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Abstract
Three areas in the brain continuously generate new neurons throughout life: the subventricular zone lining the lateral ventricles, the dentate
gyrus in the hippocampus and the median eminence in the hypothalamus. These areas harbour neural stem cells, which contribute to neural
repair by generating daughter cells that then become functional neurons or glia. Impaired neurogenesis leads to detrimental consequences,
such as depression, decline of cognitive abilities and obesity. Adult neurogenesis is a versatile process that can be modulated either positively
or negatively by many effectors, external or endogenous. Diet can modify neurogenesis both ways, either directly by ways of food-borne
molecules, or possibly by the modifications induced on gut microbiota composition. It is therefore critical to define dietary strategies optimal
for the maintenance of the stem cell pools.
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Introduction

Like any other organ, the brain possesses regenerative
capacities, and the process of adult neurogenesis, since its
existence was proven, has been the subject of intense investi-
gation. The discovery of neural stem cells (NSC) has also
instigated new hopes for neuronal repair in regenerative
medicine, and inspired studies designed to better understand
the events and regulations involved in neurogenesis. Even if the
understanding of this complex process is still uncompleted,
the knowledge of the factors influencing neuron generation
is more and more precise and detailed, and the ensemble
of neurogenesis-related studies shows that neurogenesis is
a highly malleable process, in which diet can play an
important part.

Neurogenesis is restricted to specific areas

Compared with high-rate turnover tissues such as the intestine
for example, the brain presents limited regenerative capacities, in
terms of intensity as well as in terms of location. The stem cells in
the brain comply with the requirements defining stem cells: they
self-renew, and are multipotent, i.e. they can differentiate into
functional neurons, astrocytes and oligodendrocytes. The NSC
are localised in three areas: the subventricular zone (SVZ) lining
the lateral ventricle, the subgranular zone of the dentate
gyrus (DG) in the hippocampus and a recently acknowledged
area of the hypothalamus, the median eminence (ME). In the
parenchyma, some scattered dividing cells have also been

described, but these dividing cells are progenitors and not
stem cells, in the sense that they do not self-renew, and that
their in vivo fate is limited to the glial lineage. They will not
be considered here.

The NSC of the SVZ give rise to neuroblasts migrating to
the olfactory bulb, where they differentiate into GABAergic
olfactory bulb interneurons and integrate the existing neuronal
networks(1). They take part in the maintenance of the network,
the incorporation of new olfactory stimuli, or the olfactory
memory. The fate of the NSC has been precisely documented in
the SVZ: NSC (type B cells) derived from the embryonic radial
glial cells divide slowly and give rise to transient-amplifying
cells (type C cells), precursors of the neuroblasts (type A cells)
which migrate into the rostral migratory stream to reach the
olfactory bulb(1–3). NSC have also the possibility to differentiate
into astrocytes and oligodendrocytes(4,5).

In the DG of the hippocampus, the NSC are designated by
different names, but the successive events are very similar:
the NSC are named radial and horizontal type 1 NSC. They
divide slowly into type 2 neuronal precursors, which cycle
more intensely. The precursors differentiate into neuroblasts
and are finally integrated into the network of the granular zone
after 4 weeks of maturation as glutamatergic granule cells. The
difference in this structure resides in the fact that the neuroblasts
migrate shorter distances, and differentiate in the layer of
subgranular cells. They establish connections with the
pyramidal layer of cornu Ammonis (CA) 3 zone of the
hippocampus(6,7). Correlative studies by ablation and deletion
have established that the new neurons are involved in the
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maintenance of spatial memory, learning capacities, and the
retention of new memories(8). There seems to be a correlation
between the survival of newborn cells and spatial-memory
performances(9,10). DG neurogenesis has also been linked with
anxiety and depression or depression susceptibility in humans.
This aspect has been under intense focus after the ground-
breaking studies showing that the anti-depressant fluoxetine
could increase cell division in the DG, and that this effect could
correspond to the time needed for the treatment to have an
impact in the patients(11,12).
If the existence of neurogenesis is now firmly established in

rodents’ brains, the relevance of these observations in humans
has been debated. In humans, SVZ neurogenesis is very
active until 2 years of age, with large numbers of immature
neuroblasts migrating in the rostral migratory stream, but is
nearly extinct in adulthood(13). A similar observation has
been made in non-human primates(14). By contrast, human
DG neurogenesis remains very active in adults: it has been
estimated that 700 neurons/d are added in the DG(15).
Another very important role of neurogenesis in both areas is

that the generation of new neurons is involved in neuronal
repair after ischaemic stroke. Neuroblasts from the SVZ migrate
to the damaged areas such as the cortex and the striatum and
serve as a replacement of the dead neurons(16,17) and ischaemic
stroke enhances also neurogenesis in the DG(18). NSC trans-
plants can survive and migrate into the ischaemic area(19) and
neuroblast transplantation helps the restoration of behaviour
and motor skills in rodents(20–22).
There is a great similarity in the markers of the NSC and

progenitors from both areas: nestin and Sox2 are the classical
markers for the NSC, and are not expressed anymore along the
line of differentiation, polysialylated neuronal cell adhesion
molecule (PSA-NCAM) and doublecortin are the most
commonly used markers for neuroblasts, which once fully
differentiated into neurons, can be labelled with NeuN or
HuC/D. Using these markers enables to trace the fate of the
newly generated cells in vivo.
The hypothalamus has been less studied. There have been

reports showing the existence of dividing cells for long(23);
but this structure has recently gained further interest because
studies have pointed out that the neurogenesis in this area is
modulated by high-fat diets, a point that will be discussed below.
Tanycytes are glial cells that line the third ventricle. Four different
types have been characterised, α 1 and 2, and β 1 and 2, the
function and properties of which differ with their location along
the ventricle(24). The β2 tanycytes, at the bottom of the third
ventricle in the ME region and the α2 subtype, bordering the
lateral walls of the third ventricle in the paraventricular and arcuate
nuclei, are now considered as NSC, because they proliferate and
display markers such as nestin and Sox2(25). They migrate under
intermediate differentiation into the arcuate nucleus (ARC) of the
hypothalamus, and differentiate fully into pro-opiomelanocortin
(POMC) neurons. POMC neurons are anorexigenic neurons; they
decrease food intake through αMSH release, a proteolytic product
of POMC. A fraction of these new neurons differentiate in
a second wave into NPY and Agouti-related peptide (AgRP)
neurons, which are orexigenic, and increase food intake(26,27). The
origin of the feeding circuitry lies in the embryonic period, and the

remodelling is very intense postnatally, and up until adolescence
in the rodent(18) but persists into adulthood(28). Disruption of
the neurogenic process leads to modifications of food intake: an
acute degeneration of AgRP neurons leads to a severe anorexia in
mice, while a slow and progressive deletion does not have
a significant effect on food intake, because neurogenesis can
compensate and replace the degenerated neurons(29). Therefore,
the loss of POMC neurons in ARC could favour the development
of obesity.

The neurogeneses in the three areas present similarities on
several aspects: (1) the stem cells display markers specific to the
glial lineage(30–32); (2) the succession of events involved,
i.e. proliferation followed by migration and differentiation; and
(3) the nature of the markers. Yet, because each area is also a
particular niche, their regulations can present some differences.

Regulation and effectors

As mentioned above, NSC are not scattered in the parenchyma,
but are concentrated in particular areas named ‘niches’ which
provides the environment necessary to protect and preserve the
cell pool. The niches are localised in proximity to ventricles
(SVZ and ME) and/or capillaries (DG). Therefore, they are in
close contact with effectors and the NSC pool can react to
signalling modifications, either by dividing or staying quiescent.
The signals can be endogenous; they include hormones, growth
factors or neurotrophins. They can also be external, and that is
how diet and nutrition can influence the process.

Neurotrophins and growth factors are positive regulators of
neurogenesis: brain-derived neurotrophic factor (BDNF),
insulin-like growth factor or vascular endothelial growth factor
all increase cell proliferation, and/or promote cell survival or
cell differentiation in the DG(33,34). A broad range of hormones
can also act on neurogenesis: oestrogen, progesterone and
dehydroepiandrosterone promote DG neurogenesis(35,36),
while corticosteroids, the last messengers of the hypothalamic–
pituitary–adrenal axis, diminish cell proliferation and differ-
entiation(37). Peptide hormones can also modify neurogenesis:
leptin promotes cell proliferation in the DG(38) and insulin
promotes neuronal differentiation(39). Gut peptides can modify
cell renewal: ghrelin, peptide YY and cholecystokinin can
increase cell proliferation in the DG and ghrelin acts positively
on all steps of neurogenesis in the SVZ(40,41). Chronic
injections of glucagon-like peptide-1 increased neurogenesis in
a model of Alzheimer’s disease(42); the effect of satiety peptides
have been described on DG neurogenesis so far, and their
effect on the proliferation and differentiation of β2 tanycytes is
not known. It would be interesting to examine this point.
Indeed, although the mechanisms involved in the three areas
unroll very similarly, they are not necessarily modified by
the same factors: significant differences in the length and
importance of the successive steps may be responsible for
the differences in sensitivity towards effectors. For instance,
prolactin enhances SVZ neurogenesis and thereby increases
the olfactory potential of the mother in preparation for maternal
behaviour but DG neurogenesis is not modified by prolactin(43).
Conversely, BDNF increases cell proliferation in the DG, but
does not affect cell proliferation in the SVZ(44).
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A common feature of neurogenesis in the three areas is
the vulnerability to the ageing process. Following embryonic
neurogenesis, proliferation is very active in the postnatal
period and decreases significantly until mid-age, then keeps
decreasing at a slower pace during senescence in the
hippocampus(45,46). Recently, a study by Zhang et al.(47)

showed that inflammation in the hypothalamus increases with
age, as measured by NF-κB activation in the microglia; this
ageing process negatively regulated gonadotropin-releasing
hormone (GnRH) synthesis, and GnRH delivery into the third
ventricle could reverse age-induced neurogenesis decline.

Dietary influences

Environmental factors are efficient actors in the regulation of
neurogenesis and diet or dietary intakes take an important part
in these interactions. Several aspects can be considered: the
quantity of ingested food or its composition, as developed
below, and even its texture: rat hippocampus proliferation was
decreased in animals fed soft food, and after being fed
a powdered diet for 1 year, mice had lower counts of pyramidal
neurons in the CA1 and CA3 regions of the hippocampus than
mice fed a solid diet(48,49).

Energy restriction v. overnutrition

Dietary restriction achieved by a reduction of 20–40% of energy
intake is reported to promote many health benefits, and to
extend lifespan in many organisms, including mammals. The
mechanism involved is thought to be linked to a reduction in
oxidative stress(50–52). In the brain, dietary restriction increases
the number of newborn neurons in the DG of male rats fed
every other day. A similar observation has been made in mice
fed according to the same schedule: proliferation in the DG
was not modified, but the rate of the survival of the new
neurons was increased. This has been put in relation with
higher levels of BDNF in the CA1 of the hippocampus(53,54).
Conversely, in male adult rats, overnutrition resulting from

the ingestion of high-sugar(55) or high-fat/high-energy diets
leads to a reduction of NSC proliferation and neuron generation
in the DG(56)and ARC(20). However, a high-fat diet and obesity
make an impact on cell proliferation in the brain selec-
tively(57,58). In the ME, the consequences of a high-fat diet seem
less consistent: a study showed a decrease in cell generation
only after a long-term ingestion of a high-fat diet (4 months) in
male adult rats. Another group, after a much more limited
period of high-fat feeding (1 month), showed an opposite effect
on cell proliferation, but this group studied young rats right after
weaning(59). The 4-month feeding resulted in a diminution of
cell proliferation, diminution of cell survival, with a decrease
more important in the neuronal lineage, compared with the glial
lineage; the effect on neurogenesis was connected with an
increase in TNFα and IL-1β concentrations, resulting from an
activation of the NF-κB pathway. This activation promoted
a higher rate of apoptosis in the ARC, leading to a moderate loss
of POMC neurons, while NPY neurons remained unchanged(20).
In young adult mice, a high-fat diet (60% fat) resulted in
a decrease in both sexes in ARC neurogenesis, but enhanced

ME neurogenesis in female mice(60). A maternal diet rich in
lipids and energy (32% fat) also impairs the hippocampal and
hypothalamic neurogenesis of young mouse offspring, with
negative consequences on learning abilities and energy intake
control(61). A concordant result has been established in patients,
linking the Western diet and a smaller left hippocampus(62).

It is interesting to underscore that the results obtained after
long-term high-fat feeding paralleled the consequences of the
ageing effect: very similarly, ageing results in cytokine elevation
and NF-κB activation in the hypothalamus(36).

Consequently, food-borne molecules known for their
anti-inflammatory and antioxidative properties could be
considered valuable in view of dietary strategies aimed at
restoring neurogenesis capacities.

Dietary interventions

The present paragraph will discuss the possibility of dietary
strategies or supplementations using food-borne molecules
with a focus on their role on neurogenesis, knowing that the
effects of these molecules cover a more complex and much
broader field than mere neuron generation.

Polyphenols are such compounds. They are known for their
antioxidant and anti-inflammatory properties(63). Flavonoids are a
class of polyphenols which have attracted a considerable interest.
Dietary supplementations of compounds such as oroxylin A,
baicalin or heptamethoxyflavone, a citrus flavone, can increase
cell proliferation in the hippocampus of mice following global
cerebral ischaemia(64–66), and baicalein reduces the impairment
provoked by γ-ray irradiation(67). They can also play a neuro-
protective role, favouring neurite outgrowth and neural differ-
entiation in vitro(68,69). Resveratrol, a phenol present in wine, red
grapes and groundnuts, can increase cell proliferation in prenatal
stress or in mice with chronic fatigue syndrome(70,71), and the
supplementation also led to a decrease in inflammation and
improvement of cognitive functions. Low intakes of curcumin,
a phenol present in curry powder, increased cell proliferation
in the hippocampus(72). Curcumin also has neuroprotective
properties, as shown in aged rats: it can reverse the effects of age
and ischaemia, and promote cell repair in spinal cord injury(73,74).

n-3 PUFA have also generated much interest, being a major
constituent of brain structures. Insufficient brain DHA, the main
n-3 PUFA in cell membranes, has been associated with memory
impairment, emotional disturbances and altered brain processes
in experimental studies. Epidemiological studies have revealed
that low n-3 PUFA is correlated with cognitive or behavioural
defects during early development(75), adulthood and ageing(76).
Among many other roles, n-3 PUFA can improve hippocampal
neurogenesis by enhancing cell proliferation and differentiation
in adult rats(77–79), and reverse the decline observed in aged rats
under a short supplementation(80). In 19-month-old mice,
8 weeks of n-3 supplementation led to an increase in
hippocampal neurogenesis and in arborisation of newborn
neurons(81). They also affect deeply the physiology of rat NSC,
by enhancing their proliferation and differentiation, and
modifying their trancriptome(82).

Most of the studies described above refer to hippocampal
neurogenesis, because until now, this aspect was the most
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relevant to the human situation. It would be now interesting to
test these compounds on hypothalamic neurogenesis, particu-
larly to check if they could reverse some of the aspects resulting
from obesity, for instance.

Mechanisms involved

From the examples, a general outline can be drawn, showing
that molecules or events that increase inflammation tend to
lower neurogenesis, while anti-inflammatory molecules or
pathways restore it. Therefore, the mediators of the inflamma-
tory pathway represent the central targets and the balance upon
which the different effectors can impinge. We will develop here
some examples of these targets, such as the cAMP response
element binding protein (CREB), BDNF, NF-κB, sirtuin 1 (Sirt1),
and the energy-sensing kinase AMP-activated protein kinase
(AMPK), and we will show how they all inter-relate.

Brain-derived neurotrophic factor and cAMP response
element binding protein. BDNF is a well-recognised effector
of neurogenesis. This neurotrophin is involved in brain devel-
opment and neural plasticity. It mediates its effect through
binding to the membrane receptor tropomyosin receptor kinase
B (TrkB). The variations of BDNF in the hippocampus induced
by environmental modifications and dietary interventions are
directly correlated with the variations noted in neurogenesis:
dietary restriction, which increases neurogenesis, and increases
BDNF mRNA expression and protein(83). On the other hand,
overnutrition decreases BDNF levels. It is here interesting to
underline that BDNF, apart from its role on neurogenesis, acts
also on food intake, since knock-out mice deficient in bdnf
display hyperphagia and develop obesity(84). Very similarly, the
effects of flavonoids on neurogenesis have been connected
with parallel modifications of BDNF in whole brain or hippo-
campus: ingestion of naringin, oroxylin A or blueberry extracts
leads to a significant increase in BDNF levels(85–87). Resveratrol
promotes BDNF synthesis from astroglia(88) and in the
hippocampus(89), and by promoting BDNF synthesis reverses
hippocampal atrophy in chronic fatigue mice and reverses
the effect of mild stress on cognition(90,91).
The effects of n-3 PUFA supplementation are similar: a large

body of studies has unanimously shown that, in experimental
models, the dietary supplementation of DHA or a mixture of n-3
PUFA could increase BDNF levels, or normalise them after mild
brain injury in rats(92). DHA supplementation at 1·25% could
increase the effects of voluntary exercise in mice, with a parallel
increase in BDNF in the brain. Quite interestingly, the benefits
of n-3 PUFA were also transmitted by the maternal diet since
prenatal n-3 PUFA supplementation to a micronutrient-
imbalanced diet protected brain neurotrophins in both
the cortex and hippocampus in the adult rat offspring(93).
In most cases the similarity of actions on BDNF synthesis

could be related to the effects on synthesis of CREB and its
phosphorylation. CREB is an ubiquitous transcription factor,
highly expressed in the brain in which it is involved in many
signalling pathways serving many functions, ranging from
neuronal survival to memory formation(94). Its activation
through phosphorylation is the result of the action of the

mitogen-activated protein kinases, or protein kinase C kinase.
Once phosphorylated, CREB enters the nucleus where it binds
to the CREB response element. One of its target gene is Bdnf.
Experimental data showed that n-3 PUFA supplementation after
traumatic brain injury enhanced CREB protein contents(95) and
reduced oxidative damage in injured rats. Curcumin enhanced
CREB expression in rat brain(96,97), and resveratrol increased
the phosphorylated state of CREB after ischaemia(98).

Inflammatory NF-κB v. anti-inflammatory Sirt1 and AMP
kinase. Another factor affecting neurogenesis is the balance
between pro- and anti-inflammatory pathways.

Ageing, depression and obesity have all been related to
low-grade neuroinflammation and its oxidative stress
companion(99,100). NF-κB is the major and central mediator of
inflammation. This transcription factor, once activated, can
induce the transcription of the inflammatory cytokines such as
TNFα, monocyte chemoattractant protein-1 and IL-1β or
IL-6(101). NF-κB activation has also been cited in the different
situations leading to an increase or decrease of neurogenesis: all
the signals, either endogenous such as age and stress, or
external such as overnutrition, lead to an activation of NF-κB in
the brain, either in the hippocampus or the hypothalamus, and
decrease neurogenesis in these areas.

An endogenous inhibitor of NF-κB is Sirt1. Sirt1 is
a deacetylase enzyme regulating energy metabolism and cell
survival. Among other targets, the RelA/p65 component of the
NF-κB complex is deacetylated by Sirt1 on Lys130, which
inhibits the transcription ability of NF-κB(102). By this
mechanism, Sirt1 can prevent the deleterious effects of a high-
fat diet and protect from hepatic steatosis(103). Therefore, Sirt1
activators could also be valuable in preventing the inflammatory
pathway. Dietary restriction is a strong inducer of Sirt1
expression and activity. The first compound detected among
a screening of small molecules to be an inhibitor of Sirt1 was
resveratrol(104), and it was later demonstrated that resveratrol
could mimic the effects of energy restriction and delay the
ageing process through its up-regulation of Sirt1(105). It is now
well admitted that nutrients can modulate inflammation through
Sirt1 involvement. Other flavonoids, such as quercetin or rutin
for instance, can also up-regulate Sirt1 expression(106,107).
Because of its broad enzymic activity, Sirt1 can take part in
many pathways. It has been demonstrated that Sirt1 activity
could modify the differentiation fate of NSC, favouring
astrogliosis to the expense of neurogenesis under oxidative
stress(108). Sirt1 is also essential for cognition and neuronal
plasticity(109). It is interesting to mention that the overexpression
of Sirt1 stimulates BDNF expression(110), and is neuroprotective
in a model of Huntington’s disease(111). By its deacylating
activity, Sirt1 is involved in a large range of effects. Among the
numerous Sirt1 targets, we will focus on AMPK, because its
involvement in NSC physiology and its regulation by dietary
factors attract increasing interest.

AMPK is a fuel-sensing kinase that drives the cellular
metabolism from catabolic to anabolic depending on the energy
level of the cell. Its activity is up-regulated when the ATP levels
of the cell are low. AMPK and Sirt1 share many cellular targets,
are activated by the same stimuli, and also regulate each
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other(112). Experimental evidence from transgenic mice lacking
the AMPKβ1 subunit demonstrates that this kinase is involved in
NSC proliferation, since the mice display cerebral atrophy.
AMPK could also improve neuronal survival under low energy
conditions(113). Several studies have shown that bioflavonoids
can induce, in vitro and in vivo, an activation of the AMPK
pathway. Naringenin, quercetin and quercetin 3-O-glycosides
extracted from plants in muscle cells, or in the brain of old mice,
up-regulate AMPK activity. Apigenin induces the activation in
human keratinocytes and its activity is also up-regulated by
resveratrol in mouse primary neurons(114–118). Similarly, n-3
PUFA exert their protective and anti-inflammatory effects
through the up-regulation of AMPK(95). The implication of Sirt1
has not been extensively investigated in these studies, but has
been demonstrated in others(119,120).
For clarity we have described the two pathways under two

distinct paragraphs, but they actually are also intertwined and it
is interesting here to notice that the mediators susceptible to act
on neurogenesis are also found at the intersection of the fields
of inflammation, energy homeostasis and neuronal plasticity, as
recapitulated in Fig. 1.
Rodent experimentation has amply demonstrated the

disadvantages/benefits of diets/molecules on neurogenesis and

their functional consequences such as the effects on learning,
mood or energy homeostasis. The relevance of these studies to
the human situation is hampered by the difficulty in measuring
human neurogenesis so this point is mainly based on correla-
tions: for instance, a recent study tested the supplementation of
resveratrol in elderly and proved it efficient in protecting
memory and glucose metabolism(121). Similarly, components of
the Mediterranean diet improved cognition in elderly(122). So
data generated from animal experimentation have opened the
way to many more studies on the usage of diets or natural
compounds as therapeutic agents.

Gut microbiota: a possible effector?

Gut microbiota is now considered as a major factor in the
modulation of the host’s physiology, including neural functions
through the gut–brain axis. Seminal data obtained from the
comparison of germ-free (GF) mice with their conventional
counterparts have shown that the absence of intestinal micro-
biota was associated with a decreased anxiety but a stronger
response to stress(123), but GF male F344 rats exhibited
increased anxiety compared with SPF counterparts(124). The
genetic background of the animals has been proposed as an
important factor(124). GF mice display a lower abundance of
BDNF in the hippocampus, and an increased monoamine
turnover in the striatum(123). Another group has shown higher
hippocampal concentrations of 5-hydroxytryptamine in male
GF mice(125).

A robust body of evidence has shown that gut microbiota
composition differs between fat and lean animals, with a higher
proportion of Firmicutes and a lower presence of Bacteroidetes
in obese animals(126). The modifications pointed out in animals
are consistent with the modifications of the gut microbiota
detected in obese patients(127). Moreover, microbiota alone
seems able to modify the host’s metabolism, as exemplified
by the recent clinical observation, resulting from a faecal
transfer(128). The mechanisms involved are still under clarifica-
tion, but hypotheses suggest that microbiota composition could
either promote a more efficient energy harvest from the
nutrients, or act through the lowering of the systemic inflam-
mation level associated with obesity. Indeed, the inflammation
develops with different kinetics in the organs, and the brain is
the first one to be harmed, since a low level of inflammation is
perceived after only 7 d of a high-fat diet(18). Furthermore, the
installation of obesity is accompanied with a deregulation
of numerous hormones levels, such as insulin, leptin,
adiponectin(129) and the gut satiety peptides such as glucagon-
like peptide-1. We have seen in the paragraph above that these
factors can positively modify neurogenesis, and, therefore, their
deregulation could contribute to the development of a down-
ward spiral aggravated by an impairment of neuronal repair.
Recent data from obese and non-obese patients show that
gut microbiota and brain microstructure are associated(130).
Whether ‘obese’ or ‘non-obese’microbiota can modulate neuro-
inflammation or act directly through bacterial metabolites
would be interesting questions to study, particularly in the
hypothalamus, but also in the hippocampus, with regard to
depression or decline of the cognitive abilities linked
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Fig. 1. Adult neurogenesis is a flexible process, which can be modified by
positive or negative influences. Pro-inflammatory molecules or mechanisms
activate NF-κB, which induces the transcription of pro-inflammatory cytokines,
while anti-inflammatory molecules by their action on sirtuin 1 (Sirt1) activate
cAMP response element binding protein (CREB), brain-derived neurotrophic
factor (BDNF) and AMP-activated protein kinase (AMPK) and restore cell
renewal in the brain. The influence of gut microbiota is here hypothetical. For a
colour figure, see the online version.
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with obesity. Moreover, since the characteristics of the diet
(for example, animal v. plant proteins) themselves can modify
the composition of gut microbiota(131), dietary recommenda-
tions should be made to drive the intestinal microbes’ mass to
beneficial and optimal proportions.

Conclusion

Neurogenesis is an active component of brain physiology, and
its malfunctioning can lead to adverse consequences such as
depression, decline of learning abilities, and obesity. It is also a
versatile and very sensitive process that can be modulated by
many factors: if it can be impaired very easily, it can also be
restored. Modifications in lifestyle can help keep the stem cell
pools under optimal conditions, and nutrition is particularly
helpful on this point. We have established here that most of the
pernicious effects on neurogenesis are interrelated, and come
from neuroinflammation. Keeping this inflammation down
could help contribute to restore cell renewal; Fig. 1 sums up the
detrimental effectors, and the possible solutions to counteract
them. The experimental data have pointed out the favourable
role of food components or molecules. A deeper knowledge of
the possibilities linked with gut microbiota could also open new
possibilities, and this could provide interesting alternatives to
pharmaceutical treatments.
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