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SLEPIAN MODELS FOR THE STOCHASTIC SHAPE
OF INDIVIDUAL LAGRANGE SEA WAVES

GEORG LINDGREN,∗ Lund University

Abstract

Gaussian wave models have been successfully used since the early 1950s to describe
the development of random sea waves, particularly as input to dynamic simulation of
the safety of ships and offshore structures. A drawback of the Gaussian model is that
it produces stochastically symmetric waves, which is an unrealistic feature and can lead
to unconservative safety estimates. The Gaussian model describes the height of the
sea surface at each point as a function of time and space. The Lagrange wave model
describes the horizontal and vertical movements of individual water particles as functions
of time and original location. This model is physically based, and a stochastic version
has recently been advocated as a realistic model for asymmetric water waves. Since
the stochastic Lagrange model treats both the vertical and the horizontal movements
as Gaussian processes, it can be analysed using methods from the Gaussian theory. In
this paper we present an analysis of the stochastic properties of the first-order stochastic
Lagrange waves model, both as functions of time and as functions of space. A Slepian
model for the description of the random shape of individual waves is also presented and
analysed.
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1. Introduction

Ocean water waves can be modelled as a time- and space-dependent random field. Random
Gaussian waves have been successfully used since the early 1950s to describe the development
of random sea waves [22], [13]. One of the main advantages of the stationary Gaussian model
is that the stochastic properties are completely determined by the correlation structure or,
alternatively, by the frequency energy content, as defined by the power spectral density. The
statistical distribution of important wave characteristics, such as wave period and amplitude,
steepness, wave front velocities, etc., can be studied, both in theoretical detail and numerically,
using efficient algorithms or, in some cases, simple approximations; see, for example, [1], [2],
[11], and [18]. The numerical algorithms give the exact distribution of the wave characteristics
under the Gaussianity assumption. A further advantage is that the Gaussianity is preserved
under linear filtering.

From a statistical viewpoint, another advantage of the Gaussian model is that conditionally,
given specified values of the wave process in time or space, the wave elevations still have
Gaussian distributions, with conditional mean values given by linear functions of the specified
values. This is the key to the success of the numerical algorithms. For a recent survey of
techniques to calculate wave-characteristic distributions, see [11].
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Lagrange sea waves 431

A main feature of the Gaussian wave model, often called the linear model, is that it is
additively built up from elementary harmonic waves with different frequencies and with random
amplitudes and phases, defined from the energy spectrum. The main disadvantage of the
model is that it always gives waves which are stochastically symmetric, both horizontally and
vertically. However, real ocean waves are often asymmetric, with narrow, peaked crests and
shallow, wide troughs (called crest–trough asymmetry), rather than front–back asymmetry, by
which it is meant that the fronts of the waves are usually steeper than the corresponding backs.
The symmetry of the Gaussian model is particularly unfavourable when we want to describe
quantities, such as wave steepness, which are important for safety calculations.

Based on general mathematical wave theory, several approximative wave models can be
derived; see, for example, the classical textbook [8]. The symmetric Gaussian model is a
stochastic version of the simplest of these approximations, and consists of a superposition
of a continuum of independent, randomly shifted cosine waves with different frequencies and
amplitudes. A natural question is therefore that of how to formulate a less drastic approximation
to the basic wave equation that captures the important wave characteristics both in time and
in space, but still retains enough of the Gaussian structure to lend itself to efficient stochastic
description and calculation.

The crest–trough asymmetry can partly be modelled by a (memoryless) transformation of
a Gaussian wave process. The transformation takes the instantaneous water level and rescales
it, using a nonlinear transformation, to become a wave process for which the one-dimensional
marginal distribution is Gaussian. We then treat the transformed process as if it were a Gaussian
process, obtain the relevant distributions, and transform back to the original scale; for examples
of the statistical properties, see [19]. However, this procedure is purely empirical and is not
based on any physical theory, and it does not solve the problem with front–back asymmetry,
which is particularly important for the understanding and description of wave steepness.

Stokes waves extend the Gaussian model by allowing interaction between different frequency
components. This physically based model also allows a theoretical statistical description, at
least for waves with second-order interaction; for examples, see [14] and [15].

All the models mentioned describe the vertical movements of the free water surface as a
function of time at locations that are fixed relative to a Cartesian coordinate system.

The Lagrange models comprise the class of physically motivated models that is perhaps
most promising when it comes to better understanding and handling of the statistical properties
of asymmetric waves. The Lagrange model describes the vertical and horizontal movements of
individual water particles as functions of time, either as circles (Gerstner waves [8, Section 5.1])
or as ellipses (Miche waves [16]) with radii depending on wavelength and particle depth under
the still water level. In a first-order linear theory, movements with different waveperiods and
directions are additively superimposed without interacting with each other. In higher-order
models, interactions are also allowed.

Very few systematic studies of stochastic Lagrange wave models have been made; early
references are [17] and [3]. More recently, partial experimental studies have been made.
Comparison between an additive (Miche) model and measured wave movements were reported
in [5] and [6], and Fouques et al. [4] extended the model to include wavelength interactions of
second order. These studies show that the stochastic Lagrange model can produce both the front–
back and the crest–trough asymmetry. Also, [21] contains an argument for the (second-order)
Lagrange model to be seen as an efficient and physically realistic model for large water waves.

The stochastic Lagrange wave model contains the same stochastic generator as the Gaussian
model, both for the vertical movements of individual water particles and for their horizontal
movements. It therefore has the desired inherent stochastic simplicity.
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The goal of this paper is a closer statistical description of the random shape of individual
stochastic Lagrange waves, defined, as is common in marine science, as the part of the water
surface that is between successive upcrossings (or downcrossings) of the still water level. Note
that throughout the paper we use the word ‘wave’ to mean both the whole wave pattern and
an individual wave defined in this precise way. When necessary, we specify the latter as ‘an
individual wave’.

The tool used will be an explicit representation of the process conditioned on mean-level
upcrossings. Such models were introduced by Slepian in [20] for a normal process near its
zero-crossings, and further generalised in [10] to processes conditioned on a local maximum. In
this paper, a Slepian model will be derived that represents the statistical variability of individual
upcrossing waves, i.e. waves that lie between an upcrossing of the mean level and the following
downcrossing. The wave process can be observed either at a fixed location as a function of
time, or at a fixed time as a function of a spatial parameter.

The Slepian models presented can be used to produce samples of individual first-order
Lagrange waves, for comparison with observed waves or with data from numerical wave tanks
(see [6], [4], and [21]).

All simulations and calculations in this paper were performed in MATLAB® by means of the
package WAFO, which is available at http://www.maths.lth.se/matstat/wafo/ (version V2.1.1,
October 2005), and by special MATLAB routines.

2. The Lagrange random wave model

2.1. The Gaussian wave field

We shall first describe the standard Gaussian model for the variation of the water level as a
function of time t and a two-dimensional space parameter s = (x, y) in the plane.

Let W(t, s) denote the height of the water level at time t at location s. The Gaussian model
describes W(t, s) as a stochastic integral over wavenumber, κ = (κx, κy) ∈ R

2, or, alternatively,
over wave angular frequency, ω > 0, and wave direction, θ ∈ (−π, π ]. Wavenumber and
frequency/direction are related via the dispersion relation, which also includes water depth, h;
see [8, Chapter 4]. With κ = ‖κ‖ = (κ2

x + κ2
y )1/2, the dispersion relation reads

ω ≡ ω(κ) = √
gκ tanh κh, (1)

θ = arctan2(κy, κx), (2)

with the inverse

κ ≡ κ(ω, θ) = (κx, κy), κx = κ cos θ, κy = κ sin θ.

Here g denotes the acceleration due to gravity at the Earth’s surface. For infinite water depth,
(1) reduces to ω = √

gκ . In (2), arctan2 denotes the four-quadrant inverse tangent function.
The Gaussian model for a homogeneous random wave field is a continuous version of a sum

of independent cosine waves,

w(t, s) =
∑

k

ak cos(κks − ωkt + εk) =
∑

k

ak cos(κxkx + κyky − ωkt + εk), (3)

with different wavenumbers κk = (κxk, κyk) and angular frequencies ωk , k = 1, 2, . . . , that
gives the water level at location s at time t . Here ak and εk are random amplitudes and phases,
respectively. An elementary wave with wavenumber κ = (κx, κy) has wavelength 2π/κ and
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travels in the direction θ = arctan2(κy, κx). Observe that at a fixed point s the angular frequency
of such an elementary wave is ω > 0 and its period is 2π/ω.

As is customarily done, we shall express the real Gaussian wave process as a stochastic
integral of a complex spectral process, ζ(κ, ω). To achieve this, we can extend the wavenumber–
frequency space (from R

2×R
+) by allowing (κ, ω) ∈ R

2×R
−, and identify a wavetrain charac-

terised by a certain set (κx, κy; ω, θ) with a wavetrain with characteristics (−κx, −κy; −ω, θ +
π mod 2π), reflecting (κx, κy, ω) in the origin.

Let SG(ω, θ), (ω, θ) ∈ R
+ × (−π, π ], be the directional frequency spectrum of the sea

state, and write

S̃G(ω, θ) =
{

1
2SG(ω, θ) if ω > 0,

1
2SG(−ω, θ + π mod 2π) if ω < 0,

(4)

for the spectrum on the extended space R × (−π, π ]. The label ‘G’ on ζG, SG, etc., indicates
that we refer to the Gaussian model for the surface elevation. In applications, SG is what is
usually estimated from observations.

If we reflect (κx, κy, ω) in the origin, we can define the spectral representation in a symmetric
complex form. Writing

D = {(κ, ω) ∈ R
3 : ω = ±√

gκ tanh κh}
for the dispersion surface, we have, with a small abuse of notation,

W(t, s) =
∫

(κ,ω)∈D

ei(κs−ωt) dζK
G (κ, ω)

=
∫ ∞

−∞

∫ π

−π

ei(κs−ωt) dζG(ω, θ). (5)

Here ζK
G (κ, ω) is a Gaussian complex spectral process with mean 0 such that

dζK
G (−κ, −ω) = dζ

K

G (κ, ω),

and ζG(ω, θ) is the corresponding directional process with

dζG(−ω, θ) = dζG(ω, θ + π mod 2π). (6)

Furthermore,

E(dζG(ω, θ) dζG(ω′, θ ′)) =
{

0 if ω �= ω′ or θ �= θ ′,
S̃G(ω, θ) dω dθ if ω = ω′ and θ = θ ′.

(7)

We denote by τ and σ = (σx, σy) a time difference and a space difference, respectively. The
covariance function of the wave field in space–time is then

rww(τ, σ ) = cov(W(t, s), W(t + τ, s + σ ))

=
∫ ∞

0

∫ π

−π

cos(κσ − ωτ)SG(ω, θ) dθ dω.
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This formula, as well as all subsequent covariance and variance formulae, is based on the
general covariance formula for stochastic integrals, written here as a function of only one
parameter, ω, for notational simplicity:

cov

(∫
g(ω)eiωt dζ(ω),

∫
h(ω)eiωt ′ dζ(ω)

)
=

∫
g(ω)h̄(ω)eiω(t−t ′) E(|dζ(ω)|2)

=
∫

g(ω)h̄(ω)eiω(t−t ′)Sζ (ω) dω, say.

Remark 1. The complex spectral representation of the real process puts a symmetry restriction
on the spectrum. For the three-dimensional model in time and two-dimensional space the
original spectral density, denoted S(ω, θ), with positive frequencies ω > 0 can be split
according to (4) to feature negative frequencies. By (6) the resulting process will then be
real. The parameter θ in the original spectrum determines the direction in which the waves
travel.

For the two-dimensional model in time and one-dimensional space, waves can travel either
to the right or to the left. If we use only positive frequencies this requires a spectral density
S(ω, θ) defined for ω > 0 and θ = 0 (for motion to the right) or θ = π (for motion to the left).
An alternative is to allow negative frequencies and define an asymmetric spectral density

S(ω) =
{

S(ω, 0) if ω > 0,

S(ω, π) if ω < 0.

In any case, to obtain the necessary symmetric spectrum, we must extend the definition in the
same way as for the three-dimensional models, a procedure which is illustrated in Figure 1,
below, where the solid curve represents the asymmetric form and the dash–dot curve represents
the mirrored spectrum.

2.2. The first-order Lagrange wave model

2.2.1. The model. The integral (5) defines the waves as a continuous version of the sum (3)
of independent cosine waves, with different directions and frequencies, and it gives the water
level at any location s = (x, y) at time t . The (first-order) stochastic Lagrange model is built
in a similar way, but instead of letting the sum describe the height at the fixed point (x, y), it
describes the height at a varying point (x(t, s), y(t, s)), which performs a random shift around
s = (u, v), the reference coordinates, where the randomness is generated by the same random
amplitudes, ak , and phases, εk , as in (3), modified in a way that depends on water depth. In
the linear Lagrange model the horizontal displacement of the point with reference coordinates
s = (u, v) is described by

x(t, s) = u −
∑

k

akh1(κxk, ‖κk‖) sin(κks − ωkt + εk),

y(t, s) = v −
∑

k

akh2(κyk, ‖κk‖) sin(κks − ωkt + εk),

where h1 and h2 are frequency- and direction-dependent transfer functions to be defined, for
notationally different arguments, in (8).

We now define the stochastic linear Lagrange wave model, starting with the integral spectral
representation. In analogy with the linear Gaussian model, we introduce a complex spectral
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process ζ(ω, θ) = ζG(ω, θ) with orthogonal increments (see (7)), and define, for any t ∈ R

and s = (u, v) ∈ R
2, three stochastic integrals, the first similar to that in (5) and the others

linear filterings of W(t, s). To this end, we introduce the complex transfer function vector

H (θ, κ) =
(

h1(θ, κ)

h2(θ, κ)

)
= i

cosh κh

sinh κh

(
cos θ

sin θ

)
, θ ∈ (−π, π ], κ > 0, (8)

and define, integrating over (ω, θ) ∈ R × (−π, π ],

W(t, s) =
∫∫

ei(κs−ωt) dζ(ω, θ), (9)

�(t, s) =
(

X(t, s)

Y (t, s)

)
= s +

∫∫
H (θ, ‖κ‖)ei(κs−ωt) dζ(ω, θ). (10)

Remark 2. The convergence of the double integral in (10) poses no problem for the type of
spectra that are of interest for wave modelling. The transfer functions hj (θ, κ) are bounded and
of the order κ−1 as κ → 0, while wave spectra normally are of smaller order than exp(−C/κc),
for positive constants C and c. Therefore,

∫∫ |hj (θ, κ)|2S(ω, θ) dω dθ < ∞ for j = 1, 2,
which is the condition for the integrals to exist.

Definition 1. The three-dimensional linear stochastic Lagrange wave model is the sample
functions of the three-dimensional stochastic process

{(�(t, s), W(t, s)) : (t, s) ∈ R
3}.

For a fixed t = t0, W(t0, s) is the height of the water surface at location �(t0, s), and the
parametric surface s 
→ (�(t0, s), W(t0, s)) thus defines the shape of the water surface at
time t0.

Theorem 1. The three-dimensional linear stochastic Lagrange wave model is a homogeneous
trivariate Gaussian field process with component means E(W(t, s)) = 0 and E(�(t, s)) = s.

The spectral densities and cross-spectral densities are given by the spectral density matrix

S̃(ω, θ) =
⎛
⎜⎝

1 h̄1 h̄2

h1 |h1|2 h1h̄2

h2 h̄1h2 |h2|2

⎞
⎟⎠ S̃(ω, θ),

and the covariance and cross-covariance functions by the transform

r(τ, σ ) =
∫∫

ei(κσ−ωτ)S̃(ω, θ) dω dθ, (11)

with S̃(ω, θ), ω ∈ R, θ ∈ (−π, π ], defined by (7), and where, for example, the entry r(τ, σ )12
is the covariance function, rwx(τ, σ ), between the W - and X-components:

r(τ, σ )12 = rwx(τ, σ ) = cov(W(t, s), X(t + τ, s + σ )).

Proof. The relations follow as direct consequences of the linearity of the defining integrals
and of correlations (7) and (4) for the spectral process increments.
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Remark 3. We used different notation for the spectral process and the spectrum in the Gaussian
model (5) and in the Lagrange model (9). In [5] the spectrum S(ω, θ) was called the orbital
spectrum, and differs from the observed fixed-point surface elevation spectrum, SG(ω, θ).

In the examples in later sections we will use a unidirectional JONSWAP spectrum, with
significant wave height H0 = 7 m and peak period Tp = 11 s, as the orbital spectrum. The
JONSWAP spectrum is a standard spectrum used in the oceanographic sciences, and is defined
by the spectral density

S(ω) = g2α

ω5
e−β(ωp/ω)4

γ exp(−(1−ω/ωp)
2/2σ 2

ω),

where ωp is the peak frequency and γ ≥ 1 is a ‘peak-enhancement factor’; see, for example, [7].
The parameter σω is usually taken as 0.07 for ω < ωp and as 0.09 for ω > ωp.

For Gaussian waves the significant wave height is defined to be four times the standard
deviation of the height process. The peak period is the inverse of the peak frequency, i.e. Tp =
2π/ωp.

2.2.2. Interpretation. The first-order stochastic Lagrange wave model has the following phys-
ical interpretation, which makes it reasonable as a simple non-Gaussian model. Under very
idealised conditions, water particles on the surface of a pure cosine wave with low amplitude in
deep water perform circular movements around their centre points. In the two-dimensional case,
which we chose for illustration, water particles along a line move according to the equations

w(t, u) = a cos(κu − ωt),

x(t, u) = u − a sin(κu − ωt).

The height of the particle at position x(t, u) at time t is w(t, u). A plot of the parametric
function

(x(t, u), w(t, u)), t ∈ R

will produce the cycloid curve, but upside down.
In the first-order Lagrange model, waves with different frequencies and directions are allowed

to act additively and independently, to give each particle a total vertical (height) displacement
and a total horizontal displacement. This preserves enough Gaussianity to make statistical
analysis possible. Further theoretical studies are needed for second-order models, which allow
interaction between waves.

2.2.3. Some covariance formulae. In the following we assume that W(t, s), X(t, s), and Y (t, s)

are twice continuously differentiable in all variables. Write

Wt(t, s) = ∂W(t, s)

∂t
, Wtt (t, s) = ∂2W(t, s)

∂t2 , Wtu(t, s) = ∂2W(t, s)

∂t∂u
, etc.,

for the derivatives. In the sequel we use upper indices in a covariance function to indicate the
processes to be correlated (for example, rww is the auto-covariance function for W ) and we
use lower indices to indicate that the covariance function is between derivative processes. For
example, rwx

tu is the cross-covariance function between Wt = ∂W/∂t and Xu = ∂X/∂u, and
rwx
t(uv) is the covariance function between Wt = ∂W/∂t and Xuv = ∂2X/∂u∂v. A subscript ‘0’

indicates that the covariance is for the undifferentiated process.
In the derivation of the Slepian model we will need some variances and covariances for

the derivatives and processes. All derivatives are Gaussian variables with mean 0, with the
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ω

κ

( 0)θ =

D− ( )θ π=

D+

Figure 1: Branches of the dispersion curve D, such that ω2 = g|κ| tanh |κ|h, for two-dimensional waves:
the solid curve is (κ+, ω) and the dash–dot curve is (κ−, ω).

exceptions that E(Xu(t, s)) = E(Yv(t, s)) = 1. Variances and covariances are given by the
spectral moments or the derivatives of the covariances. We specifically need the following
moments:

var(Wt (t, s)) =: σt (w)2 =
∫∫

ω2S(ω, θ) dω dθ,

var(Wu(t, s)) =: σu(w)2 =
∫∫

κ2
xS(ω, θ) dω dθ, (12)

var(Xu(t, s)) =: σu(x)2 =
∫∫

κ2
x |h1(θ, κ)|2S(ω, θ) dω dθ,

var(Xuu(t, s)) =: σuu(x)2 =
∫∫

κ4
x |h1(θ, κ)|2S(ω, θ) dω dθ.

Remark 4. The stochastic Lagrange model has the property that the wave profile may fold in
space, for example in the x-direction; see Figure 2, below. This happens when Xu(t, s) < 0.
By Rice’s formula for the expected number of level downcrossings in a Gaussian process [9,
Chapter 7], there are on average

nfold = 1

2π

σuu(x)

σu(x)
e−1/2σu(x)2

folds per unit length of the x-axis at each fixed time-point.

2.2.4. The two-dimensional Lagrange model. For illustrational purposes we give the explicit
expressions for the stochastic Lagrange waves in two dimensions, that is, with a time parameter
t and one space parameter x along a specified direction.

Let S(ω), ω ∈ R, be the asymmetric directional orbital spectrum (cf. Remarks 1 and 3), and
write D = {(κ, ω) ∈ R

2 : ω2 = g|κ| tanh |κ|h} for the dispersion curve. It has two branches,
D+ and D−, depending on the combinations of sign for ω and κ , and we use κ+ and κ− to
denote the two solutions (for κ). On D+, κ+ has the same sign as ω, corresponding to θ = 0,
while on D−, κ− and ω have opposite signs, corresponding to θ = π ; see Figure 1.

Let ζ(κ, ω) be a complex spectral process, with the increments concentrated on the dispersion
curve D, such that

dζ(−κ, −ω) = dζ (κ, ω)

and

E(dζ(κ, ω) dζ (κ ′, ω′)) =

⎧⎪⎪⎨
⎪⎪⎩

0 if κ �= κ ′ or ω �= ω′,
1
2S(ω) if (κ, ω) = (κ ′, ω′) ∈ D+,

1
2S(−ω) if (κ, ω) = (κ ′, ω′) ∈ D−.
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The two-dimensional stochastic Lagrange wave model is the bivariate Gaussian process

W(t, s) =
∫

D

ei(κs−ωt) dζ(κ, ω),

X(t, s) = s +
∫

D

i
cosh κh

sinh κh
ei(κs−ωt) dζ(κ, ω). (13)

Note the difference in notation between (8) and (13). In (8) κ = ‖κ‖ > 0, and in (13) κ can
be positive or negative depending on the direction, θ , and the sign of ω.

For a fixed s0 the process X(t, s0) has spectral density | cosh κh/ sinh κh|2S(ω). We will
need the following covariance and cross-covariance functions, given by (11) and the fact that
rww
u0 (t, u) = −∂rww(t, u)/∂u, etc.:

rww(t, u) =
∫ ∞

−∞
cos(κ+u − ωt) + cos(κ−u − ωt)

2
S(ω) dω,

rxx(t, u) =
∫ ∞

−∞
cos(κ+u − ωt) + cos(κ−u − ωt)

2

(
cosh κh

sinh κh

)2

S(ω) dω,

rwx(t, u) = −
∫ ∞

−∞
sin(κ+u − ωt)

cosh |κ|h
sinh |κ|h S(ω) dω,

rww
u0 (t, u) =

∫ ∞

−∞
κ+ sin(κ+u − ωt) + κ− sin(κ−u − ωt)

2
S(ω) dω, (14)

rwx
u0 (t, u) =

∫ ∞

−∞
κ+ cos(κ+u − ωt)

cosh |κ|h
sinh |κ|h S(ω) dω, (15)

rww
t0 (t, u) = −

∫ ∞

−∞
ω

sin(κ+u − ωt) + sin(κ−u − ωt)

2
S(ω) dω, (16)

rwx
t0 (t, u) = −

∫ ∞

−∞
ω cos(κ+u − ωt)

cosh |κ|h
sinh |κ|h S(ω) dω. (17)

Note that if the spectrum S(ω) is symmetric, i.e. the process is a mixture of equally distributed
waves going from left to right and from right to left, then rwx(t, u) ≡ 0.

3. Time and space waves

The aim now is to describe the statistical distribution of various wave shapes generated by
the first-order stochastic Lagrange model. This will allow future comparison with measured
wave data.

We thus have to be precise in what we mean by a wave. For two-dimensional waves, with
time t and a one-dimensional space parameter u, we shall use the standard definition of a wave
as being that part of the surface profile that falls between successive upcrossings of the still
water level. For three-dimensional waves, with two-dimensional space parameter s = (u, v),
there is no unique definition of a wave, and we thus select one specific direction, usually the
main direction of the waves, and identify the mean-level upcrossings in the two-dimensional
process observed along that direction.

We must also distinguish between time waves and space waves. Time waves are obtained
by observing the surface as a function of time t at a fixed location. Space waves are obtained
for any fixed time-point by observing the wave field as a function of the space parameter s.
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Table 1: Expected number of times per 1000 m that the Lagrange waves fold (using the JONSWAP orbital
spectrum with Hs = 7 m, Tp = 11 s).

Water depth (m) 4 8 16 32 ∞
Expected number of foldings per 1000 m 2.96 0.034 0 0 0

Furthermore, we need to introduce two more types of upcrossing in the water level process.
The first is fixed-point upcrossings, by which we mean upcrossings of the mean water level
by the true height process observed at a fixed coordinate point, typically the space origin
s = (u0, v0) = 0. The second type will be called floating-point upcrossings by W(t, 0) at the
variable point (X(t, s), Y (t, s)), which moves in correlation with the height process. We will
discuss the relations between these later in this section.

3.1. Space wave models

We first consider space waves, i.e. waves observed at one fixed time-point t0, and choose to
identify waves by means of the upcrossings observed along a line, s = (u, v0), parallel to the
x-axis.

The floating-point upcrossings are then the mean-level upcrossings by the Gaussian com-
ponent W(t0, u, v0), u ∈ R, while the fixed-point upcrossings are the upcrossings in the
parametric surface

(u, v0) 
→ (�(t0, u, v0), W(t0, u, v0)).

In order to use the Gaussian character we will use the floating-point approach and base our
analysis on upcrossings in the Gaussian vertical component W(t0, u, v0).

Thus, we fix v0 and t0 and let u vary, to give a profile W(t0, u, v0), u > 0, in which we
observe the u-values, u1, u2, . . . , of the mean-level upcrossings. A space wave is then the
parametric surface

(σx, σy) 
→ (�(t0, uk + σx, v0 + σy), W(t0, uk + σx, v0 + σy)), (σx, σy) ∈ R
2.

Example 1. Figure 2 shows space waves from the Lagrange model (X(t0, s), W(t0, s)) for a
500 m section. The samples were simulated by means of a JONSWAP orbital spectrum with
significant wave height H0 = 7 m and peak period Tp = 11 s and the water depth variously
takes the values h = 4, 8, 16, 32, ∞ in metres. As can be seen, considerable folding occurs in
the model for the unrealistically small water depth of 4 m; cf. Table 1.

For unidirectional waves with spectral density concentrated on θ = 0, there will be no
deformation in the y-direction, meaning that Y (t, u, v) = v and only the variation in the
x-direction need be accounted for. If we suppress the v-argument, we see that W(t0, uk + σx)

describes the water level at the location X(t0, uk + σx) along the x-axis. If there is no folding
(Xu(t0, uk + σx) > 0), then the deformation is strictly increasing and we can obtain an exact
description of the space wave by transforming the wave shape in the Gaussian model.

Example 2. Figure 3 illustrates the difference between individual Lagrange and Gaussian
waves. The figure shows the simulated path of a two-dimensional Lagrange space wave

(X(t0, u), W(t0, u)), 0 ≤ u ≤ 500,
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Figure 2: Simulated Lagrange space waves for the JONSWAP orbital spectrum, with different water
depths.

and individual upcrossing space waves extracted therefrom. For comparison, we also show the
vertical Gaussian component, W(t0, u), as dash–dot lines. The orbital spectrum is a JONSWAP
spectrum as in Example 2, and the water depth is 32 m.

3.2. Time wave models

In the Lagrange model, time waves are somewhat more complicated. For a fixed s0 =
(u0, v0), we can identify the times for mean-level (i.e. level-0) upcrossings using the vertical
process W(t, s0), t > 0. This will give a sequence of times tk, k = 1, 2, . . . , at which the
particle that has reference coordinates s0 has a mean-level upcrossing. However, this point is no
longer located at s0, but at �(tk, s0) = (X(tk, s0), Y (tk, s0)). Therefore, W(tk + τ, s0), τ ∈ R,
describes the water surface observed at the random particle location �(tk + τ, s0) instead of at
the fixed location s0. In Section 4 we will derive a Slepian representation for the full model,

(�(tk + τ, s), W(tk + τ, s)), τ ∈ R, s ∈ R
2, (18)

from which all properties of the true time waves can be determined and calculated, at least in
principle.

Now we would like to obtain the wave profile when the mean-level upcrossings actually
occur at the fixed observation point s0 = (u0, v0). To this end, for the particle (or particles, if
there are more than one), we must identify the s-coordinate that happens to be at s0 at the time
of the upcrossing. Take s0 = (0, 0) and define

�−1
0 (t) = (u−1(t), v−1(t)) = {s = (u, v) ∈ R

2 : X(t, s) = Y (t, s) = 0} (19)

https://doi.org/10.1239/aap/1151337078 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337078


Lagrange sea waves 441

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

Figure 3: A space wave (top) with extracted individual wave shapes (bottom). The solid lines represent
the Lagrange wave and the dash–dot lines the vertical Gaussian component (using the JONSWAP orbital

spectrum with a water depth of 32 m).

as the reference point for particles located at (0, 0) at time t . If the space transformation does
not fold, there is one and only one such particle. Finally, we define W ∗(t) ≡ W(t, �−1

0 (t)) to
be the time wave observed at (0, 0), and analyse

W ∗(tk + τ) = W(tk + τ, �−1
0 (tk + τ)), (20)

conditioned on the mean-level upcrossings at tk . This will be done by means of the general
crossing theory for Gaussian processes applied to the time-dependent Gaussian process W(t, 0)

and the Gaussian coordinate shifts.

Example 3. In Figure 4 we illustrate the Lagrange time model. The upper diagram shows
a grey-scale plot of the Gaussian height process W(t, s) with the reference coordinate s on
the vertical axis. In the Gaussian wave model this diagram would have illustrated the joint
time–space development of the waves. A section parallel to the horizontal time axis would give
a time wave and a section parallel to the vertical axis would give a space wave.

The black overlayed curve is the inverse displacement, X−1(t, 0), for the reference coor-
dinate s0 = 0. The lower diagram shows the resulting time wave at s0 = 0, i.e. the height
W(t, X−1(t, 0)). Note that the peaked crests of the time wave occur when the true inverse
displacement has a large negative derivative, while the flat troughs are produced when the
inverse displacement follows a valley in W(t, s).

The inverse displacement X−1(t, 0) can be cumbersome to find and analyse. When the
horizontal displacement is reasonably homogeneous, we can use −X(t, 0) as an explicit
approximation. The thin, dashed curve in Figure 4 is the approximative inverse Gaussian
displacement −X(t, 0). As seen, that curve will produce crests that are less sharp, since its
derivative is less negative near the crests.
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Figure 4: Illustration of the Lagrange time wave principle (see the text for a discussion). Note that the
most peaked portions of the time wave occur when the true inverse displacement has a large negative

derivative.

Figure 5 shows a simulated path of a two-dimensional Lagrange time wave W ∗(t) and
individual upcrossing waves extracted therefrom. For comparison, we also show the vertical
Gaussian component, W(t, u0). The orbital spectrum is a JONSWAP spectrum as in Example 2.

The mean-level upcrossings by W(t, 0) are what we called floating-point upcrossings, but
we want the fixed-point upcrossings, i.e. the upcrossings by the process W ∗(t). One might ask
for the relation between these two types of upcrossing and the correspondingly conditioned
models.

First, one concern is the number of upcrossings that are observed. If the surface is smooth
and does not fold and the horizontal movements are small, then we might expect that there is one
and only one floating-point upcrossing spatially and temporally near a fixed-point upcrossing
at the point (0, 0). In this case we count the same number of waves in each approach.

Second, we want to use the behaviour of the floating-point conditioned process (20) to
describe exactly the shape of the fixed-point upcrossing waves. As will be described in
Section 4, the height process W(t, 0) is a Gaussian process with Rayleigh-distributed derivative
at the upcrossings and Gaussian residuals around the regression curve; cf. the basic Slepian
model (22), below. At the time of the upcrossing W(tk, 0) = 0, by definition, but the inverse
space deformation (19), with t = tk , results in a process, W ∗(tk) = W(tk, s

−1
0 (tk)), that does

not have a mean-level upcrossing at tk .
However, this will not be a problem. The Slepian model for the complete process, (18), will

describe all properties of the three components, in any neighbourhood of the upcrossing, and,
hence, implicitly also the distributions of the conditioned process (20).

https://doi.org/10.1239/aap/1151337078 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337078


Lagrange sea waves 443

0 10 20 30 40 50 60 70 80 90 100
−6

6

−4

−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

Figure 5: A time wave (top) with extracted individual wave shapes (bottom). The solid lines represent
the Lagrange wave and the dash–dot lines the vertical Gaussian component (using the JONSWAP orbital

spectrum with a water depth of 32 m).

4. The explicit Slepian model

4.1. The Slepian model for a Gaussian process after upcrossing

The stochastic Lagrange wave model is a multivariate Gaussian process with time parameter t

and a space parameter, (u, v), that represents the original position of the water particles. Since
each component is Gaussian, we can use the well-developed crossing theory for such processes
to describe the behaviour conditioned on level crossings; the basic theory for such conditioning
can be found in [9, Chapter 10] and [12].

4.1.1. The univariate Slepian model. A Slepian model for a stationary ergodic stochastic process
{Y (t) : t ∈ R} after an upcrossing of a level u is a stochastic process, {Yu(τ) : τ ∈ R}, that
has the same distribution as the Y -process, when the latter is observed after an ‘arbitrary’
upcrossing of the level u. To make this statement precise, for any function x(t), t ∈ R, and
vector of time-points τ = (τ1, . . . , τn), write x(τ ) = (x(τ1), . . . , x(τn)). Also, denote by
t1, t2, . . . the locations of the upcrossings of the level u by Y (t), t > 0. The Slepian process Yu

then has the property that for any n-dimensional event A, with probability 1,

P(Yu(τ ) ∈ A) = lim
T →∞

card{tk < T : Y (tk + τ ) ∈ A}
card{tk < T }

= E(card{tk ≤ 1 : Y (tk + τ ) ∈ A})
E(card{tk ≤ 1})

=
∫ ∞

0

z

λ2
e−z2/2λ2 P(Y (τ ) ∈ A | Y (0) = u, Y ′(0) = z) dz, (21)
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where Y (tk + τ ) = (Y (tk + τ1), . . . , (Y (tk + τn)). The interpretation of this is that Yu(τ) has
the same statistical properties and variability that can be observed in the sequence Y (tk + τ),
k = 1, 2, . . . , i.e. in the Y -process observed in the long run near all its u-upcrossings. The
explicit expression in (21) follows from Rice’s formula for the expected number of upcrossings.

We first describe the one-dimensional Slepian model for a differentiable stationary Gaussian
process Y (t) with mean 0 and covariance function rY (t), and let λ0 := rY (0) = var(Y (t)) and
λ2 := −r ′′

Y (0) = var(Y ′(t)). The model for Y (tk + τ) after an upcrossing of the level u at
time tk follows from (21) and properties of conditional normal distributions (see [20], [10], and
[9, Section 10.3]), and has the form

Yu(τ) = u
rY (τ )

λ0
− Z

r ′
Y (τ )

λ2
+ δ(τ ), (22)

where Z is a Rayleigh-distributed random variable with probability density function fZ(z) =
(z/λ2) exp(−z2/2λ2), z > 0, and δ(t) is a nonstationary Gaussian process, independent of Z,
with mean 0 and covariance function

rδ(s, t) = cov(δ(s), δ(t)) = rY (s − t) − rY (s)rY (t)

λ0
− r ′

Y (s)r ′
Y (t)

λ2
.

The variable Z describes the random gradient Y ′(tk) at the upcrossings, and the first two terms
in (22) are the expected value of Y (tk + τ) given that Y (tk) = u and Y ′(tk) = Z. The third
term is a residual Gaussian variation around the expectation curve with conditional covariances
given Y (tk) and Y ′(tk).

4.1.2. The vector Slepian model. Now consider a vector process {(Y (t), X(t)) : t ∈ R}, where
Y (t) is the same process as before and X(t) = (x1(t), . . . , xp(t)) is a stationary vector
process correlated with Y (t). As before, denote by t1, t2, . . . the locations of the level-u
upcrossings by Y (t), t > 0, and consider a process, Xu(t), that describes the long-run behaviour
of X(tk + τ ) = (x1(tk + τ ), . . . , xp(tk + τ )) near these u-upcrossings. The process X(t)

can be any stationary Gaussian vector process correlated with Y (t); in this application it will
consist of elements from the vertical and horizontal components of the Lagrange model.

In analogy with (21), we obtain

P(Xu(τ ) ∈ A) =
∫ ∞

0

z

λ2
e−z2/2λ2 P(X(τ ) ∈ A | Y (0) = u, Y ′(0) = z) dz,

from which the explicit Slepian model follows:

Xu(τ ) = E(X(τ )) + u
rYX(τ )

λ0
− Z

r ′
YX(τ )

λ2
+ δ(τ ). (23)

Here rYX(τ ) and −r ′
YX(τ ) are the covariance vector functions between Y (0) and X(τ ) and

Y ′(0) and X(τ ), respectively. The residual process δ(t) is a nonstationary Gaussian process
with mean 0 and covariance function

rδ(s, t) = cov(δ(s), δ(t)) = rX(s − t) − rYX(s)rYX(t)

λ0
− r ′

YX(s)r ′
YX(t)

λ2
. (24)

The usefulness of the Slepian model stems from the fact that, conditional on the simple
random variable Z, the variability of the residual δ(τ ) around its mean is often rather small.
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Since the variation is furthermore Gaussian with known covariance structure, it is possible to
calculate, by numerical integration, most distributions that are of interest, e.g. in wave analysis;
see [11]. The technique can be generalised to multivariate processes and fields to produce
Slepian models also in the Lagrange wave model, as we will now show.

4.2. Explicit Slepian models for the two-dimensional Lagrange wave process

We will now present the Slepian models for the components of the Lagrange process,
conditioned on upcrossings of the mean level in time or in space. In order to make things
clear we give formulae and examples for the two-dimensional case only. Formulae for the full
three-dimensional model are easily obtained by generalisation of the two-dimensional ones.

4.2.1. Slepian models for space waves. We first turn to individual space waves. In the space
wave model the conditioning is on mean-level upcrossings by W(t0, u), u > 0, for a fixed time,
t0 = 0 say, occurring at locations uk, k = 1, 2, . . . . The Slepian model for the conditional
behaviours of W(t0, uk + u) and X(t0, uk + u) contains a Rayleigh-distributed variable, Z ≡
Zspace, that describes the spatial gradient Wu(0, uk) at the upcrossings, and a nonstationary
Gaussian residual process.

Theorem 2. (Space wave model.) Let the height process W(0, u), u > 0, have upcrossings of
the mean level at uk , k = 1, 2, . . . . The Slepian models for the height process W(τ, uk + u)

and the transformation process X(τ, uk + u), τ ∈ R, u ∈ R, are given by

W
space
0 (τ, u) = Z

rww
u0 (τ, u)

σu(w)2 + δ
space
w (τ, u), (25)

X
space
0 (τ, u) = u + Z

rwx
u0 (τ, u)

σu(w)2 + δ
space
x (τ, u),

where Z ≡ Zspace > 0 is a Rayleigh-distributed random variable with density

fZ(z) = z

σu(w)2 e−z2/2σu(w)2
, z > 0, (26)

the covariances rww
u0 (τ, u) and rwx

u0 (τ, u) are respectively given by (14) and (15), and the
variance σu(w)2 is given by (12).

The process �space(τ, u) = (δ
space
w (τ, u), δ

space
x (τ, u)) is a nonstationary, bivariate Gaussian

process, independent of Z, with mean 0 and covariance matrix function,

r
space
� (t, t ′; u, u′) = cov(�(t, u), �(t ′, u′)),

given by

r
space
δw,δw

(t, t ′; u, u′) = rww(t − t ′, u − u′) − rww(t, u)rww(t ′, u′)
σ (w)2 − rww

u0 (t, u)rww
u0 (t ′, u′)

σu(w)2 ,

(27)

r
space
δx ,δx

(t, t ′; u, u′) = rxx(t − t ′, u − u′) − rwx(t, u)rwx(t ′, u′)
σ (w)2 − rwx

u0 (t, u)rwx
u0 (t ′, u′)

σu(w)2 , (28)

r
space
δw,δx

(t, t ′; u, u′) = rwx(t − t ′, u − u′) − rww(t, u)rwx(t ′, u′)
σ (w)2 − rww

u0 (t, u)rwx
u0 (t ′, u′)

σu(w)2 .

(29)
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Proof. The results follow from the general form of the Slepian model, (23), and the covari-
ance function (24). The first terms in the expressions for W

space
0 (τ, u) and X

space
0 (τ, u) are the

conditional means, given that W(0, 0) = 0 and Wu(0, 0) = Z. For example, in (25),

z
rww
u0 (τ, u)

σu(w)2 = E(W(τ, u) | W(0, 0) = 0, Wu(0, 0) = z).

The δ-terms represent the residuals around the expected value, and these residuals are Gaussian
with mean 0 and covariances given by (27)–(29). The derivative Wu(uk, u) at the upcrossings
uk has a Rayleigh distribution with density (26). The Rayleigh variable Z in the Slepian models
therefore describes the variability of the gradient of W(t, u) at the upcrossings.

The Slepian model for individual Lagrange space waves is now the parametric function
(X

space
0 (0, u), W

space
0 (0, u)), u ∈ R, as described in Section 3.1. The space wave model is

always uniquely defined, in contrast to the time wave model, for which multiple solutions
can exist. In the space model, each upcrossing in the vertical Gaussian process W

space
0 (u, 0)

corresponds to a unique upcrossing in the transformed wave, and the Slepian model therefore
has the exact interpretation as the long-run distribution of individual Lagrange space waves.
Note, however, the unrealistic folding that can occur in the model for shallow water; cf. Figure 2.

4.2.2. Slepian models for time waves.

Theorem 3. (Time wave model.) Let the height process W(t, 0), t > 0, have upcrossings of
the mean level at tk , k = 1, 2, . . . . The Slepian models for the time process W(tk + τ, u) and
the transformation process X(tk + τ, u), τ ∈ R, u ∈ R, are given by

W time
0 (τ, u) = Z

rww
t0 (τ, u)

σt (w)2 + δtime
w (τ, u),

Xtime
0 (τ, u) = u + Z

rwx
t0 (τ, u)

σt (w)2 + δtime
x (τ, u),

where Z ≡ Ztime > 0 is a Rayleigh-distributed random variable with density

fZ(z) = z

σt (w)2 e−z2/2σt (w)2
, z > 0,

the covariances rww
t0 (τ, u) and rwx

t0 (τ, u) are respectively given by (16) and (17), and the
variance σu(w)2 is given by (12).

The process �time(τ, u) = (δtime
w (τ, u), δtime

x (τ, u)) is a nonstationary bivariate Gaussian
process, independent of Z, with mean 0 and covariance matrix function r time

� (t, t ′; u, u′) similar
(componentwise) to (27)–(29) with σ 2

u (w) replaced by σ 2
t (w) and rww

u0 and rwx
u0 respectively

replaced by rww
t0 and rwx

t0 .

The Slepian model for individual Lagrange time waves is found by the procedure described
in Section 3.2. For a fixed u0 = 0, say, let

u−1
0 (t) = {s : X0(t, s) = 0}. (30)

If more than one solution exists, it means that two particles occupy the same location at time t ,
and the process will have folded; cf. Figure 2.

If (30) defines a unique u−1
0 (t), then the Slepian model for individual Laplace time waves is

W0(t, u
−1
0 (t)), t ∈ R. (31)
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If u−1
0 (t) is multivalued then (31) describes the randomness for each branch, but the interpreta-

tion of this is nonphysical. Note that the Slepian model describes the long-run variability of the
processes, in the neighbourhood of the conditioning upcrossings. Therefore, unique solutions
have the desired physical interpretation, namely that they describe individual waves.

4.3. Low-order approximations to the Slepian model

The explicit Slepian models describe the random shapes of individual Lagrange waves
in space and time. They can be used both for simulation and for numerical calculations
of important wave-characteristic distributions. Since they contain two continuous-parameter
Gaussian processes, a finite-dimensional approximation is necessary. A discrete approximation
of the Karhunen–Loève expansion of the Gaussian part by means of principal components is
an efficient approach.

By neglecting the Gaussian terms, δw and δx , entirely, we obtain a Slepian model approx-
imation of order 0 that depends only on the random gradient at the upcrossings in W(t, 0) or
W(0, u), which in the models are represented by the Rayleigh variables Zspace and Ztime. The
zeroth-order Lagrange space wave can be found from

W
space
00 (τ, u) = Zspace

rww
u0 (τ, u)

σu(w)2 ,

X
space
00 (τ, u) = u + Zspace

rwx
u0 (τ, u)

σu(w)2 ,

with analogous expressions for the time waves.
An expansion of the Gaussian residuals into principal components has the generic form

δw(τ, u) =
∞∑

k=1

εk

√
φkδw,k(τ, u),

δx(τ, u) =
∞∑

k=1

εk

√
φkδx,k(τ, u),

where εk, k = 1, 2, . . . , are independent standard Gaussian variables, φ1, φ2, . . . , φ1 ≥
φ2 ≥ · · · , is the decreasing sequence of eigenvalues of the combined covariance function
for the processes δw and δx , and δw,k and δx,k are the corresponding eigenfunctions.

Taking the space waves for t = 0 as an example, the models δw(0, u) and δx(0, u) can
be simulated, for locations u = (u1, . . . , un), u1 < · · · < un, as the Gaussian vector
(δw(0, u), δx(0, u)), of dimension 2n, which has mean 0 and covariance matrix defined (compo-
nentwise) by (27)–(29), with trivial modifications if uk = 0 for any k, since then δw(0, uk) = 0.

4.3.1. Zeroth-order approximations. For the time waves, in parallel to (19), let u−1
00 (τ ) =

{u ∈ R : Xtime
00 (τ, u) = 0} be the reference coordinate for the particle that is at 0 at time t . Then

W time
00 (τ, u−1

00 (τ )) is the Lagrange time wave in the zeroth-order model. Simulated examples
are shown in Figure 6, for comparison with Figure 5. The figure also shows the corresponding
results for the Gaussian process, which is obtained by taking Xtime

00 (τ, u) ≡ u.
Note that the models for the Lagrange time waves do not start at τ = 0, due to the fact

that they are models for the time wave at the fixed location u = 0 under the condition of a
floating-point upcrossing at τ = 0. Note also that the zeroth-order Slepian models give very
idealised and smooth time waves, and that they in particular show too little variability in the
length of the wave crest, compared with the examples from the full time–space simulations. In
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Figure 6: Approximations to individual Lagrange (top) and Gaussian (bottom) time waves simulated by
a zeroth-order Slepian model, for a water depth of 32 m. The bold line is the average of the simulated

waves.

each, the first downcrossing occurs at around τ = 4.5. The same is true for the zeroth-order
space waves, which can be seen in Figure 7.

Individual zeroth-order space waves are explicitly given by the parametric function

(X
space
00 (0, u), W

space
00 (0, u)), u ∈ R.

As can be seen from the top diagram of Figure 7, the zeroth-order model is much too smooth,
compared to the simulated Lagrange waves.

4.3.2. Higher-order approximations. If we include some of the principal components of the
δ-processes in the simulation, we obtain higher-order approximations with more variability.
For the time waves this requires expansion in both time and space. This is computationally
demanding, so here we present only the space waves, as an example.

By expanding in principal components according to the decreasing sequence of eigenvalues
and simulating the most important eigenfunctions, we can obtain a very accurate model. In
Figure 7, the middle diagram shows the results with only one eigenfunction. In the bottom
diagram we included as many eigenvectors as are necessary to account for 99% of the total
variability; for this example, 12 eigenfunctions were needed. This diagram should be compared
with Figure 3, which shows the results from a long-run time–space simulation.

It should be stressed again that the Slepian models give the exact distributions of individual
waves that are observed in a long-run simulation, and are therefore very effective in the
analysis of the characteristics of individual waves. The same technique can be used for the
numerical computation of wave-characteristic distributions; this is done in the WAFO toolbox
(see http://www.maths.lth.se/matstat/wafo/).
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Figure 7: Approximation of individual Lagrange (solid) and Gaussian (dash–dot) space waves simulated
by Slepian models of various orders, for a water depth of 32 m.
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