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Abstract. Theoretical considerations lead to the expectation that stars should not have masses
larger than about mmax∗ = 60–120 M�, while the observational evidence has been ambiguous.
Only very recently has a physical stellar mass limit near 150 M� emerged thanks to modern
high-resolution observations of local star-burst clusters. But this limit does not appear to depend
on metallicity, in contradiction to theory. Important uncertainties remain though. It is now also
emerging that star-clusters limit the masses of their constituent stars, such that a well-defined
relation between the mass of the most massive star in a cluster and the cluster mass, mmax =
F(Mecl) � mmax∗ ≈ 150 M�, exists. One rather startling finding is that the observational data
strongly favour clusters being built-up by consecutively forming more-massive stars until the
most massive stars terminate further star-formation. The relation also implies that composite
populations, which consist of many star clusters, most of which may be dissolved, must have
steeper composite IMFs than simple stellar populations such as are found in individual clusters.
Thus, for example, 105 Taurus–Auriga star-forming groups, each with 20 stars, will ever only
sample the IMF below about 1 M�. This IMF will therefore not be identical to the IMF of one
cluster with 2×106 stars. The implication is that the star-formation history of a galaxy critically
determines its integrated galaxial IMF and thus the total number of supernovae per star and its
chemical enrichment history. Galaxy formation and evolution models that rely on an invariant
IMF would be wrong.

Keywords. stars: early-type, stars: fundamental parameters (masses), stars: mass function;
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1. The maximum stellar mass limit
1.1. A brief history

A theoretical physical limitation to stellar masses has been known since many decades.
Eddington (1926) calculated the limit which is required to balance radiation pressure and
gravity, the Eddington limit: LEdd/L� ≈ 3.5 × 104 m/M�. Hydrostatic equilibrium will
fail if a star of a certain mass m has a theoretical luminosity that exceeds this limit, which
is the case for m>∼ 60M�. It is not clear if stars above this limit cannot exist, as massive
stars are not fully radiative but have convective cores. But more massive stars will loose
material rapidly due to strong stellar winds. Schwarzschild & Harm (1959) inferred a limit
of ≈60M� beyond which stars should be destroyed due to pulsations. But later studies
suggested that these may be damped (Beech & Mitalas 1994). Stothers (1992) showed
that the limit increases to mmax∗ ≈ 120–150M� for more recent Rogers-Iglesia opacities
and for metallicities [Fe/H]≈ 0. For [Fe/H]≈−1, mmax∗ ≈ 90M�. A larger physical mass
limit at higher metallicity comes about because the stellar core is more compact, the
pulsations driven by the core having a smaller amplitude, and because the opacities near
the stellar boundary can change by larger factors than for more metal-poor stars during
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the heating and cooling phases of the pulsations thus damping the oscillations. Larger
physical mass limits are thus allowed to reach pulsational instability.

Related to the pulsational instability limit is the problem that radiation pressure also
opposes accretion for proto-stars that are shining above the Eddington luminosity. There-
fore the question remains how stars more massive than 60 M� may be formed. Stellar
formation models lead to a mass limit near 40–100M� imposed by feedback on a spher-
ical accretion envelope (Kahn 1974; Wolfire & Cassinelli 1986, 1987). Some observations
suggested that stars may be accreting material in discs and not in spheres (e.g. Chini
et al. 2004). The higher density of the disc-material may be able to overcome the radia-
tion at the equator of the proto-star. But it is unclear if the accretion-rate can be boosted
above the mass-loss rate from stellar winds by this mechanism. Theoretical work on the
formation of massive stars through disk-accretion with high accretion rates thereby al-
lowing thermal radiation to escape pole-wards (e.g. Nakano 1989; Jijina & Adams 1996)
indeed lessen the problem and allow stars with larger masses to form.

Another solution proposed is the merging scenario. In this case massive stars form
through the merging of intermediate-mass proto-stars in the cores of dense stellar clusters
driven by core-contraction due to very rapid accretion of gas with low specific angular
momentum, thus again avoiding the theoretical feedback-induced mass limit (Bonnell,
Bate & Zinnecker 1998; Stahler, Palla & Ho 2000). It is unclear though if the very large
central densities required for this process to act are achieved in reality.

The search for a possible maximal stellar mass can only be performed in massive,
star-burst clusters that contain sufficiently many stars to sample the stellar initial mass
function beyond 100M�. Observationally, the existence of a finite physical stellar mass
limit was not evident until very recently. Indeed, observations in the 1980’s of R136 in
the Large Magellanic Cloud (LMC) suggested this object to be one single star with a
mass of about 2000–3000M�. Weigelt & Baier (1985) for the first time resolved the
object into eight components using digital speckle interferometry, therewith proving that
R136 is a massive star cluster rather than one single super-massive star. The evidence
for any physical upper mass limit became very uncertain, and Elmegreen (1997) stated
that “observational data on an upper mass cutoff are scarce, and it is not included in
our models [of the IMF from random sampling in a turbulent fractal cloud]”. Although
Massey & Hunter (1998) found stars in R136 with masses ranging up to 140–155M�,
Massey (2003) explains that the observed limitation is statistical rather than physical.
We refer to this as the Massey assertion, i.e. that mmax∗ = ∞. Meanwhile, Selman et al.
(1999) found, from their observations, a probable upper mass limit in the LMC near
about 130M�, but they did not evaluate the statistical significance of this suggestion.
Figer (2002) discussed the apparent cut-off of the stellar mass-spectrum near 150M� in
the Arches cluster near the Galactic centre, but again did not attach a statistical analysis
of the significance of this observation. Elmegreen (2000) also noted that random sampling
from an unlimited IMF for all star-forming regions in the Milky Way (MW) would lead
to the prediction of stars with masses >∼ 1000M�, unless there is a rapid turn-down in
the IMF beyond several hundred M�. However, he also stated that no upper mass limit
to star formation has ever been observed, a view also emphasised by Larson (2003).

Thus, while theory clearly expected a physical stellar upper mass limit, the obser-
vational evidence in support of this was very unclear. This, however, changed quite
dramatically only one year ago.

1.2. R136
Given the observed rather sharp drop-off of the IMF in R136 near 150M�, Weidner &
Kroupa (2004, hereinafter WK04) studied the Massey assertion in some detail.
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R136 has an age � 2.5 Myr (Massey & Hunter 1998) which is young enough such
that stellar evolution will not have removed stars through supernova explosions. It has a
metallicity of [Fe/H]≈−0.5 dex (de Boer et al. 1985).

From the radial surface density profile Selman et al. (1999) estimated there to be
1350 stars with masses between 10 and 40 M� within 20 pc of the 30 Doradus region,
within the centre of which lies R136. Massey & Hunter (1998) and Selman et al. (1999)
found that the IMF can be well-approximated by a Salpeter power-law with exponent
α = 2.35 for stars in the mass range 3 to 120 M�. This corresponds to 8000 stars with
a total mass of 0.68 × 105 M�. Extrapolating down to 0.1M� the cluster would contain
8 × 105 stars with a total mass of 2.8 × 105 M�. Using a standard IMF with a slope of
α = 1.3 (instead of the Salpeter value of 2.35) between 0.1 and 0.5M� this would change
to 3.4 × 105 stars with a combined mass of 2 × 105 M�, for an average mass of 0.61M�
over the mass range 0.1 − 120M�. Based on the observations by Selman et al. (1999)
we assumed for our analysis that R136 has a mass in the range 5 × 104 � MR136/M� �
2.5×105. This mass range can be used to investigate the expected number of stars above
mass m,

N(> m) =
∫ mmax∗

m

ξ(m′) dm′, (1.1)

with the mass in stars of the whole (originally embedded) cluster being

Mecl =
∫ mmax∗

m low

m′ ξ(m′) dm′, (1.2)

where mlow = 0.01M� and mmax∗ = ∞ (the Massey assertion). Here the assumption is
that the cluster is still compact despite having-blown out its residual gas. There are two
unknowns (N(> m) and k) that can be solved for using the two equations above.

We used the standard stellar IMF: The distribution of stars in clusters is well described
by a multi power-law function (Kroupa 2001), ξ(m) ∝ m−αi , where ξ(m) dm is the
number of stars in the mass interval m, m + dm. For massive stars several observations
found the Salpeter value (α3 = 2.35) for a large variety of conditions (Massey & Hunter
1998, Sirianni et al. 2000, 2002, Parker et al. 2001, Massey 2002, 2003, Wyse et al. 2002,
Bell et al. 2003, Piskunov et al. 2004). Below 0.5M� the IMF flattens (Kroupa, Tout &
Gilmore 1993, Kroupa 2001, Reid, Gizis & Hawley 2002), and a convenient description
is

α0 = +0.30 , 0.01 � m/M� < 0.08,
α1 = +1.30 , 0.08 � m/M� < 0.50,
α2 = +2.35 , 0.50 � m/M� < 1.00,
α3 = +2.35 , 1.00 � m/M� � mmax∗.

(1.3)

In particular, Massey & Hunter (1998) and Selman et al. (1999) found the Salpeter power-
law IMF to be valid for the R136 cluster, except near the core where mass segregation
has skewed the stellar mass distribution towards massive stars.

N(>m) is plotted in Fig. 1 for the above standard IMF and for the two mass esti-
mates of the cluster. The solid vertical line indicates 150M�, the approximate maximum
mass observed in R136 (Massey & Hunter 1998). We find that N(>150M�) = 40 stars
are missing if Mecl = 2.5 × 105 M�, while N(>150M�) = 10 stars are missing if
Mecl = 5×104 M�. The probability that no stars are observed although 10 are expected,
assuming mmax∗ = ∞, is P = 4.5 × 10−5. In WK04 we concluded that the observations
of the massive stellar content of R136 suggest a physical stellar mass limit near mmax∗ =
150M�.
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Figure 1. Number of stars above mass m for R136 with different mass estimates (dotted line:
MR136 = 2.5×105 M�, dashed line: MR136 = 5×104 M�, Selman et al. 1999). The vertical solid
line marks m = 150 M�. Taken from WK04.

Furthermore, in WK04 we deduced that the Massey assertion would be correct for
both cluster masses if the IMF had a slope α3

>∼ 2.8. Such a steep slope would make the
observed limit consistent with random selection from the IMF, and it may be the true
power-law index if unresolved multiple systems among O stars are corrected for, but this
awaits a detailed study. A further caveat comes from unresolved multiple systems which
would allow an mmax∗,true as small as ≈mmax∗/2 if α3 ≈ 2.35.

1.3. Arches
The Arches is a star-burst cluster within 30 pc in projected distance from the Galactic
centre. It has a mass M ≈ 1×105 M� (Bosch et al. 2001), age 2−2.5 Myr (Najarro et al.
2004) and [Fe/H]≈ 0 (Najarro et al. 2004). It is thus a counterpart to R136 in that the
Arches is metal rich and was born in a very different environment to R136.

Using his HST observations of the Arches (Fig. 2), Figer (2005) performed the same
analysis as WK04 did for R136. The Arches appears to be dynamically evolved, with
substantial mass loss through the strong tidal forces (Portegies Zwart et al. 2002) and
the stellar mass function with α = 1.9 is thus flatter than the Salpeter IMF. Using
his updated IMF measurement, Figer calculated the expected number of stars above
150M� to be 33, while a Salpeter IMF would predict there to be 18 stars. Observing no
stars but expecting to see 18 has a probability of P = 10−8, again strongly suggesting
mmax∗ ≈ 150M�.

1.4. OB associations & star clusters
Given the importance of knowing if a finite physical upper mass limit exists and how it
varies with metallicity, Oey & Clarke (2005) studied the massive-star content in 9 clus-
ters and OB associations in the MW, the LMC and the SMC. They predicted the
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Figure 2. Stellar mass function in the Arches cluster. Taken from Figer (2002) with kind
permission of the author. Γ0.8 to 2.1 = −(α3 − 1) for stars in the mass range log10m ∈ (0.8, 2.1).

expected masses of the most massive stars in these clusters for different upper mass
limits (120, 150, 200, 1000 and 10000M�). For all populations they found that the ob-
served number of massive stars supports with high statistical significance the existence
of a general upper mass cutoff in the range mmax∗ ∈ (120, 200M�),

1.5. Concluding remarks
The general indication thus is that a physical stellar mass limit near 150M� seems to
exist. While biases due to unresolved multiples that may steepen the IMF and/or reduce
the true maximal mass need to be studied further, the absence of variations of mmax∗
with metallicity poses a problem. A constant mmax∗ would only be apparent for a true
variation as proposed by the theoretical models, if metal-poor environments have a larger
stellar multiplicity, the effects of which would have to compensate the true increase of
mmax∗ with metallicity.

2. Maximal stellar mass in clusters
Above we have seen that there seems to exist a universal physical stellar mass limit.

However, an elementary argument suggests that star-clusters must also limit the masses
of their constituent stars: A pre-star-cluster gas core with a mass Mcore can, obviously, not
form stars with masses m > εMcore, where ε ≈ 0.33 is the star-formation efficiency (Lada
& Lada 2003). Thus, given a freshly hatched cluster with stellar mass Mecl, stars in that
cluster cannot surpass masses mmax = Mecl, which is the identity relation corresponding
to a “cluster” consisting of one massive star. Assuming the stellar IMF is a continuous
density distribution function and that clusters are filled with stars distributed according
to the stellar IMF, this can be generalised by stating that each cluster can have only one
most massive star,

1 =
∫ mmax∗

mmax

ξ(m′) dm′, (2.1)
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Figure 3. The thick solid line shows the dependence of the mass of the most-massive star
in a cluster on the cluster mass according to the semi-analytical model. The thick dashed
line shows the mean maximum stellar mass for sorted sampling (§ 2.3). The dot-dashed lines
are mass-constrained random-sampling results (§ 2.2) with a physical upper mass limit of
mmax∗ = 150 M� (thick line) and 106 M� (thin line). Pure random sampling models (§ 2.1)
are plotted as dotted lines. The thick one is sampled to mmax∗ = 150 M� while the thin one
up to 106 M�. The thin solid line shows the identity relation, where a “cluster” consists only
of one star. The dots with error bars are observed clusters, while the triangle is a result from a
star-formation simulation with an SPH code (Bonnell et al. 2003). Taken from WK05a.

with

Mecl(mmax) =
∫ mmax

m low

m′ ξ(m′) dm′ (2.2)

as a further condition, as above. These two equations need to be solved numerically and
give the semi-analytical relation mmax = F(Mecl) (WK04). It is plotted in Fig. 3 as the
thick-solid curve.

A literature study of clusters for which the cluster mass and the initial mass of the
heaviest star can be estimated (Weidner & Kroupa 2005a, hereinafter WK05a) shows that
the cluster mass indeed appears to have a limiting influence on the stellar mass within
it. The observational data are plotted in Fig. 3, finding rather excellent agreement with
the semi-analytical description above.

However, it would be undisputed that a stochastic sampling effect from the IMF must
be present when stars form. This can be mimicked in the computer by performing vari-
ous Monte-Carlo experiments (WK05a). The Monte-Carlo experiments are conducted in
three different ways,

- pure random sampling (random sampling)
- mass constrained random sampling (constrained sampling)
- mass constrained random sampling with sorted adding (sorted sampling)
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2.1. Random sampling
For the random sampling 10 million clusters are randomly taken from a cluster distribu-
tion with a power-law index of βN = 2.35 between 12 and 2.5 × 107 stars. The relevant
distribution function is the embedded-cluster star-number function (ECSNF),

dNecl ∝ N−βN , (2.3)

which is the number of clusters containing N ∈ [N ′, N ′ +dN ′) stars. Each cluster is then
filled with N stars randomly from the standard IMF (eq. 1.3) without a mass limit, or
by imposing the physical stellar mass limit, m � 150M�. The stellar masses are added
to get the cluster mass, Mecl. For each cluster the maximal stellar mass is searched for.
For each cluster in a mass bin Mecl − ∆Mecl/2,Mecl + ∆Mecl/2 the average mmax is
calculated, and the set of average mmax values define the relation

mmax = mran
max(Mecl). (2.4)

2.2. Constrained sampling
In this case 5×107 clusters are randomly taken from the embedded-cluster mass function
(ECMF),

ξecl(Mecl) ∝ M−β
ecl , (2.5)

between 5 M� (the minimal, Taurus-Auriga-type, star-forming “cluster” counting ≈15
stars) and 107 M� (an approximate maximum mass for a single stellar population that
consists of one metallicity and age, Weidner, Kroupa & Larsen 2004) and again with
β = 2.35. Note that βN ≈ β because the ECSNF and the ECMF only differ by a nearly-
constant average stellar mass. Then stars are taken randomly from the standard IMF
and added until they reach or surpass the respective cluster mass, Mecl. Afterwards the
clusters are searched for their maximum stellar mass. For each cluster in a mass bin
Mecl − ∆Mecl/2,Mecl + ∆Mecl/2 the average mmax is calculated, and the set of average
mmax values define the relation

mmax = mcon
max(Mecl). (2.6)

2.3. Sorted sampling
For the third method again 5 × 107 clusters are randomly sampled from the ECMF
(eq. 2.5) between 5 M� and 107 M� and with β = 2.35. However, this time the number
N of stars which are to populate the cluster is estimated from N = Mecl/mav, where
mav = 0.36M� is the average stellar mass for the standard IMF (eq. 1.3) between 0.01
M� and 150 M�. These stars are added to give Mecl,ran,

Mecl,ran =
∑
N

mi,

such that mi � mi+1. If Mecl,ran < Mecl in this first step, an additional number of stars,
∆N , is picked randomly from the IMF, where ∆N = (Mecl − Mran)/mav (we assume
mav = constant). Again these stars are added to obtain an improved estimate of the
desired cluster mass,

2Mecl,ran =
∑

N+∆N

mi, mi � mi+1.

This is done such that 2Mecl,ran ≈ Mecl (details of the method will be available in
WK05a). The procedure is repeated until all clusters from the ECMF are ’filled’. They
are then also searched for the most massive star in each cluster, as above. For each cluster
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in a mass bin Mecl − ∆Mecl/2,Mecl + ∆Mecl/2 the average mmax is calculated, and the
set of average mmax values define the relation

mmax = msort
max(Mecl). (2.7)

2.4. Comparison with observations
All three relations are plotted in Fig. 3. We noted already that the observations follow
the semi-analytic relation remarkably well. Furthermore, Fig. 3 also suggests that the
different Monte-Carlo schemes can be selected for. Thus, the sorted-sampling algorithm
leads to virtually the same results as the semi-analytical relation, and it fits the data very
well indeed. The correspondence of the sorted-sampling algorithm to the semi-analytical
result is not really surprising, because the algorithm is Monte-Carlo integration of the
same problem. The constrained-sampling and random-sampling algorithms, on the other
hand, can be excluded with very high confidence by performing statistical tests on the
observational data that are reported in detail in WK05a.

On a historical note, Larson (1982) had pointed out that more massive and dense
clouds correlate with the mass of the most massive stars within them and he estimated
that mmax = 0.33M0.43

cloud (masses are in M�). An updated relation was derived by Larson
(2003) by comparing mmax with the stellar mass in a few clusters, mmax ≈ 1.2M0.45

cluster.
Both are flatter than our semi-analytical relation, and therefore do not fit the data in
Fig. 3 as well (WK05a). Elmegreen (1983) constructed a relation between cluster mass
and its most massive star based on an assumed equivalence between the luminosity of
the cluster population and its binding energy, for a Miller-Scalo IMF. This function is
even shallower than Larson’s (2003) relation. Assuming mmax∗ = ∞, Elmegreen (2000)
solved eqs 2.1 above for a single Salpeter power-law stellar IMF finding a mmax(Mecl)
relation quite consistent with the data in Fig. 3 (WK05a).

3. Implications
3.1. Stellar astrophysics and the formation of star clusters

We are now in the happier situation that a physical stellar mass limit seems to have been
found. But the absence of clear variation of this limit with metallicity poses a potential
problem, although it may be too early to make definite statements. Further observational
work on many more very young and massive clusters is needed to ascertain the findings
reported here, and to quantify the multiplicity properties of massive stars, as noted above.

That our sorted-sampling algorithm for making star clusters fits the observational
maximal-stellar-mass–star-cluster-mass data so well would appear to imply that clusters
form in an organised fashion. The physical interpretation of the algorithm (i.e. of the
Monte-Carlo integration) is that as a pre-cluster core contracts under self gravity the
gas densities increase and local density fluctuations in the turbulent medium lead to
low-mass star formation, perhaps similar to what is seen in Taurus-Aurigae. As the
contraction proceeds and before feedback from young stars begins to disrupt the cloud,
star-formation activity increases in further density fluctuations with larger amplitudes
thereby forming more massive stars. The process stops when the most massive stars
that have just formed supply sufficient feedback energy to disrupt the cloud. Thus, less-
massive pre-cluster cloud-cores would die at a lower maximum stellar mass than more
massive cores. But in all cases stellar masses are limited, m � mmax(Mecl) � mmax∗.

This scenario is nicely consistent with the hydrodynamic cluster formation calculations
presented by Bonnell, Bate & Vine (2003) and Bonnell, Vine & Bate (2004), as is reported
in more detail in WK05a. We note here that Bonnell et al. (2004) found their theoretical
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clusters to form hierarchically from smaller sub-clusters, and together with continued
competitive accretion this leads to the relation mmax ∝ M

2/3
ecl in excellent agreement

with our compilation of observational data. While this agreement is stunning, the detailed
outcome of the currently available SPH modelling in terms of stellar multiplicities is not
right (Goodwin & Kroupa 2005), and feedback that ultimately dominates the process
of star-formation, given the generally low star-formation efficiencies observed in cluster-
forming volumes, is not yet incorporated in the modelling.

3.2. Composite stellar population
The assumption has often been made that independent of the star-formation mode, the
stellar distribution is sampled randomly from one invariant IMF (e.g. Elmegreen 2004).
Thus, for example, 105 clusters, each with 20 stars, would have the same composite (i.e.
combined) IMF as one cluster with 2 × 106 stars.

However, the existence of the mmax(Mecl) relation has profound consequences for com-
posite populations. It immediately implies, for example, that 105 clusters, each with
20 stars, cannot have the same composite (i.e. combined) IMF as one cluster with
2 × 106 stars, because the small clusters can never make stars more massive than about
1M�. Thus, galaxies, that are composite stellar populations consisting of many star
clusters, most of which may be dissolved, would have steeper composite, or integrated
galaxial IMFs (IGIMFs), than the stellar IMF in each individual cluster (Vanbeveren
1982; Kroupa & Weidner 2003).

The IGIMF is an integral over all star-formation events in a given star-formation
“epoch” t, t + δt,

ξIGIMF(m; t) =
∫ Mecl,max(SF R(t))

Mecl,min

ξ (m � mmax (Mecl)) ξecl(Mecl) dMecl. (3.1)

Thus ξ(m � mmax) ξecl(Mecl) dMecl is the stellar IMF contributed by ξecl dMecl clusters
with mass near Mecl. Mecl,max follows from the maximum star-cluster-mass vs global-star-
formation-rate-of-the-galaxy relation, Mecl,max = fn(SFR) (eq. 1 in Weidner & Kroupa
2005b, hereinafter WK05b) as derived by Weidner, Kroupa & Larsen (2004). Mecl,min =
5M� is adopted in our standard modelling and corresponds to the smallest star-cluster
units observed.

The “epoch” is found by WK04 to last about δt = 10 Myr; in 10 Myr we find that the
embedded cluster mass function is fully sampled, independent of the SFR. This time-
scale compares very well indeed to the star-formation time-scale in normal galactic disks
measured by Egusa, Sofue & Nakanishi (2004) using an entirely independent method,
namely from the offset of HII regions from the molecular clouds in spiral-wave patterns.
The time-integrated IGIMF then follows from

ξIGIMF(m) =
∫ τG

0

ξIGIMF(m; t) dt, (3.2)

where τG is the age of the galaxy under scrutiny.
Note that ξIGIMF(m) is the mass function of all stars ever to have formed in a galaxy,

and can be used to estimate the total number of supernovae ever to have occurred,
for example. ξIGIMF(m; t), on the other hand, includes the time-dependence through
a dependency on SFR(t) of a galaxy and allows one to compute the time-dependent
evolution of a stellar population over the life-time of a galaxy.

Furthermore, because more-massive stellar clusters are observed to form for higher
star-formation rates SFRs (Weidner, Kroupa & Larsen 2004), the ECMF is sampled
to larger masses in galaxies that are experiencing high SFRs, leading to IGIMFs that
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are flatter than for low-mass galaxies that have had only a low-level of star-formation
activity. WK05b show that the sensitivity of the IGIMF power-law index for m>∼ 1M�
increases with decreasing SFR. Thus, galaxies with a small mass in stars can either form
with a very low continuous SFR (appearing today as low-surface-brightness but gas-rich
galaxies) or with a brief initial SF burst (dE or dSph galaxies), the IGIMF ought to
vary significantly among such galaxies. Low-surface-brightness galaxies would therefore
appear chemically young, while the dispersion in chemical properties ought to be larger
for dwarf galaxies than for larger galaxies (WK05b). Another interesting implication is
that the number of supernovae per star would be significantly smaller over cosmological
times than predicted by an invariant Salpeter IMF.

As a general final comment, these new insights would imply that theoretical work on
galaxy formation that relies on an invariant IMF would be wrong.

4. Further Questions
Unanswered questions regarding the formation and evolution of massive stars remain.

There may be stars with m � mmax∗ which implode “invisibly” after 1 or 2 Myr. The
explosion mechanism sensitively depends on the presently still rather uncertain mecha-
nism for shock revival after core collapse (e.g. Janka 2001). Since such stars would not
be apparent in massive clusters older than 2 Myr they would not affect the empirical
maximal stellar mass, and mmax∗,true would be unknown at present.

Furthermore, and as stated already above, stars are often in multiple systems. Es-
pecially massive stars seem to have a binary fraction of 80% or even larger (Garćıa &
Mermilliod 2001) and apparently tend to be in binary systems with a preferred mass-
ratio near unity. Thus, if all O stars would be in equal-mass binaries, then mmax∗ true ≈
mmax∗/2.

Finally, it is disconcerting that mmax∗ ≈ 150M� appears to be the same for low-
metallicity environments ([Fe/H] = -0.5, R136) and metal-rich environments ([Fe/H] =
0, Arches), in apparent contradiction to the theoretical values (Stothers 1992). Clearly,
this issue needs further study.
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