

the Kähler metric

l:,A = :l� + l- + 8mm̄ (i:,A + X:,A + _:,A )

satisfies

((l:,A ) − Λl:,A
c∗b = [:,A +

1

2
〈∇[:,A ,∇(i:,A + X:,A + _:,A )〉l:

+$ (:−A−1). (4)

Here the expansion is meant pointwise; however, in [16, Section 5], Fine shows that these estimates

improve to global�;-estimates, which is important when perturbing to genuine solutions in Section 3.2.

What we mean for each ℎ 9 to be a fibre holomorphy potential is that ℎ 9 is a holomorphy potential

with respect to :l� + l- (with : taken such that this form is Kähler) for a real holomorphic vector

field E 9 on - whose flow d(C) satisfies d(C) ◦ c = c; that ℎ 9 is then actually independent of : , as the

notation suggests, is justified by Lemma 3.2 below. Note that such E 9 are simply the real holomorphic

vector fields on - that lie in V ⊂ )- .

For Proposition 3.1 to construct ‘approximate twisted extremal metrics’, by Lemma 2.1 one needs

[: to be a holomorphy potential with respect to l: . The following simple lemma establishes this and is

implicit in [11]. The lemma is proven explicitly in the case - and � are projective in [12, Proposition

3.11]; the proof given there also applies to more singular algebro-geometric fibrations.

Lemma 3.2. Let ℎ ∈ �∞
�
(-,R) be a fibre holomorphy potential. Then ℎ is a holomorphy potential on

- with respect to :l� + l- for all : for which the form is Kähler.

Proof. The fibre holomorphy potential ℎ corresponds to a global real holomorphic vector field E on - .

The claim states that the holomorphy potential for E with respect to :l� +l- is actually independent of

: . If not, then by the linearity of the construction, the holomorphy potential would be of the form :ℎ�+ℎ.

Let d(C) be the flow of ℎ, so that d(C) ◦ c = c. Then

(d(C) ◦ c)∗l� = c∗l� .

Setting

d(C)∗(:l� + l- ) − (:l� + l- ) = 8mm̄i(C),

the holomorphy potential for E is given by d(C)∗ ¤i(C) (in particular, this quantity is independent of C)

[29, Example 4.16]. Since

d(C)∗(:l� + l- ) − (:l� + l- ) = d(C)
∗l- − l-

is independent of : , it must be the case that ℎ� = 0. �
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The proof of Proposition 3.1 is inductive. The starting point is the following expansion of the scalar

curvature and contraction terms. Recall that

l: = :l� + l- ,

?(\) is the projection of the curvature quantity used in the definition of an optimal symplectic connection,

and ((l1) denotes the function on - whose restriction to any fibre -1 is the scalar curvature of

l1 = l- |-1
.

Lemma 3.3. We have

((l: ) − Λl:
c∗b = ((l1) + :

−1
(
((l�) − Λl�

(Z + b) + ?(\) + k',1
)
+$ (:−2),

for some k',1 ∈ �∞
'
(-).

Proof. This follows from the expansions established in [11]. Indeed, from [11, Proposition 4.8], one has

((l: ) = ((l1) + :
−1

(
((l�) − Λl�

Z + ?(\) + k',1
)
+$ (:−2),

and from [11, Lemma 4.2], one has

Λl:
c∗b = :−1Λl�

b +$ (:−2).

Here it is important that c∗b is pulled back from �. �

By our assumptions on b andl- , both ((l�)−Λl�
(Z+b) and ?(\) are constant. Thus the non-constant

:−1-term is k',1. To obtain a twisted cscK metric to order :−1, we add a potential i',1 ∈ �∞
'
(-,R) to

l: . This affects the contraction in the following quite trivial way.

Lemma 3.4. Let i ∈ �∞ (-,R). Then

Λ:l�+l-+:−18mm̄ib = :
−1Λl�

b +$ (:−2).

Proof. The proof is identical to [11, Lemma 4.2], where the case i' = 0 was considered. We briefly

give the details.

One first writes

Λ:l�+l-+:−1i',1
b = (< + =)

b ∧ (:l� + l- + :−1i',1)
<+=−1

(:l� + l- + :−1i',1)<+=

and then uses that V is purely horizontal to calculate

(< + =)
b ∧ (:l� + l- + :−1i',1)

<+=−1

(:l� + l- + :−1i',1)<+=
= :−1

b ∧ (l- )
<
V
∧ l=−1

�

(l- )
<
V
∧ l=

�

+$ (:−2).

�

Corollary 3.5. There is a function ;1 ∈ �∞
'
(-,R) such that

((:l� + l- + :−18mm̄;1) − Λ:l�+l-+:−1;1
c∗b = 2 + :−1ℎ1 +$ (:−2),

with 20 and ℎ1 constants.

Proof. This follows from [11, Proposition 4.8] combined with the above. Indeed, since l- is cscK on

each fibre, [11, Proposition 4.8] produces a function ;1 ∈ �∞
'
(-,R) such that

((:l� + l- + :−18mm̄;1) − ((:l� + l- ) = :
−1 (−k',1) +$ (:−2).
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Lemma 3.4 provides

Λ:l�+l-+:−18mm̄ic
∗b = Λ:l�+l-

c∗b +$ (:−2),

giving the result. �

Thus we have an approximately twisted cscK metric to order :−1, with 51 = 31 = 0. Writing the :−2

term in the expansion of

((:l� + l- + :−18mm̄;1) − Λ:l�+l-+:−1;1
c∗b

as

:−2(k�,2 + k�,2 + k',2), (5)

we wish to add potentials 52, 32, ;2 such that :−2 is the twisted extremal equation to order :−2. Since

this process happens order by order, what is important is to understand the linearisation of the operator

i → ((l:,1 + 8mm̄i) − Λl:,1+8mm̄i
c∗b. (6)

The behaviour of the linearisation changes depending on what function space i lies in. If i ∈

�∞ (�,R), then Proposition 3.6 below shows that the operator acts as the linearisation of the base

component of the :−1-term: that is, as the linearisation of

i → ((l� + 8mm̄i) − Λl�+8mm̄i
(Z + b).

By Theorem 10, this is an invertible operator modulo constants, as l� solves the twisted cscK equation

with the positive twisting form Z + b. This term is the only novelty in comparison with the previous

work [11], where the case b = 0 was considered and instead it was assumed that l� itself was twisted

cscK with twist Z . Since in both cases, one has a twisted cscK metric, an identical strategy succeeds. In

fact, our situation is somewhat simpler, as Z + b is positive, and therefore the kernel of the twisted Lich-

nerowicz operator only consists of the constants, without imposing any conditions on the automorphism

group of �.

When i ∈ �∞
'
(-, �) is instead a fibrewise holomorphy potential, the crucial part of the linearisation

is the linearisation of the operator ?(\) of Lemma 3.3. As the submersion - → � may have automor-

phisms, this operator is not, in general, invertible. Instead, by Proposition 2.4, one can, up to a function

in �∞
'
(-), solve

? ◦ L1 (32) = k�,2 − ℎ2,

with ℎ2 a fibre holomorphy potential for a global holomorphic vector field on - → �.

This allow us to manage the �∞(�) and �∞
�
(-) components. The remaining component is now the

�∞
'
(-)-component, which is dealt with by adding a function ;1 ∈ �∞

'
(-); just as in Proposition 3.5,

when adding such a function, the operator of Equation (5) acts as −D∗
V
DV, which is an isomorphism

on �∞
'
(-). This allows us to correct the �∞

'
(-)-component.

More precisely, what we need is the following.

Proposition 3.6. Let l:,A be the metric solving Equation (4), and denote by L:,A the linearisation of

the operator

i → ((l:,A + 8mm̄i) − Λl:,A+8mm̄i
c∗b.

Then L:,A satisfies the following properties:

1. There is an expansion

L:,A = −D∗
V
DV (i) + :

−1�1 (i) + :
−2�2 (i) +$ (:−3).
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2. For i ∈ �∞ (�,R), we have �1 (i) = 0 and

∫

-/�

il<- = −L[+b (i).

3. For i ∈ �∞
�
(-,R) (so D∗

V
DV (i) = 0), we have

? ◦ �1 (i) = −? ◦ L1(i).

Proof. This is proved identically to [10, Proposition 5.6] and [11, Proposition 4.11], with parts (i) and

(ii) building heavily on the lower-dimensional work of Fine [16, Section 3.3]). The only difference with

[11, Proposition 4.11] is the behaviour on functions i ∈ �∞(�,R). In the situation considered there,

the operator being linearised is

i → ((l:,A + 8mm̄i) − [:,A −
1

2
〈∇[:,A ,∇(i:,A + X:,A + _:,A )〉.

The assumption of [11] is then that ((l�) − Λl�
[ is constant, and so the �∞ (�,R)-component of the

:−1-term is

((l�) − Λl�
[.

In our situation, we are linearising

i → ((l:,A + 8mm̄i) − Λl:,A+8mm̄i
c∗b,

and the �∞ (�,R)-component of the :−1-term is

((l�) − Λl�
(Z + b).

The form b is chosen such that ((l�) − Λl�
(Z + b) is constant, and hence we are still working with a

solution of the twisted cscK equation on the base. The key ideas used in [11, Proposition 4.11], therefore,

apply in our situation: we have a relatively cscK metric, an optimal symplectic connection, and a twisted

cscK metric on the base. Thus while superficially the situations appear different, in practice the details

are exactly the same. Thus the proof of [11, Proposition 4.11] goes through verbatim.

We note that since l- is an optimal symplectic connection (rather than an extremal symplectic

connection) and l� is twisted cscK, in the setup of [11, Section 4.6] the functions 11 and ℎ1 vanish,

removing some of the technicalities. �

We can now inductively prove Proposition 3.1.

Proof of Proposition 3.1. We have already proved the initial step A = 1, and thus we proceed by

induction. Write

((l:,A ) − Λl:,A
c∗b − [:,A −

1

2
〈∇[:,A ,∇(i:,A + X:,A + _:,A )〉

= :−A−1(k�,A+1 + k�,A+1 + k',A+1) +$ (:−A−2).

We need to choose 5A+1, 3A+1 and ;A+1 in order to make the :A+1-coefficient constant.

We begin with the �∞ (�,R)-term. Since ((l�) − Λl�
(Z + b) is constant, by Theorem 10, the

operator LZ+b : �∞(�,R) → �∞ (�,R) is invertible modulo constants. Thus we can find a function

5A+1 ∈ �∞(�,R) such that

LZ+b ( 5A+1) = k�,A+1 + 2A+1,
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with 2A+1 constant. From Proposition 3.6 (88), we have

((l:,A + :
−A+18mm̄ 5A+1) − Λl:,A+:−A+18mm̄ 5A+1

c∗b − [:,A −
1

2
〈∇[:,A ,∇(i:,A + X:,A + _:,A )〉

= :−A−1(k ′
�,A+1 + k

′
',A+1 + 2A+1) +$ (:−A−2),

with k ′
�,A+1

∈ �∞
�
(-,R) and k ′

',A+1
∈ �∞

'
(-,R).

We next turn to the �∞
�
(-,R) term. The operator of interest to us, ? ◦ L1, is not invertible when

- → � admits continuous automorphisms. Nevertheless, Proposition 2.4 produces a function 3A+1 and

a fibre holomorphy potential ℎA+1 such that

? ◦ L1(3A+1) + ℎA+1 = k ′
�,A+1.

Then by Proposition 3.6 (888), the Kähler metric

l′
:,A+1 = l:,A + :

−A+18mm̄ 5A+1 + :
−A 8mm̄3A+1

satisfies

((l′
:,A+1) − Λl′

:,A+1
c∗b−[:,A −

1

2
〈∇[:,A ,∇(i:,A + X:,A + _:,A )〉

= :−A−1(ℎA+1 + k
′′
',A+1 + 2A+1) +$ (:−A−2),

with k ′′
',A+1

∈ �∞
'
(-,R). In order for this to be as we desire, we need that

:−A−1〈∇ℎA+1,∇(i:,A+1 + X:,A+1 + _:,A )〉 = $ (:−A−2),

and that

〈∇[:,A ,∇(:
−A+1 5A+1 + :

−A 3A+1)〉 = $ (:−A−2),

where by definition

i:,A+1 = i:,A + 5A+1:
−A+1, X:,A+1 = X:,A + :

−A 3A+1.

This is established in [11, p. 40].

Finally we turn to the�∞
'
(-,R)-term k ′′

',A+1
, which is the most straightforward step. Proposition 2.5

produces a function ;A+1 such that

D
∗
V
DV (;A+1) = −k ′′

',A+1.

Set

l:,A+1 = l:,A + :
−A+18mm̄ 5A+1 + :

−A 8mm̄3A+1 + :
−A ;A+1.

By [11, p. 41], we have

〈∇[:,A+1,∇:
−A−1;A+1〉 = $ (:−A−2).

Thus, with

_:,A+1 = _:,A + :
−A−1;A+1,

we have that

((l:,A+1) − Λl:,A+1
c∗b − [:,A+1 −

1

2
〈∇[:,A+1,∇(i:,A+1 + X:,A+1 + _:,A+1)〉

is $ (:−A−2). This proves the inductive step, and hence the proof. �
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3.2. Perturbation

Having constructed approximate twisted extremal metrics on - , we are now in a position to perturb

them to genuine twisted extremal metrics using a quantitative version of the implicit function theorem.

Theorem 11. Let � : �1 → �2 be a differentiable map of Banach spaces whose derivative at 0 ∈ �1

is surjective, with right inverse %. Denote

1. X′ the radius of the closed ball in � around the origin on which � − �� is Lipschitz with Lipschitz

constant (2‖%‖)−1.

2. X = X′

2‖% ‖
.

Then for all H ∈ �2 with ‖H − � (0)‖ < X, there exists a G ∈ �2 with ‖G‖ < X′ satisfying � (G) = H.

An important consequence for our main results will be the explicit bound one obtains on the distance

between the genuine solution G and the distance to the approximation � (0).

Remark 3.7. In fact, one obtains the following statement. Let g′ < X′, and put g = g′

2‖% ‖
. Then for all

H ∈ �2 with ‖H − � (0)‖ < g, there exists a G ∈ �2 with ‖G‖ < g′ satisfying � (G) = H.

We give a short proof of Remark 3.7 when the map is between Hilbert spaces and the linearised

operator is Fredholm, which will be the case in our application of Theorem 11. We may then assume

�� is invertible. Otherwise, we replace �1 with the orthogonal complement in �1 to the kernel of ��.

Since �� is invertible with inverse %, we have ‖�� (G)‖ ≥ 1
‖% ‖

‖G‖ for all G. Thus if # denotes �−��,

which is Lipschitz of constant 1
2‖% ‖

in the ball of radius g′ < X′, we have

‖� (G) − � (0)‖ = ‖# (G) − # (0) + �� (G)‖

≥ ‖�� (G)‖ − ‖# (G) − # (0)‖

≥
1

‖%‖
‖G‖ −

1

2‖%‖
‖G‖

=
1

2‖%‖
‖G‖

and so the ball of radius g′ hits at least the ball of radius g, as we already know � is surjective on the

balls of larger radii from Theorem 11.

The � that we will consider is the map

Ψ:,A : !2
;+4

(
-, l:,A

)
× hc → !2

;

(
-, l:,A

)

given by

(i, ℎ) ↦→ (
(
l:,A + 8mm̄i

)
− Λl:,A+8mm̄i

(c∗b) −
1

2
〈∇ℎ,∇i〉 − ℎ.

Here hc are the potentials, with respect to l:,A , for holomorphic vector fields in hc , the holomorphic

vector fields whose flow lies in Aut0(c). The linearisation at (0, 5 ) is

(i, ℎ) ↦→ Lb − 〈∇
(
((l:,A ) − Λl:,A

(c∗b) − 5
)
,∇i〉 − ℎ,

where Lb is the c∗b-twisted Lichnerowicz type operator. Note that kerLb = hc by Corollary 2.7. At

5 = [:,A +
1

2
〈∇

(
[:,A

)
,∇

(
i:,A + _:,A + X:,A

)
〉

the holomorphy potential with respect tol:,A constructed in Proposition 3.1, we see that the linearisation
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is a perturbation of the operator

�:,A : (i, ℎ) ↦→ Lb (i) − ℎ.

Indeed,l:,A was constructed so that ((l:,A ) −Λl:,A
(c∗b) − 5 is$ (:−A−1), and so �:,A can be assumed

to approximate the linearisation at any desired order, by restricting to A sufficiently large (in fact A = 3

will do).

Thus it suffices to prove the required estimates for this operator instead. From the mapping properties

of Lb , it follows that �:,A is surjective, with right inverse&:,A that sends a k orthogonal to the kernel of

Lb to the unique i orthogonal to the same kernel with Lb (i) = k. The actual linearisation is then also

surjective for large : , with right inverse %:,A . The claim that �:,A is surjective follows from Theorem

10, which implies that Lb is invertible orthogonal to its kernel, with its kernel given precisely by hc .

To apply Theorem 11, we will need a bound on the right inverse % = %:,A of the linearised operator.

We will show

Proposition 3.8. For each A sufficiently large, there exists a � > 0 such that for all : ≫ 0

‖%:,A (i)‖!2
;
(l:,A )

≤ �:3‖i‖!2
;+4

(l:,A )
.

This will be achieved via a lower bound for the first eigenvalue of −Lb .

Lemma 3.9. For each A sufficiently large, there exists a � > 0 such that for all : ≫ 0

〈i,−Lb (i)〉!2 (l:,A )
≥ �:−3‖i‖2

!2 (l:,A )
, (7)

for all i that are !2 (l:,A )-orthogonal to the kernel of Lb .

Proof. We will use the following integration-by-parts formula [10, Equation 3.5], valid for any Kähler

form l on -:

〈k,Lb (i)〉!2 (l) = −〈Dk,Di〉!2 (l) −

∫

-

〈∇k,∇i〉bl
=.

The operators D and ∇ are with respect to l in the above. In particular, picking k = i we obtain

〈i,−Lb (i)〉!2 (l) ≥ ‖Di‖2.

We apply this to l = l:,A . By [16, Lemma 6.7], there is a lower bound

‖Di‖2
!2 (l:,A )

≥ �:−3‖Di‖2
!2 (l:,A )

,

valid for any i that is orthogonal to the kernel of D∗D. Thus, we obtain a lower bound

〈i,−Lb (i)〉!2 (l:,A )
≥ �:−3‖i‖2

!2 (l:,A )
,

for such i.

This does not quite prove what we want, as the kernels of D∗D and Lb may not coincide – the latter

could be strictly contained in the former. Next, we assume i is in the kernel of D∗D, but still orthogonal

to the kernel of Lb . Then i is a holomorphy potential on - . We may assume A = 0, as the statement for

general A is a perturbation of this.

Thus i is a holomorphy potential for l: = l- + :l�. Writing i = i- + i�, we claim that the

vertical component i- vanishes. This will follow from the fact that i- is itself a holomorphy potential

on - , and hence it is in the kernel of Lb . As i is orthogonal to this kernel and the decomposition

i = i- + i� is orthogonal, it follows that i- = 0.
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To see that i- is a holomorphy potential, we first note that as i and i- restrict to the same function

on fibres, i- is a section of �∞
�
(-). Using the asymptotic Expansion 3.6, we see that ? ◦ L1 (i- ) = 0.

But then i- ∈ kerLb , which is what we wanted to show.

We have

〈i,−Lb (i)〉!2 (l: )
=

∫

-

|∇i|2bl
=
: .

Now c∗b is the pullback of a positive form on �, and thus

|∇i|2b ≥ � |∇i|2l�
= �:−1 |∇i|2:l�

.

But we have |∇i|2
:l�

= |∇i|2
(l- )V+:l�

, where (l- )V + :l� is the product Riemannian metric on

)- = V ⊕H, since i is pulled back from �. Using the uniform equivalence of this product Riemannian

metric andl: [16, Lemma 6.2], we therefore obtain that for some possibly different constant�, we have

〈i,−Lb (i)〉!2 (l: )
≥ �:−1‖∇i‖2

!2 (l: )

for the i we are considering. Using the Poincaré inequality for the Laplacian [16, Lemma 6.5], which

applies because i in particular is orthogonal to the constants, we thus obtain for i in the kernel of D∗D,

but orthogonal to the kernel of Lb , there is a bound of the form

〈i,−Lb (i)〉!2 (l: )
≥ �:−2‖i‖2

!2 (l: )
.

Thus Equation (7) is valid for all i orthogonal to the kernel ofLb , which is what we wanted to prove. �

Proposition 3.8 will now follow by combining Lemma 3.9 with the following Schauder estimate

‖i‖!2
;+4

(l:,A )
≤ �

(
‖i‖!2 (l:,A )

+ ‖Lb (i)‖!2
;
(l:,A )

)
. (8)

This estimate follows directly from the analogous estimate for D∗D, see [16, Lemma 6.8], since the

twisting form is pulled back from �, and hence −Lb −D∗D is $ (:−1).

To establish Proposition 3.8, we apply (8) to i = &:,A (k). Note that the existence of &:,A is already

known from the mapping properties of Lb . Writing

k = k1 + k2,

where k2 is in the kernel of Lb and k1 is !2 (l:,A )-orthogonal to this kernel, and similarly for i, we

know i1 = &:,A (k1) and i2 = k2. The Schauder estimate implies that

‖&:,A (k)‖!2
;+4

(l:,A )
≤ �

(
‖&:,A (k1)‖!2 (l:,A )

+ ‖k2‖!2 (l:,A )
+ ‖k1‖!2

;
(l:,A )

)
.

Lemma 3.9 implies that

‖&:,A (k1)‖!2 (l:,A )
≤ �:3‖k1‖!2 (l:,A )

,

and thus the result follows for &:,A by the fact that ‖k8 ‖!2 ≤ ‖k‖!2 as the k8 are !2-orthogonal.

It therefore also holds for %:,A as the actual linearised operator is asymptotic to the negative of the

Lichnerowicz type operator Lb for which we have established the bounds.

We now have the required bound for %:,A . The final thing we need in order to apply Theorem 11 is

the Lipschitz bound, which is simply a consequence of the mean value theorem.
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Lemma 3.10. Let #:,A = Ψ:,A − �Ψ:,A . There exist constants 2, � > 0 such that for all : ≫ 0, the

following holds. If i8 ∈ !
2
;+4

(
-, l:,A

)
× hc satisfy ‖i8 ‖ ≤ 2, then

‖#:,A (i1) − #:,A (i2)‖ ≤ � (‖i1‖ + ‖i2‖) ‖i1 − i2‖.

We now prove the main result of this section.

Theorem 12. For each ; and for each A sufficiently large, there exists :0 such that for all : ≥ :0, there

exists a twisted extremal metric l̃: = l:,A + 8mm̄k:,A such that the solutions satisfy

‖k:,A ‖!2
;+4

≤ �:−3.

Proof. Let X′ be as in the statement of Theorem 11. Lemma 3.10 implies that there is a 2 such that

for all _ > 0 sufficiently small, Ψ:,A − �Ψ:,A is Lipschitz of constant 2_. Thus X′ ≥ 2:−3, for some

potentially different constant 2, using Proposition 3.8. Pick g′ = 2:−3 ≤ X′, and put g = g′

2‖%:,A ‖
. Again

by Proposition 3.8, we have that g ≥ 2:−3g′ = �:−6 for some new constants 2, �.

Using Remark 3.7, we can solve Ψ:,A (i, ℎ) = Ψ:,A (0) + 5 for any 5 in the ball of radius g, with

(i, ℎ) in the ball of radius g′ = 2:−3. In particular, then, this applies to 5 in the ball of radius

�:−6, for some �. Thus to ensure that we can solve the twisted extremal equation, we need that

‖((l:,A ) −Λl:,A
(c∗b) −ℎ:,A ‖ < �:

−6, which by Proposition 3.1 holds if A ≥ 7. The result follows. �

Thus we obtain the existence of twisted extremal metrics and a bound on how the genuine twisted

extremal metrics compare with our approximate solutions. This also implies similar bounds in Hölder

norms by taking ; sufficiently large.

Remark 3.11. In fact, one can achieve that

‖k:,A ‖ ≤ �:−3

for any desired 3, by increasing A . Retracing the argument, we see that this will be achieved once A is

chosen to satisfy A > 3 + 3. Note that this possibly changes the :0 for which this expansion is valid.

4. Results on optimal symplectic connections

4.1. Automorphisms and optimal symplectic connections

This section explains how optimal symplectic connections reflect the geometry of fibrations. Our first

result is a variation on the classical Lichnerowicz-Matsushima Theorem.

The setup requires some notation associated with the submersion c : (-, U) → (�, V). Recall that

Aut0(c) ⊂ Aut0 (-) denotes the automorphism group of c. The Lie algebra h ⊂ �0(-,)-1,0) consists

of holomorphic vector fields that vanish somewhere; we denote by

hc ⊂ h

the vector fields whose flow lies in Aut0(c). k ⊂ h is the Lie subalgebra of vector fields that correspond

to Killing vector fields under the identification )-1,0
� )-; we denote

kc = hc ∩ k

the holomorphic vector fields preserving c whose associated real holomorphic vector field is Killing.

Note that a vector field a ∈ Γ(-,V) (with V = ker 3c the vertical tangent bundle) is Killing with respect

to :6� + 6- for some : if and only if it is Killing for all : .
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Theorem 13. Suppose c : (-, U) → (�, V) admits an optimal symplectic connection. Then

hc = kc ⊕ 8kc .

Thus hc is a reductive Lie algebra.

Proof. Using the notation of Proposition 2.4, we have an identification

ker ? ◦ L1 = kerR � hc ,

5 → ∇1,0

V
5 ,

where we recall the operator R = m̄�∇
1,0

V
. Here ? ◦ L1 is an operator on complex valued functions:

? ◦ L1 : �∞
� (-,C) → �∞

� (-,C).

Under this identification, the subspace kc corresponds to purely imaginary functions, since k ⊂ h

corresponds to purely imaginary functions.

By Proposition 2.4, the operator ?◦L1 is a real operator sincel- is an optimal symplectic connection.

Thus for real functions D, E, we have ? ◦ L1(D + 8E) = 0 if and only if

R(D) = R(E) = 0.

Thus

hc = kc ⊕ �kc ,

as claimed. �

Remark 4.1. In the projective setting, so that -, � are projective, 21 (�) = U, 21 (!) = V, then there is

a natural group of automorphisms of the map that linearise to �:

Aut0(c, �) = Aut0(c) ∩ Aut(-, �).

In this case, one sees that

Lie(Aut0 (c, �)) � hc ,

and thus Aut0 (c, �) is a reductive Lie group. Indeed, automorphisms 6 ∈ Aut0(c) linearise to � if and

only if they linearise to :! + � for all : (using additive notation for tensor products), which is ample

for : ≫ 0, and thus the identification follows from the usual identification

h � Lie(Aut0(-, :� + !)).

We next consider the isometry group of an optimal symplectic connection, by which we mean

Isom0(c, l- ) = Aut0 (c) ∩ Isom(-, l- ), (9)

where we define

Isom(-, l- ) = {6 ∈ Diff (-) : 6∗l- = l- }.

The notation is slightly unusual since l- may not be positive.

Theorem 14. The isometry group Isom0 (c, l- ) is a maximal compact subgroup of Aut0(c).

Proof. We use the results proved in Section 3. Theorem 12 proves that if l- is an optimal symplectic

connection, the class :V + U admits a twisted extremal metric l̃: with twist c∗b for all : ≫ 0. Since
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b is positive on �, we can appeal to the results mentioned in Section 2 to relate the geometry of these

twisted extremal metrics to the geometry of the map c : - → �.

By Theorem 8, each l̃: is invariant under a maximal compact subgroup of Aut0(c). By Lemma 4.3,

proved in the subsequent section, we may assume that these are all the same maximal compact subgroup

 ⊂ Aut0 (c).

Take some 6 ∈  , and suppose

6∗l- = l- + 8mm̄i.

We must show i is constant. By invariance of twisted extremal metrics,

6∗l̃: = l̃: .

Since 6 ∈ Aut0(c) preserves base forms, we have

6∗(:l� + 8mm̄k�,2) = :l� + 8mm̄k�,2.

It follows that

6∗(l̃: − (:l� + l- + 8mm̄k�,2)) − (l̃: − (:l� + l- + 8mm̄k�,2)) = 8mm̄i.

By Theorem 12, we have

|l̃: − (:l� + l- + 8mm̄k�,2) |�2 ≤ �:−1.

Thus i, which is independent of : , satisfies

|8mm̄i|�2 ≤ �:−1,

and hence 8mm̄i is zero and i is constant.

This shows that  ⊂ Isom0 (c, l- ). Since  is a maximal compact subgroup of Aut0(c), we must

have  = Isom0 (c, l- ), proving the result. �

We will also later require a more technical result concerning the Lie algebra of the full automorphism

group. For manifolds, a good exposition of such results is contained in [4, Section 6.3]. Denote g =

Lie Aut0(-) and gc ⊂ g = Lie Aut0(c). Let k̃c denote the real holomorphic vector fields associated

with kc via the isomorphism )- � )-1,0. Denote also ac ⊂ gc the Lie subalgebra of harmonic forms

ac = {a ∈ gc : (:6� + 6- ) (a, ·) is a harmonic 1-form},

where 6�, 6- are the tensors induced l� andl- , respectively. Note (:6� +6- ) is a Riemannian metric

for : ≫ 0. Since a is a vertical vector field, we have 6� (a, ·) = 0 as harmonicity of (:6� + 6- ) (a, ·) is

independent of : . This justifies the notation ac omitting : .

Corollary 4.2. Suppose l- ∈ U is an optimal symplectic connection. Then

isom(c, l- ) = ac ⊕ k̃c ,

g = ac ⊕ k̃c ⊕ � k̃c ,

with isom(c, l- ) the Lie algebra of Isom0 (c, l- ).

Proof. This follows immediately from Theorem 13 and [20, Lemma 2.1.1], which decomposes an

arbitrary real holomorphic vector field as a sum

a = a� + ∇i + �∇k,
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with a� dual to a harmonic form and i, k real-valued functions. This decomposition depends on a

choice of Kähler metric :l- +l� and its associated Riemannian metric. However, as we are considering

vertical vector fields, as mentioned above, harmonicity with respect to 6- + :6� is independent of : .

Similarly, for vertical vector fields, these gradients can be taken to be vertical gradients using 6- , giving

the result. �

4.2. Interlude on twisted extremal metrics

We return to the setting and notation of Section 2.4, sol ∈ V is a twisted extremal metric on a morphism

@ : . → , between Kähler manifolds with . compact, and with twisting form Z on . the pullback

of a Kähler metric on , . In practice, we will apply our results to the morphism c : - → �. Thus by

Theorem 8, the isometry group Isom0 (@) is a maximal compact subgroup of Aut0 (@). We require:

Lemma 4.3. Suppose  is a maximal compact subgroup of Aut0(@). Then there is a twisted extremal

metric 6∗l ∈ V such that Isom0(@, 6
∗l) =  , for some 6 ∈ Aut0(c).

Proof. Maximal compact subgroups of Aut0 (@) are each conjugate to each other, so suppose

6 6−1 = Isom0 (@).

Then 6∗l is a twisted extremal metric with the same twist (since 6∗Z = Z), and moreover the isometry

group of 6∗l is seen to equal  . �

We also require a more precise statement concerning the uniqueness of twisted extremal vector fields.

We begin by proving that the twisted Futaki invariant is independent of the choice of Kähler metric;

this can be shown to be a consequence of [8, Corollary 6.9], but it seems worth providing a direct proof

not reliant on that more difficult statement. The result in the twisted Kähler-Einstein setting is due to

Datar-Székelyhidi [5, Proposition 8], using a different approach.

Proposition 4.4. Let a ∈ h@ have associated holomorphy potential ℎ with respect tol. Then the twisted

Futaki invariant

�Z (a) =

∫

.

ℎ(((l) − ΛlZ − (̂Z )l
=

is independent of choice of l ∈ V.

Proof. Take a family of Kähler metrics lC ∈ V, and suppose a has associated potentials ℎC . Setting

�Z ,C (a) =

∫

.

ℎC (((lC ) − ΛlC
Z − (̂Z )l

=
C ,

it suffices to show
3

3C
��C=0

�Z ,C (a) = 0.

Write
3

3C
��C=0

lC = 8mm̄i.

Then
3

3C
��C=0

l=C = Δil=.

Recall also that we have

3

3C
��C=0

(
((lC ) − ΛlC

Z
)
= LZ (i) − 〈∇1,0 (((l) − Λl (Z)) ,∇

1,0i〉.
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This follows from our previous formula (3) for the linearisation of the twisted scalar curvature, by

conjugating and using that the twisted scalar curvature is a real operator. Finally, by Lemma 2.1, we

also have

3

3C
��C=0

ℎC = a (i) .

Thus

d

dt
��C=0

(
�Z ,C (a)

)
=

∫

.

(
a(i) (((l) − ΛlZ − (̂h) + ℎ(((l) − ΛlZ − (̂Z )Δ (i)

− ℎLZ (i) + ℎ〈∇
1,0 (((l) − ΛlZ) ,∇

1,0i〉

)
l=,

Note the identity ∫

.

5Δ (i)l= = −

∫

.

〈∇1,0 5 ,∇1,0i〉l=.

Applying this to 5 = ℎ(((l) − ΛlZ − (̂Z ) gives

∫

.

ℎ(((l) − ΛlZ − (̂Z )Δ (i)l= = −

∫

.

〈∇1,0
(
ℎ(((l) − ΛlZ − (̂Z )

)
,∇1,0i〉l=

= −

∫

.

ℎ〈∇1,0 (((l) − ΛlZ) ,∇
1,0i〉l=

−

∫

.

(
((l) − ΛlZ − (̂Z

)
〈∇1,0ℎ,∇1,0i〉l=.

Moreover, 〈∇1,0ℎ,∇1,0i〉 = a(i).

Combining the above, we obtain

d

dt
��C=0

(
�Z ,C (a)

)
= −

∫

.

ℎLZ (i)l
=

=

∫

.

LZ (ℎ)il
=

= 0,

as ℎ ∈ kerLZ by Corollary 2.7. �

This allows us to prove the following, which is a variant of results of Futaki-Mabuchi [19] and is

proven in a similar way. Another exposition of such results for extremal metrics is given by Berman-

Berndtsson [2, Section 4.1].

Proposition 4.5. Suppose l, l′ ∈ V are twisted extremal metrics with twisted extremal vector fields

a, a′, respectively, such that Isom0 (@, l) = Isom0(@, l
′). Then a = a′.

Proof. Recall Futaki-Mabuchi’s bilinear form on holomorphic vector fields a, a′ with mean-value zero

holomorphy potentials ℎa , ℎa′ with respect to l given by

〈a, a′〉 =

∫

.

ℎaℎa′l
=.

This is independent of choice of l ∈ V by Futaki-Mabuchi [19].

Denote by h @ ⊂ h@ the subspace of holomorphic vector fields a such that the flow of the imaginary

part Im a lies in  . Then just as in Futaki-Mabuchi [19] or [2, Proposition 4.11], the bilinear form 〈·, ·〉 is
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real-valued and positive-definite on h @ . Indeed, the fact that the pairing is real-valued is a consequence

of their claim that ℎa is real-valued, which follows since l is invariant under the flow of Im a [2,

p. 1189]. Positive-definiteness is a simple consequence of the holomorphy potentials being real-valued,

as the !2-inner product is certainly positive-definite. In particular, the inner-product is non-degenerate.

Returning to the claim of the proposition, we wish to show the two twisted extremal vector fields are

equal. We first claim a, a′ ∈ h @ , which follows from the fact that the flow of Im a is an isometry and our

hypothesis that  = Isom0(c, l) = Isom0(c, l
′). To see that the flow of Im a is an isometry, note that

a = ∇1,0 (((l) − ΛlZ), (10)

is the ((1, 0)-part of) the gradient of a real valued function, which implies the claim [2, Proof of

Proposition 4.14]. Thus, by non-degeneracy of the inner-product, it is enough to show

〈g, a〉 = 〈g, a′〉

for all g ∈ h @ .

Denote by ℎg and ℎ′g the holomorphy potential of g of mean-value zero with respect to l and l′,

respectively. Then since a is the twisted extremal vector field given by Equation (10), by definition of

the inner product, we have

〈g, a〉 =

∫

.

ℎg (((l) − Λl[ − (̂Z )l
=.

This is, by definition, the twisted Futaki invariant of g, which by Proposition 4.4 is independent of

choice of l ∈ U. Thus
∫

.

ℎg (((l) − ΛlZ − (̂Z )l
= =

∫

.

ℎ′g (((l
′) − Λl′Z − (̂Z )l

′=,

which means

〈g, a〉 = 〈g, a′〉,

which proves the result. �

4.3. Uniqueness of optimal symplectic connections

We begin with the discrete automorphism group case.

Theorem 15. Suppose Aut0(c) is trivial. If l- , l
′
-
∈ U are two optimal symplectic connections, then

l- = l′
- + c∗8mm̄i�,

with i� ∈ �∞(�,R).

Proof. From l- and l′
-

, Theorem 12 constructs twisted cscK metrics l̃: and l̃′
:
, respectively, in the

Kähler class :U + V. These are twisted cscK rather than twisted extremal, since Aut0(c) and hence hc
are trivial. Since c : - → � has no continuous automorphisms, uniqueness of twisted cscK metrics

described in Theorem 8 implies

l̃: = l̃
′
: .

By Theorem 12, we have

|l̃: − (:l� + l- + 8mm̄i�,2) |�2 ≤ �:−1,

|l̃′
: − (:l� + l′

- + 8mm̄i′�,2) |�2 ≤ � ′:−1.
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Thus, by the triangle inequality,

|l- + 8mm̄i�,2 − l
′
- − 8mm̄i′�,2 |�2 ≤ (� + � ′):−1,

and hence this quantity is independent of : , so we see that

l- + 8mm̄i�,2 = l′
- + 8mm̄i′�,2.

Hence

l- = l′
- + 8mm̄ (i′�,2 − i

′
�,2),

as required. �

Remark 4.6. As in Remark 4.1, this result can be slightly sharpened and clarified when - and � are

projective, with U = 21 (�) and V = 21 (!). Then all that is required is that Aut0 (c, �) is discrete.

The case when Aut0 (c) is non-trivial is more challenging. We first prove a weak version of uniqueness.

Denoting � = Aut0(c), we write l- ∈� �.l
′
-

if there exist elements 6C ∈ � such that

lim
C→0

|l- − 6∗Cl
′
- |�2 = 0.

Proposition 4.7. If l- , l
′
-

∈ U are two optimal symplectic connections, then there is a function

i� ∈ �∞(�,R) such that

l- ∈ �.(l′
-
+ 8mm̄i�).

Proof. To l- and l′
-

, Theorem 12 associates twisted extremal metrics l̃: , l̃
′
:
∈ :U + V, respectively.

By Lemma 4.3, there is a 6: ∈ Aut0(-/�) such that l̃: and 6∗
:
l′
:

have the same isometry group

Isom0(c, l̃: ) = Isom0 (c, 6
∗
:l̃

′
: ).

Thus by Proposition 4.5, the twisted extremal vector fields associated with l̃: and 6∗
:
l̃′
:

are actually

equal. Since these metrics have the same associated vector field, Theorem 8 produces ℎ: ∈ Aut0(c)

such that

l̃: = (ℎ: ◦ 6: )
∗l̃′

: . (11)

We can now argue as before. Theorem 12 implies that

|l̃: − (:l� + l- + 8mm̄i�,2) |�2 ≤ �:−1, (12)

|l̃′
: − (:l� + l′

- + 8mm̄i′�,2) |�2 ≤ � ′:−1, (13)

with i�,2, i
′
�,2

∈ �∞ (�,R). We claim that

l- ∈ �.(l′
-
+ 8mm̄ (i′

�,2
− i�,2)).

Indeed, Equations (11) and (12) and the triangle inequality show that

|l- − (ℎ: ◦ 6: )
∗(l′

- + 8mm̄(i′�,2 − i�,2)) |
0
� ≤ (� + � ′):−1,

meaning

lim
:→∞

|l- − (ℎ: ◦ 6: )
∗(l′

- + 8mm̄ (i′�,2 − i�,2)) |�2 = 0,

as required. �
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It is not straightforward to conclude from this that l- ∈ �.(l′
-
+ 8mm̄i�). In fact, being able to pass

from two Kähler metrics being in the same orbit closure to the same orbit in certain circumstances was

one of the key new ingredients in the breakthrough of Darvas-Rubinstein [4]. We use their techniques

to conclude the uniqueness result we desire.

Fix some : ≫ 0 such that :V + U admits a twisted extremal metric, and let l: = :l� + l- be a

reference metric. Let H: be the space of Kähler potentials with respect to l: .

Definition 5. For C ∈ [0, 1], let C → UC ∈ H: be a smooth curve joining Kähler potentials D0, D1 ∈ H: .

We define the length of U to be

ℓ1(U) =

∫ 1

0

‖ ¤UC ‖l:+8mm̄UC
3C,

where

‖i‖l:+8mm̄UC
= +−1

∫

-

|i| (l: + 8mm̄UC )
<+=

and + =
∫
-
l<+=
:

. The 31-metric defined by

31(D0, D1) = inf{ℓ1(U) : U is a smooth curve with U(0) = D0, U(1) = D1}.

This is justified by the following result of Darvas.

Theorem 16 ([3, Theorem 3.5]). 31 is a metric on H: .

In the presence of automorphisms, for any � ⊂ Aut0 (-), the natural pseudo-metric is defined by

Darvas-Rubinstein to be [4, Section 2]

31,� : H: ×H: → R,

31,� (i, k) = inf
6∈�

31(i, 6.k),

where by definition

l: − 6
∗(l: + 8mm̄k) = 8mm̄6.k.

We will always take � = Aut0(c).

Remark 4.8. Both 31 and 31,� depend on :; since we have fixed : , we omit this in the notation.

We require the following bound, due to Darvas [3, Corollary 4.14, Theorem 3].

Proposition 4.9. There is a constant � > 1 such that

31(i, k) ≤ �

∫

-

|i − k | (l: + 8mm̄i)
<+= + �

∫

-

|i − k | (l: + 8mm̄k)
<+=.

Using this, we can understand orbit closures via the 31,�-pseudometric.

Lemma 4.10. Suppose l- ∈ �.l′
-

and

l′
- = l- + 8mm̄i.

Then

31,� (0, i) = 0.

Proof. First, we remark that since

l′
- = l- + 8mm̄i,
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we also have

:l� + l′
- = :l� + l′

- + 8mm̄i.

Since our reference metric is :l� + l- , it follows that i is the Kähler potential for :l� + l′
-

with

respect to l: = :l� + l- .

Since l- ∈ �.l′
-
, there is a sequence 6C ∈ � (with, say, 61 = Id so that our notation is consistent)

such that writing

6∗Cl
′
- − l- = 8mm̄iC ,

we have

lim
C→0

‖iC ‖�0 = 0.

By definition, we have 6C .i = iC . Proposition 4.9 then gives

31(0, 6C .i) ≤ �

∫

-

|6C .i| (l: )
<+= + �

∫

-

|6C .i| (l: + 8mm̄6C .i)
<+=,

≤ �+ ‖6C .i‖�0 ,

where, as above,

+ =

∫

-

l<+=
: =

∫

-

(l: + 8mm̄6C .i)
<+=.

Thus since ‖iC ‖�0 → 0, we have

lim
C→0

31(0, 6C .i) = 0,

and hence by definition 31,� (0, i) = 0. �

The assumption of this lemma is that l- ∈ �.l′
-

and l′
-
= l- + 8mm̄i, and the conclusion is that

31,� (0, i) = 0. To pass from this to the desired conclusion, we need to show that in this situation, there

is a 6 ∈ � with 6∗l′
-
= l- . This is precisely the kind of statement considered by Darvas-Rubinstein

[4, Property (P6)]. We continue with the notation of Lemma 4.10.

Proposition 4.11. Suppose 31,� (0, i) = 0. Then there is a 6 ∈ � such that

31,� (0, i) = 31(0, 6.i).

Proof. This follows from work of Darvas-Rubinstein, which requires some notation to set up.

Let  be the isometry group of l- , so that  is a maximal compact subgroup of � = Aut0(c). We

begin with the Lie algebras. Corollary 4.2 produces decompositions of the Lie algebras isom(c, l- ) =

Lie and gc = Lie� of the form

isom(c, l- ) = ac ⊕ k̃c ,

gc = ac ⊕ k̃c ⊕ � k̃c ,

with ac a Lie subalgebra of the centre of k̃c (since a is contained in the centre of k̃), and a Lie subalgebra

k̃c ⊂ isom(c, l- ). These are the hypotheses of [4, Proposition 6.2], which allow one to conclude a

surjectivity property of the exponential map.

Next, we claim we have the following:

1. A metric 31 on H: .

2. An action of � on H: that is a 31-isometry.

3. An element l: that satisfies  .l: = l: .

https://doi.org/10.1017/fms.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.15


Forum of Mathemetics, Sigma 29

4. For each g ∈ k̃c ,

C → exp(C�g).l:

is a 31-geodesic whose speed depends continuously on g.

5. For all i, k ∈ H: , the map

� × � → R,

( 5 , 6) → 31( 5 .i, 6.k)

is continuous.

Property (8) follows from Darvas’s Theorem 16. The second property, that the �-action is a 31-

isometry, follows from [4, Lemma 5.9]. The third property follows from Lemma 14, since 6∗(:l� +

l- ) = :l� = l- when 6 ∈  ⊂ Aut0(c). Item (8E) follows from an identical argument in [4, Proof

of Theorem 7.1 (P6)], namely a combination of Mabuchi’s classical result that vector fields induce

geodesics in the space of Kähler potentials [26, Theorem 3.5] and the explicit formula for the 31-metric

[4, Theorem 4.3] to obtain the continuity of speed. The final item, (E8), follows from an argument using

Green’s functions [4, Proof of Theorem 7.1 (P6)].

With all of this in place, the hypotheses of [4, Proposition 6.8] are satisfied, and this result provides

the desired conclusion: there is a 6 ∈ � with

31,� (0, i) = 31(0, 6.i).
�

Theorem 17. If l- , l
′
-
∈ U are two optimal symplectic connections, then

l- = 6∗l′
- + c∗8mm̄i�,

with 6 ∈ Aut0 (c) and i� ∈ �∞ (�,R).

Proof. This is immediate from combining the above. Explicitly, by using uniqueness of twisted extremal

metrics, Proposition 4.7 produces a function i� ∈ �∞ (�,R) such that

l- ∈ �.(l′
-
+ 8mm̄i�),

where � = Aut0 (c). Set l′′
-
= l′

-
+ 8mm̄i�, and let

l′′
- = l- + 8mm̄k.

Then l- ∈ �.(l′′
-
) and Lemma 4.10 implies

31,� (0, k) = 0.

From this, Proposition 4.11 gives a 6 ∈ � with

31,� (0, k) = 31(0, 6.k).

Since 31 is a metric by Theorem 16, this implies 6.k = 0, which is to say

l- = 6∗l′′
- .

Thus

l- = 6∗(l′
- + 8mm̄i�) = 6

∗l′
- + 8mm̄i�,

proving the result. �
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4.4. The energy functional

Fix a reference relatively Kähler metric l- ∈ U. By the the mm̄-Lemma, any other relatively Kähler

metric in U is of the form l- + 8mm̄i for some function i ∈ �∞ (-,R). Denote by K� ⊂ �∞ (-,R) the

set of functions i ∈ �∞ (-,R) such that l- + 8mm̄i is a relatively cscK metric.

Any such a relatively cscK metric li induces a splitting

)- = V ⊕ Hi ,

and also vertical Laplace operator ΔVi
. Denote by \i the curvature term

\i = Λl�
ΔVi

(Λl�
`∗�Hi

) + Λl�
dHi

involved in the definition of an optimal symplectic connection, and denote by

?i : �∞ (-,R) → �∞
�i

(-)

the i-dependent projection to the space of fibrewise holomorphy potentials with respect to li . If

lC = l- + 8mm̄iC is a one-parameter family of relatively cscK metrics, we will denote \C = \iC , and

similarly for the projection operator.

Definition 6. Let iC : [0, 1] → K� be a path, with iC = 0 and i1 = i. We define the energy functional

(or log norm functional)

N : K� → R,

i → N(i),

by

3

3C
(N(iC )) = −

∫

-

¤iC ?C (\C )l
<
C ∧ l=�, (14)

with N(0) = 0.

Remark 4.12. The functional N can be seen as a generalisation of Donaldson’s functional in the

Hermite-Einstein problem, and the properties we prove here are generalisations of properties of that

functional proven by Donaldson. Recall that for+ a holomorphic vector bundle over (�, V), Donaldson’s

functional is defined by its variation along a path ℎC of Hermitian metrics [13, p. 11]

3

3C
|C=0D(ℎC ) = 8

∫

�

tr(ℎ−1
0

¤ℎ(0) (Λl�
�ℎ0

− _ Id))l=�,

where _ is the appropriate topological constant. Note that

ℎ−1
0

¤ℎ(0) =
3

3C
|C=0 (log(ℎC )). (15)

The path of Hermitian metrics ℎC induces a path of relatively Kähler metrics lC that restrict to a Fubini-

Study metric on each fibre, in such a way that

`∗C (Λl�
�ℎC − _ Id) = ?C (\C ),

with ?C (\C ) as above [11, Proposition 3.17] and with `∗C the fibrewise comoment map defined using lC .

A calculation similar to [11, Proposition 3.17] using Equation (15) to calculate the change in Kähler
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potential associated with the lC then shows that, up to a dimensional constant

3

3C
|C=0D(ℎC ) =

3

3C
(N(iC )) .

Thus the two functionals themselves must also agree.

For this to be a reasonable definition, we must show that N is well-defined and independent of the

choice of path, and that any two relatively cscK metrics can be joined by a path of relatively cscK

metrics. It will then follow that the functional is independent of adding a constant to i, so it can be

viewed as a functional on relatively cscK Kähler metrics rather than potentials. We begin by showing

path connectedness and will prove in Lemma 4.19 that N is indeed well-defined.

Proposition 4.13. K� is path-connected.

Proof. Suppose that l- and l′
-

are two relatively cscK metrics. We note first that it suffices to find

a family of relatively cscK metrics lC from l0 = l- to an l1 whose restriction to each fibre equals

l′
-

. Indeed, if l- and l′
-

have the same restriction to each fibre, then l′
-
= l- + 8mm̄c∗i for some

i : � → R, and then lC = l- + C8mm̄c∗i gives the desired path from l- to l′
-

.

We again use the uniqueness of the cscK metrics. Denote l1 = l|-1
and l′

1
= l- ′ |-1

, and let  1
be the identity component of the isometry group of l1 . By [4, Proposition 6.2], the map

�1 :  1 × k̃1 → Aut0 (-1)

given by

� (:, E) = : exp(�E)

is surjective. Here the notation k̃1 denotes the real holomorphic vector fields corresponding to k1 =

Lie( 1), following Section 4.1.

Since l1 , l
′
1

are cscK, by uniqueness of cscK metrics, there is a 51 : -1 → -1 such that

l′
1 = 5 ∗1l1 .

By the surjectivity just mentioned, we can write

51 = :1 exp(�E1),

and since :1 ∈  1 is an isometry of l1 , it follows that

l′
1 = exp(�E1)

∗l1 .

Thus

exp(C�E1)
∗l1

is a path of cscK metrics joining l1 at C = 0 to l′
1

at C = 1. Since the exponential map is surjective

and locally a diffeomorphism for each 1 ∈ �, one can choose E1 smoothly, hence forming a vector field

E ∈ Γ(V) whose restriction to each fibre is real holomorphic.

Let d(C) be the flow of E, so that c ◦ d = c as E is a vertical vector field. The form d(C)∗l- is thus

a smooth form whose restriction to each fibre -1 is a cscK metric (in particular, its restriction to each

fibre is a (1, 1)-form even though d(C)∗l- may not necessarily be a (1, 1)-form itself on -). Let iC ,1
be the unique function defined by

l1 − d(C)
∗l- ) |-1

= mm̄iC ,1
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with iC ,1 normalised to have integral zero over -1 . Then the iC ,1 induce a smooth function iC for

C ∈ [0, 1] such that l- + mm̄iC is cscK for all C ∈ [0, 1] and such that at C = 1, its restriction to each

fibre agrees with l′
1
, which is what we wanted to show. �

The following will allow us to simplify our definition of N.

Lemma 4.14. Let lC = l- + 8mm̄iC be a path of relatively cscK metrics. Then ¤iC is a fibrewise

holomorphy potential with respect to lC .

Proof. This is a fibrewise statement. By uniqueness of cscK metrics, on each fibre -1 there is a

5C ,1 ∈ Aut0(-1) such that

lC |-1
= 5 ∗C ,1l1 ,

where, as usual, l1 = l- |-1
. Thus the statement reduces to the well-known fact that if l + 8mm̄kC is a

path of Kähler potentials on a compact Kähler manifold obtained from pulling back via automorphisms,

then ¤kC is a holomorphy potential with respect to l + 8mm̄kC ; see, for example, [29, Example 4.26]. �

Corollary 4.15. Let lC = l- + 8mm̄iC be a path of relatively cscK metrics. Then

∫

-

¤iC ?C (\C )l
<
C ∧ l=� =

∫

-

¤iC (\C + Λl�
Z)l<C ∧ l=�,

where Z is the Weil-Petersson metric on � of Theorem 9. Thus if
∫
-/�

¤iCl
<
C = 0, then

∫

-

¤iC ?C (\C )l
<
C ∧ l=� =

∫

-

¤iC\Cl
<
C ∧ l=� .

Proof. The �∞ (�)-component of \C is −Λl�
Z (which is independent of C), which is simply to say that

∫

-/�

(\C + Λl�
Z)l<C = 0.

The above lemma proves that the�∞
'C
(-)-component of ¤iC vanishes, where�∞

'C
(-) consists of functions

of fibre integral zero with respect tolC and orthogonal to holomorphy potentials. This proves the claims

by the definition of the projection ?C . �

The main goal of the section is to prove the following theorem. Fix a reference relatively cscK metric

l- , and supposel- +8mm̄k is an optimal symplectic connection. Denote by = Isom0 (c, l+8mm̄k) the

isometry group of the optimal symplectic connection, which is a maximal compact subgroup of Aut0(c)

by Theorem 14. Let K 
�

denote the space of potentials for relatively cscK, which are  -invariant, so

that when Aut0 (c) is trivial, this is our usual space K� .

Theorem 18. Suppose that c : (-, U) → (�, V) admits an optimal symplectic connection l- + 8mm̄k.

Then for all k ∈ K 
�

, we have

N(i) ≥ N(k).

Thus N is bounded below.

This will follow our general strategy of perturbing to known results for twisted extremal metrics.

For all : ≫ 0, associated with l- is a family of twisted extremal metrics l̃: ∈ :V + U, with isometry

group  = Isom(c, l- + 8mm̄k) equal to that of l- + 8mm̄k itself. As before, the twist is c∗b, where b

is positive on �; we will abuse notation by omitting pullbacks. Denote by K 
:

the space of  -invariant

Kähler potentials in the class :V + U with respect to the reference metric l: = :l� + l- .

Suppose the extremal vector field E: associated with l̃: has holomorphy potential ℎ: with respect

to the reference metric :l� + l- , normalised so that ℎC has integral zero with respect to the volume
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form l<+=
:

. For a family lC = l: + 8mm̄iC of Kähler metrics invariant under  , let ℎC ,: denote the

corresponding holomorphy potential for E: of integral zero with respect to lC .

Definition 7. The modified twisted Mabuchi functional Mb ,: : K 
:
→ R is defined by its variation

3

3C

(
Mb ,: (iC )

)
= −

∫

-

¤iC

(
((lC ,: ) − ΛlC

(b) − ℎC ,: − (̂b ,:V+U

)
l=C,:

along a pathlC ,: = l: + 8mm̄iC of Kähler metrics, where (̂b ,:V+U is the average twisted scalar curvature

of any metric in V.

We will rely on a result of Berman-Berndtsson, which states that a twisted extremal metric achieves

the absolute minimum of the modified twisted Mabuchi functional. Their proof does not rely on the

geometry of our situation and instead applies when a is a semi-positive form on - .

Theorem 19. The functional Mb ,: : K 
:
→ R is bounded below by Mb ,: (l̃: ).

Proof. This follows directly from the techniques of Berman-Berndtsson, who prove this statement when

l̃: is cscK [2, Corollary 1.2]. Their argument relies on convexity of the Mabuchi functional along weak

geodesics. They also prove convexity of the modified Mabuchi functional along potentials invariant

under the flow of the extremal vector field [2, Section 4.1]. Note that the extremal vector field lies in the

isometry group of the extremal metric. Thus their approach also proves that an extremal metric achieves

the absolute minimum of the modified Mabuchi functional on  -invariant metrics.

Berman-Berndtsson also consider the twisted Mabuchi functional [2, Section 3.1.1], where they show

that the term added to the Mabuchi functional is strictly convex when the twisting form is positive. It

is easy to see that the added term is convex when the twisting form is semipositive. Thus combining

their results proves convexity of the modified twisted Mabuchi functional on the space of  -invariant

metrics, and hence their approach proves that a twisted extremal metric achieves the absolute minimum

of the modified twisted Mabuchi functional on this space. �

Remark 4.16. When the metrics are actually twisted cscK rather than twisted extremal, the -invariance

assumption is not actually needed: the functional Mb ,: is then bounded below on all of K: .

The key asymptotic expansion we will use is the content of the following lemma.

Lemma 4.17. We have

Mb ,: (i) −Mb ,: (k) =

(
< + =

=

)
:=−1 (N(i) −N(k)) +$ (:=−2).

Proof. Let lC = l- + 8mm̄iC ∈ U be a path of relatively cscK metrics on c : - → �, with i0 = k and

i1 = i. Denote l: = l- + :l� and lC ,: = l: + 8mm̄iC . Thus

∫ 1

0

(
3

3C
N(iC )

)
3C = N(i) −N(k),

and similarly for Mb ,: (i) −Mb ,: (k).

The derivative of the modified twisted Mabuchi functional Mb ,: along the path lC ,: is

3

3C

(
Mb (iC )

)
= −

∫

-

¤iC

(
((lC ,: ) − ΛlC,:

b − ℎC ,: − (̂b ,:

)
l<+=
C,: .

We first note that by Corollary 3.5, the holomorphy potential ℎ:,C for the extremal vector field is in fact
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$ (:−2). Thus

3

3C

(
Mb (iC )

)
= −

∫

-

¤iC

(
((lC ,: ) − ΛlC,:

b − (̂b ,:

)
l<+=
C,: +$ (:=−2).

Denote by ((lC ,1) the function whose restriction to each fibre -1 is the scalar curvature oflC |-1
, and

let (̂1 be the average scalar curvature on the fibres (-1 , lC ,1), which is independent of both C ∈ [0, 1]

and 1 ∈ �. By our hypothesis thatl- is relatively cscK, we have ((lC ,1) = (̂1 . Recall from Proposition

2.3 that the twisted scalar curvature (with twist b) expands as

((lC ,: ) − ΛlC,:
(b) = ((lC ,1) + :

−1
(
_'C

+ ?(\C ) + ((l�) − Λl�
(b + Z)

)
+$ (:−2),

where _'C
∈ �∞

'C
(-), since b is pulled back from �. It is important to note here that the Weil-Petersson

form Z is independent of C, as it is independent of choice of relatively cscK metric. The volume form

has an expansion

l<+=
C =

(
< + =

=

)
:=l<C ∧ l=� +$ (:=−1).

The average scalar curvature expands as

(̂b ,: = (̂1 + :
−1(̂b+Z +$ (:−2),

where (̂b+Z is the average-twisted scalar curvature of any metric in V on �, with twist b + Z . Using that

?(\C ) =: _�C
∈ �∞

�C
(-), we obtain

−
3

3C

(
Mb ,: (iC )

)

=

∫

-

¤iC

(
((lC ,1) − (̂1 + :

−1
(
_'C

+ _�C
+ ((l�) − Λl�

(b + Z) − (̂b+Z

))
l<C +$ (:=−2)

=

(
< + =

=

)
:=−1

∫

-

¤iC (_'C
+ _�C

)l<C ∧ l=� +$ (:=−2)

=

(
< + =

=

)
:=−1 3

3C
N(iC ) +$ (:=−2),

using that lC is relatively cscK, that l� solves the twisted equation ((l�) −Λl�
(b + Z) = (̂b+Z ,V , and

that from Lemma 4.14 and Corollary 4.15, ¤iC is orthogonal to �∞
'C
(-), and finally that ?(\C ) = _�C

∈

�∞
�C
(-) by definition. Integrating the above from zero to one gives the desired expansion. �

With this in place, we can prove Theorem 18.

Proof. Supposel- +8mm̄k is an optimal symplectic connection with isometry group . Let l̃: ∈ :V+U

denote the twisted extremal metric constructed in Theorem 12, which by construction are  -invariant.

We use the reference metric l: = :l� + l- ∈ :V + U in the definition of the modified twisted

Mabuchi functional, and write l̃: = l: + 8mm̄k̃: . We first show that we can approximate Mb ,: (k̃: ) by

Mb ,: (l: + 8mm̄k), where l: = l- + :l�.

From Theorem 12, we have

l̃: = l- + 8mm̄k + :l� + :−18mm̄;1 +$ (:−2),

for some  -invariant function ;1 ∈ �∞
'
(-). It follows that

Mb ,: (i) −Mb ,: (k̃: ) = Mb ,: (i) −Mb ,: (k + :−1;1) +$ (:=−2),

https://doi.org/10.1017/fms.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.15


Forum of Mathemetics, Sigma 35

for any other l: + 8mm̄i ∈ :V + U. Moreover, for notational simplicity denoting temporarily

l:,k+:−18mm̄C;1
= :l� + l- + 8mm̄k + C:−18mm̄;1

Mb ,: (k) −Mb ,: (k + :−1;1)

=

∫ 1

0

∫

-

:−1;1

(
((l:,k+:−18mm̄C;1

) − Λl
:,k+:−18mm̄C;1

b − (̂:, b

)
(l:,k+:−18mm̄C;1

)<+=3C

= $ (:=−2),

since l- + 8mm̄k is relatively cscK and the holomorphy potential of the extremal vector field is$ (:−2).

Thus

Mb ,: (i) −Mb ,: (k̃: ) = Mb ,: (i) −Mb ,: (k) +$ (:=−2),

for any i.

Next we use the asymptotic expansion of the the modified twisted Mabuchi functional established in

Lemma 4.17. By Theorem 19, the potential k̃: achieves the absolute minimum of this functional, so

Mb (i) −Mb ,: (k̃: ) ≥ 0.

Thus

0 ≤ Mb ,: (i) −Mb ,: (k̃: )

= Mb ,: (i) −Mb ,: (k) +$ (:=−2)

=

(
< + =

=

)
:=−1 (N(i) −N(k)) +$ (:=−2),

by Lemma 4.17. It follows that N(i) ≥ N(k), which is what we wanted to prove. �

Remark 4.18. From Remark 4.16, one obtains that if the twisted extremal metrics constructed on -

is actually twisted cscK, an optimal symplectic connection minimises the energy functional N on the

whole of K� . Although this will seldom happen in practice, we believe the statement about N being

bounded on K� to be true in general.

We require invariance because the modified twisted Mabuchi functional is only defined on potentials

invariant under the flow of the extremal vector field. As we have no control over the extremal vector field

when constructing twisted extremal metrics on - , we are forced to work with potentials invariant under

the maximal compact subgroup  = Isom0(c, l- ). We expect that a better understanding of geodesics

in the space of relatively cscK metrics would allow us to remove our  -invariance assumption. However,

we also expect that boundedness on  -invariant metrics is equivalent to boundedness with no invariance

assumption.

Finally, the same proof as that of Theorem 18 allows us to deduce basic properties of the functional N

from corresponding properties of M. To state the third property, which demonstrates how N depends on

the reference metric, we will (from the second property) write Nl-
(l′

-
) for the value of the functional

N at l′
-

with reference metric l- .

Lemma 4.19. The functional N : K� → R satisfies the following properties:

1. It is well-defined, independent of choice of path iC . Moreover, N is invariant under adding a constant

to i.

2. It is independent of adding a constant to i and hence can be viewed as a functional on the space of

relatively cscK metrics, rather than potentials.

3. For relatively cscK metrics l- , l
′
-
, l′′

-
∈ U, it satisfies the cocycle condition

Nl-
(l′

- ) +Nl′
-
(l′′

- ) +Nl′′
-
(l- ) = 0.

https://doi.org/10.1017/fms.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.15


36 Ruadhai Dervan and Lars Martin Sektnan

Proof. (i) This follows from the proof of Theorem 18 and the fact that the Mabuchi functional itself is

well-defined [25]. Indeed, suppose iC , kC are two paths of relatively cscK metrics joining 0 to i. Then

:l� +l- + 8mm̄iC and :l� +l- + 8mm̄kC are Kähler metrics in :V + U for all : ≫ 0, and hence if M:

denotes the Mabuchi functional (with respect to the reference metric :l� + l- ), then

M: (i) =

∫ 1

0

(
3

3C
M: (iC )

)
3C =

∫ 1

0

(
3

3C
M: (kC )

)
3C.

Expanding in : and arguing as in the proof of Theorem 18 shows that

∫ 1

0

(
3

3C
N(iC )

)
3C =

∫ 1

0

(
3

3C
N(kC )

)
3C,

which implies that N : K� → R is well-defined, as required.

(ii) This is obvious from the definition of N.

(iii) The Mabuchi functional satisfies the cocycle property [25, Theorem 2.4]

M:l�+l-
(:l� + l′

- ) +M:l�+l
′
-
(:l� + l′′

- ) +M:l�+l
′′
-
(:l� + l- ) = 0,

and expanding in : as above shows that the same property is true for the functional N. �

It follows from (888) that boundedness of N is independent of the choice of reference relatively cscK

metric.
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