A. Nakamura Nagoya Math. J. Vol. 38 (1970), 145–152

ON A PROPOSITIONAL CALCULUS WHOSE DECISION PROBLEM IS RECURSIVELY UNSOLVABLE¹⁾

AKIRA NAKAMURA

Dedicated to Professor Katuzi Ono on his 60th birthday

§0. Introduction

The purpose of this paper is to present a propositional calculus whose decision problem is recursively unsolvable. The paper is based on the following ideas:

- (1) Using Löwenheim-Skolem's Theorem and Surányi's Reduction Theorem, we will construct an infinitely many-valued propositional calculus corresponding to the first-order predicate calculus.
- (2) It is well known that the decision problem of the first-order predicate calculus is recursively unsolvable.
- (3) Thus it will be shown that the decision problem of the infinitely many-valued propositional calculus is recursively unsolvable.

In this paper, we consider semantically the problem. That is, we define a validity of wff in our logical system and we will discuss on the problem to decide whether or not an arbitrary wff in our system is valid.²⁾

$\S1.$ Logical system L

We consider a logical system L:

- (1) Propositional variables: $F_1, F_2, \dots, G_1, G_2, \dots, P_1, P_2, \dots$
- (2) Truth-values: Let N be the set of natural numbers and $\Omega = \{0,1\}$.

We define functions f, g as follows:

Received March 1, 1969

¹⁾ This research was done while the author stayed at Dept. of Information Science, Univ. of North Carolina at Chapel Hill.

²⁾ In the first-order predicate calculus, the semantical decision problem is equivalent to the syntactical one by the completeness theorem.

$$f: N \to \Omega,$$
 $f \in 2^N,$ $q: N \times N \times N \to 2^N,$ $q \in (2^N)^{N \times N \times N}.$

A truth-value is defined as a member of $(2^N)^{N\times N\times N}$, i.e. it is such a function g. Let us say here (x, y, z) in $N\times N\times N$ as a coordinate, and x, y, z as x-coordinate, y-coordinate, z-coordinate, respectively.

(3) Logical operations¹⁾:

Monadic operations: $X, Y, Z, \exists_x, \exists_y, \exists_z, \diamondsuit, \neg$,

Duadic operation: V.

(4) Truth-value functions:

Let us denote as follows:

$$\begin{split} f(\lambda) &= *_{\lambda}, \quad \lambda \in N, \ *_{\lambda} \in \varOmega, \\ g(x, \ y, \ z) &= v_{xyz}, \ x, \ y, \ z \in N, \ v_{xyz} \in 2^{N}. \end{split}$$

X: If a truth-value of wff $\mathfrak A$ has v_{iii} at (i, i, i) in $N \times N \times N$, the truth-value of $X\mathfrak A$ has the same v_{iii} at every (i, y, z) where $y, z = 1, 2, 3, \cdots$.

Y, Z: Those are defined by the similar way to X.

 \lor , \lnot : Those are defined by the usual way.

 \exists_x : We consider all elements (x, j, k) in $N \times N \times N$ where j, k are constants. If there exists a such that a $*_{\lambda}$ at (a, j, k) of truth-value of wff $\mathfrak A$ is 1, then the truth-value of $\exists_x \mathfrak A$ has 1 at $*_{\lambda}$ of every (x, j, k).

If a truth-value of $\mathfrak A$ has 0 at $*_{\lambda}$ of (x, j, k) for every x, then the truth-value of $\exists_x \mathfrak A$ has 0 at $*_{\lambda}$ in every (x, j, k).

 a_y, a_z : Those are defined by the similar way to a_x .

 \diamondsuit : For every g(x, y, z),

$$\diamondsuit g(x, y, z) = \begin{cases} \text{every } *_{\lambda}(\lambda = 1, 2, 3, \cdots) \text{ is } 1, \text{ if } *_{\lambda} = 1 \text{ for some } \lambda. \\ \text{every } *_{\lambda}(\lambda = 1, 2, 3, \cdots) \text{ is } 0 \text{ otherwise.} \end{cases}$$

The logical system L is considered as a kind of infinitely many-valued propositional logic. In this paper, a truth-value whose $*_{\lambda}$ ($\lambda = 1, 2, 3, \cdots$) at every (x, y, z) are all 1 is called the *designated value*. And further a wff $\mathfrak A$ is called *valid* if and only if the $\mathfrak A$ takes always the designated value independently of truth-values of propositional variables P_1, P_2, \cdots, P_n in $\mathfrak A$.

¹⁾ Using those logical operations, we define $P_1 \wedge P_2 \stackrel{D}{=} \neg (\neg P_1 \vee \neg P_2)$, $P_1 \supset P_2 \stackrel{D}{=} \neg P_1 \vee P_2$.

$\S 2$. Relations between the first-order predicate calculus K and the system L

We shall give some relations between the first-order predicate calculus K and the logical system L.

According to the Surányi Reduction Theorem, we have the following one:

Theorem. For every wff $\mathfrak A$ in K, we can construct a wff $\mathfrak B$ of the following form:

(I)
$$(\exists x) (\exists y) (\exists z) M_1 \lor (\exists x) (\exists y) (z) M_2$$

where M_1 and M_2 are quantifier-free and contain non but monadic and duadic predicates. And, in this case, \mathfrak{A} is equivalent to \mathfrak{B} in regard to the universal validity.

From now on, we shall denote Surányi Reduction Form (I) of an arbitrary wff $\mathfrak A$ in K as $\mathfrak A^*$.

Now, for wff \mathfrak{A}^* and each subformula \mathfrak{S} of \mathfrak{A}^* in K, let $h(\mathfrak{S})$ be a wff in L obtained by using inductively the following (i)-(iii).

(i) If \mathfrak{S} is a monadic predicate F(x), then

$$h(F(x)) \rightarrow \diamondsuit XF.^{1)}$$

where \rightarrow means "correspondence".

(ii) If \mathfrak{S} is a duadic predicate G(x, y), then

$$h(G(x,y)) \rightarrow \diamondsuit(XG^1 \wedge YG^2)^{1}$$
.

Here, it needs not to consider such a case as h(H(x, y, z)) because the form (I) contains only monadic and duadic predicates as shown above.

(iii) If S contains logical operations or quantifier, then

$$egin{align} h(\ \lnot \mathfrak{S}_1) &
ightarrow \ \lnot h(\mathfrak{S}_1), \ h(\mathfrak{S}_1 ee \mathfrak{S}_2) &
ightarrow h(\mathfrak{S}_1) \ ee h(\mathfrak{S}_2), \ h((\exists x)\mathfrak{S}_1) &
ightarrow \exists_x h(\mathfrak{S}_1), \ h((\exists y)\mathfrak{S}_1) &
ightarrow \exists_y h(\mathfrak{S}_1), \ h((\exists z)\mathfrak{S}_1) &
ightarrow \exists_z h(\mathfrak{S}_1). \ \end{split}$$

For example:

$$h((\exists x) (\exists y) (F(x) \& G(x, y)) \rightarrow \exists_x \exists_y (\diamondsuit XF \land \diamondsuit (XG^1 \land YG^2)).$$

¹⁾ Of course, $h(F(y)) \to \Diamond YF$, $h(F(z)) \to \Diamond ZF$, $h(G(y,z)) \to \Diamond (YG^1 \land ZG^2)$, ...

We shall write $h(\mathfrak{A}^*)$ as $\widetilde{\mathfrak{A}}^*$.

Then, we shall prove, in §3, the following theorems:

Theorem 1. If $\widetilde{\mathfrak{A}}^*$ is valid in L, then \mathfrak{A}^* is universally valid in K.

Theorem 2. If \mathfrak{A}^* is universally valid in K, then $\widetilde{\mathfrak{A}}^*$ is valid in L.

Now, assume that the decision problem of validity in L is recursively solvable. Then, we have an effective procedure to decide whether or not an arbitrary wff $\widetilde{\mathfrak{A}}^*$ in L is valid. Thus, from Theorem 1 and 2 we have also an effective procedure to decide whether or not \mathfrak{A}^* in K is universally valid. But, \mathfrak{A}^* is Surányi's reduction form of \mathfrak{A} . Therefore it follows that the decision problem of predicate calculus is recursively solvable. This is contradict with (2) in $\mathfrak{S}0$. Thus, we know that the decision problem in L is recursively unsolvable.

§3. Proofs of Theorem 1 and 2

Now, we shall give proofs of Theorem 1 and 2.

Theorem 1:

We prove the following Theorem 1' which is equivalent to Theorem 1. Theorem 1'. If \mathfrak{A}^* is not universally valid in K, than $\widetilde{\mathfrak{A}}^*$ is not valid in L.

Proof. To prove this theorem we use Löwenheim-Skolem's Theorem which is expressed as follows: a wff \mathfrak{F} in K is universally valid if \mathfrak{F} is valid in an enumerable infinite domain ω .

Using this theorem and our assumption of Theorem 1', we are able to let a truth-value of \mathfrak{A}^* be F(falsity) in ω by some suitable truth-value assignment. Here let us denote elements in ω as e_1 , e_2 , e_3 , \cdots , and assume that the following predicates occur in \mathfrak{A}^* .

(II)
$$F_1(x), F_2(x), \dots, F_{\alpha}(x); \dots; F_1(z), F_2(z), \dots, F_{\alpha}(z),$$

 $G_1(x, x), \dots, G_{\beta}(x, x); G_1(x, y), \dots; G_1(z, z), \dots, G_{\beta}(z, z).$

Here, it is possible to assume that those predicates actually occur in \mathfrak{A}^* . For if $F_1(x)$ occurs neither in $(\exists x)(\exists y)(\exists z)M_1$ nor in $(\exists x)(\exists y)(z)M_2$, then it is sufficient to consider a formula $(\exists x)(\exists y)(\exists z)(M_1 \& F_1(x) \lor \neg F_1(x))$ which is equivalent to $(\exists x)(\exists y)(\exists z)M_1$.

Now, according to our assumption a truth-value of \mathfrak{A}^* is F in ω by a truth-value assignment for predicates (II). Say that the truth-value assignment is as follows:

From this truth-value assignment, we construct a truth-value assignment in L as follows:

First of all, we make a correspondence of T and F in K to $(1, 1, 1, 1, 1, \dots)$ and $(0, 0, 0, 0, 0, \dots)$ in L respectively. Here, the above-mentioned $(1, 1, 1, 1, \dots)$ $((0, 0, 0, 0, 0, \dots))$ stands for $f(\lambda) = 1$ $(f(\lambda) = 0)$ for all λ . Next, we make a correspondence of e_1, e_2, e_3, \dots to $(1, 1, 1), (2, 2, 2), (3, 3, 3) \dots$ in $N \times N \times N$ in our definitions.

Now, we consider the following truth-value assignment of F_1, F_2, \cdots , F_{α} in $\widetilde{\mathfrak{A}}^*$. If $F_i(e_j)$ is T (or F) in (III), then we give $(1,1,1,1,1,\cdots)$ (or $(0,0,0,0,0,\cdots)$) to F_i at (j,j,j) in $N\times N\times N$.

For example:

If $F_2(e_2)$ is T in (III), then we give $(1,1,1,1,1,\dots)$ to F_2 at (2,2,2) in $N\times N\times N$. If $F_2(e_1)$ is F in (III), then we give $(0,0,0,0,0,\dots)$ to F_2 at (1,1,1) in $N\times N\times N$. In this case, v_{xyz} of F_1, F_2, \dots, F_a are arbitrary except $v_{111}, v_{222}, v_{333}, \dots$. This is always possible.

Next, we consider the following assignment of G_1^1 , G_2^1 , \cdots , G_{β}^1 ; G_1^2 , G_2^2 , \cdots , G_{β}^2 in $\widetilde{\mathfrak{A}}^*$ corresponding to G_1 , G_2 , \cdots , G_{β} in \mathfrak{A}^* .

If $G_i(e_1, e_1)$ is T in (III), we give $(\tau_1, \tau_2, \tau_3, \cdots)$ to G_i^1 at (1, 1, 1) and $(\tau'_1, \tau'_2, \tau'_3, \cdots)$ to G_i^2 at (1, 1, 1) by whose value $\diamondsuit(G_i^1 \land G_i^2)$ takes $(1, 1, 1, 1, 1, \cdots)$, where τ_i, τ'_i is in Ω .

If $G_i(e_1, e_2)$ is T in (III), we give the above $(\tau_1, \tau_2, \tau_3, \cdots)$ to G_i^1 at (1,1,1) and $(\tau_1'', \tau_2'', \tau_3'', \cdots)$ to G_i^2 at (2,2,2) by whose value $\diamondsuit(G_i^1 \land G_i^2)$ takes $(1,1,1,1,1,\cdots)$

In the above explanation, (1,1,1), (2,2,2), \cdots correspond to e_1, e_2, \cdots and G_i^1 , G_i^2 to the first argument, the second argument of G_i .

Those $(\tau_1^{(\sigma)}, \tau_2^{(\sigma)}, \cdots)$ at (k, k, k) and $(\tau_1^{(\rho)}, \tau_2^{(\rho)}, \cdots)$ at (l, l, l) must be given

such that $\diamondsuit(G_i^1 \land G_i^2)$ obtained from $G_i(e_k, e_l)$ whose value is \mathbf{F} in (III) does not take the value $(1, 1, 1, 1, 1, \dots)$.

By repeated applications of this process, we give values to $G_1^1, G_2^1, \dots, G_{\beta}^1; G_1^2, G_2^2, \dots, G_{\beta}^2$ at $(1,1,1), (2,2,2), (3,3,3), \dots$ in $N \times N \times N$ and in this case values at (ν_1, ν_2, ν_3) where at least two of ν_1, ν_2 and ν_3 are different are arbitrary.

This process is always possible too. Because since our $(*_1, *_2, *_3, \cdots)$ is an infinite sequence of 0,1, it is possible by the definition of truth-value function of \diamondsuit .

That is, for example: let us assume that

Then, first we enumerate those predicates as the above-mentioned ①, ②, ③, · · · and we give an assignment as follows:

$$G_{i}^{1}(e_{1}): (1, 0, 1, *_{4}, *_{5}, \cdots) \qquad G_{i}^{2}(e_{1}): (1, 0, 0, \cdots)$$

$$2) \quad G_{i}^{1}(e_{2}): (0, 0, 0, 0, 1, \cdots) \qquad G_{i}^{2}(e_{2}): (0, 0, 1, 0, 1, 0, 0, 1, \cdots)$$

$$G_{i}^{1}(e_{3}): (0, 0, 0, 0, 0, 0, 0, 1, \cdots) \qquad G_{i}^{2}(e_{3}): (0, 0, 0, 0, 0, 0, 0, 0, 1, \cdots)$$

$$\vdots \qquad \vdots$$

where $G_i^j(e_1)$ (j=1,2) means a value of G_i^j at (1,1,1) in $N \times N \times N$ and $G_i^j(e_2)$ means a value of G_i^j at (2,2,2) in $N \times N \times N$, etc..

2) is constructed such that the first 1, the third 1 from the left in (1, 0, 1, $*_4$, $*_5$, \cdots) of $G_i^1(e_1)$ correspond to T of the enumeration ①, ③ in 1).

Now, notice that in an enumerable infinite domain N the operation $(\exists x)((\exists y),(\exists z))$ can be interpreted as an infinite disjunction on x-coordinate (y-coordinate, z-coordinate). For example: $(\exists x) \mathfrak{A}(x,y,z)$ is interpreted as

$$\mathfrak{A}(1, y, z) \vee \mathfrak{A}(2, y, z) \vee \cdots$$

And also we notice that

- (1) if $F(e_1, e_2)$ is a truth-value of F(x, y), it is considered by the definition of X, Y, Z as a value at (1, 2, z) in $N \times N \times N$ where $z = 1, 2, 3, \cdots$.
- (2) if $F(e_1, e_2)$ is a truth-value of F(y, x), it is considered as a value at (2, 1, z) in $N \times N \times N$ where $z = 1, 2, 3, \cdots$.

- (3) if $F(e_2, e_2)$ is a truth-value of F(x, x), it is considered as a value at (2, y, z) in $N \times N \times N$ where $y, z = 1, 2, 3, \cdots$,
- (4) and so on.

Thus, from the above-mentioned truth-value assignment, the construction of $\widetilde{\mathfrak{A}}^*$ and the interpretation of existential quantifier in the domain N, we are able to let $\widetilde{\mathfrak{A}}^*$ be not valid in L. Therefore, we get Theorem 1'.

Throem 2:

We shall prove the following Theorem 2' which is equivalent to Theorem 2.

Theorem 2'. If $\tilde{\mathfrak{A}}^*$ is not valid in L, then \mathfrak{A}^* is not universally valid in K.

Proof. Let us notice that $\widetilde{\mathfrak{A}}^*$ is of a form $\exists_x \exists_y \exists_z \widetilde{M}_1^* \vee \exists_x \exists_y \exists_z \exists_{\widetilde{M}_2^*}$ where \widetilde{M}_1^* and \widetilde{M}_2^* correspond to M_1 and M_2 respectively. From this matter and the assumption of this theorem, we can give truth-values for propositions $F_1, F_2, \dots, F_{\alpha}$; $G_1^1, G_2^1, \dots, G_{\beta}^1$: $G_1^2, G_2^2, \dots, G_{\beta}^2$ in $\widetilde{\mathfrak{A}}^*$ by which $\widetilde{\mathfrak{A}}^*$ takes $(0,0,0,0,0,\dots)$ at every (x,y,z) in $N\times N\times N$.

Here we make a correspondence of $(0, 0, 0, 0, 0, 0, \cdots)$, $(1, 1, 1, 1, 1, 1, \cdots)$ to F, T as mentioned above. Then, we consider only values at (i, i, i) in $N \times N \times N$ in the assignment where $i = 1, 2, 3, \cdots$.

Now, let us say that the truth-value assignment is as follows:

$$\begin{array}{lll} F_{1}(e_{1})\colon (t_{111},\ t_{112},\ \cdots) & F_{2}(e_{1})\colon (t_{211},\ t_{212},\ \cdots)\cdots \\ F_{1}(e_{2})\colon (t_{121},\ t_{122},\ \cdots) & F_{2}(e_{2})\colon (t_{221},\ t_{222},\ \cdots) \\ \vdots & & & \\ G_{1}^{1}(e_{1})\colon (\tau_{111}^{1},\ \tau_{112}^{1},\ \cdots) & G_{1}^{2}(e_{1})\colon (\tau_{111}^{2},\ \tau_{112}^{2},\ \cdots)\cdots \\ \vdots & & & \\ \end{array}$$

where $F_1(e_1)$, $F_1(e_2)$, \cdots mean values of F_1 at (1,1,1), (2,2,2), \cdots in $N \times N \times N$ as before.

Then, we take (1,1,1), (2,2,2), \cdots as an infinite domain ω . Further we take a value of $\Diamond XF_i$ obtained from $F_i(e_i)$ as a truth-value of predicate $F_i(x)$ for x=(i,i,i) and also a value of $\Diamond (XG_i^1 \land YG_i^2)$ obtained from $G_i^1(e_k)$,

 $G_i^2(e_l)$ as a truth-value of predicate $G_i(x,y)$ for x=(k,k,k), y=(l,l,l) and so on. From the definitions of X,Y,Z and the $h:h(F_i(x))\to \diamondsuit XF_i$, $h(G_i(x,y))\to \diamondsuit (XG_i^1\wedge YG_i^2)$, \cdots , we know that \mathfrak{A}^* takes F in the enumerable infinite domain ω .

Thus, we get Theorem 2'.

Faculty of Engineering Hiroshima University