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1. Introduction

In 1962, O. Frink [2] showed that in a pseudo-complemented semi-
lattice <P; A, *, 0>, the closed elements form a Boolean algebra. We shall
consider an extension of this result to arbitrary commutative semigroups
with zero.

Let S = <S; •, 0> be a commutative semigroup with zero. For a subset
A QS we define A* = {s eS : sA Qr(S)}, where r(S) denotes the set of
all nilpotents of 5 (the radical). A* is called the r-annihilator of A. If A =
{a} we write {«}* = (a)* since {a}* coincides with (a)*, where (a) denotes
the principal ideal (a) = aS generated by a.

A well-known congruence definable in semigroups with zero is the
congruence R defined by

(a,b}eR =Dt («)•=(&)*.

Our main result is

THEOREM 1. In a commutative semigroup S = <S; •, 0>, S[R is a
Boolean algebra if and only if for all x e S (x)** = (x1)* for some x' e S.

We also consider when S[R is a Boolean algebra with a higher degree
of (lattice) completeness, and determine the normal completion of S[R in
a special case.

2. Proof of Theorem 1

We need some results on r-annihilators - the first result being straight-
forward has its proof omitted.

LEMMA 2.1. For subsets A and B of S we have

W ^ = f]aeA («)*.
(ii) AQB implies A* 2 B* and thus, A** Q B**,

(iii) A QA**,
(iv) A* n A** = r(S) and A*** = A*.
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LEMMA 2.2. For any two ideals I and J of S

{I nj)** =/** nj**

PROOF. Since / n / C / a n d / n / C / w e have, by 2.1 (ii) (I n /)** Q
I** and (/ n J)** C /** and so (I n J)** Q I** n / •* .

For the reverse inclusion, let s el** n /** and t e (I n /)*, i el and
/ e / . Clearly */ el n J and so &'/ er(S) or ti e (j)* for any / e / . Thus
'*' e riiej(/)* = /*• ^ n ' s implies sh' e r(S) since s e /** and thus st e (i)* for
any i e / .

We then have st e f]{£l (*)* = /* and so si e/** n 7* = r(S), or
s e (i)* V£ e (I n / )* , which gives us the result s e ( l n j ) * * or

/** nJ**Q(InJ)**.

The reverse inclusion is now proved and the result follows.

COROLLARY, (ab)** = (a)** n (&)**.
Rather than work with SjR. which is a semi-lattice by a result of R.S.

Pierce [5], we prefer to consider the isomorphic semilattice
S** = <S**; n, (0)**> where S** = {(a)**: a e S}.

LEMMA 2.3. S/i? ~ S**.

PROOF. If we let p denote the natural homomorphism existing between
5 and S/R we may define a map </> : S/R-^S** by ap$ = (a)**. <f> is well-
defined, for if ap = bp, (a)* = (6)* and hence (a)** = (b)**. This argument
reverses to show p is an injection, and <f> is obviously surjective. The corollary
above shows that <f> is a semigroup homomorphism and so the result follows.

We now proceed to the main part of our proof using the postulate set
for Boolean algebras of O. Frink [1]. The postulates are in terms of semi-
lattice meet (A), and complement (').

PI . a A b = b A a
P2. (a A b) A c = a A (b A C)

P3. a A a = a
P4. SAj' = 0o(IAi = S.

Clearly P i , P2 and P3 are postulates for a semi-lattice, and P4 is the only
postulate which needs considering in detail.

LEMMA 2.4. / / the commutative semigroup S = <S; •, 0> satisfies Condi-
tion (*): For any x e S, (x)** = (x1)* for some x' e S, then
S** = <S**; n, r{S)y is a Boolean algebra.

PROOF. In S** the semi-lattice operation is set intersection n, the zero
r(S) = (0)** and we define the complement of (a)**eS**by («)**'= («')**
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where a' is defined by Condition (*). Lemma 2.3 tells us that S** is a
semi-lattice so we need only consider P4. Suppose (a)** n (b)**' = (0)**.
Then (a)** n (&')** = (ab')** = (0)** and hence ab' er(S) by 2.1 (i).
This implies b' e («)* and so (b') Q (a)*, giving (&')* = (6)** D (a)**. Thus
(a)** n (6)** = (a)** and the left-right implication of P4 is proved.

Next, suppose (a)** n (6)** = (a)**. Then (a&)** = (a)** and
(a)** n (6)**' = {a)** n (6')** = («&)** n (6')** = («&&')**• Now W e
(&)•* n (6')** = '(S) and so (abb')** Q (bb>)** = r(S)- Thus (a)** n (&)••
= r(S) and the right-left implication is proved.

LEMMA 2.5. Suppose S = <5; •, 0> is a commutative semi-group with
zero, and that S** = <S**; n, (0)**> is a Boolean algebra. Then S satisfies
Condition (*): For any x e S, (x)** = (x')* for some x' e S.

PROOF. Since S** is a Boolean algebra, P4 is satisfied; i.e. for any (b)**
there is a (b)**' such that

(a)** n (b)**' = (0)** o (a)** n (&)** = (a)**

Defining (b')** by (6')** = (b) **' we show that (b)* = (6')** or, equivalently
(2.1(iv)) (b)** = (b1)*. Put a = b in the above equivalence and, since the
right side is clearly true, we deduce that (b)** n (b)**' = (b)** n (b')** =
(&&')••= (0)**. Thus, by 2.1 (i) bb' er(S) and so b' e (b)*, giving {b') Q (b)*
or (b')* 2 (&)**. Now take a e (&')* and put it in the left side of the equiv-
alence. For such an a, we see that

(a)** n (&)**' = [a)** n (6')** = {ab')** = (0)**,

and so we deduce that (a)** n (b)** = (a)**. This means, by 2.1 (ii) that
a e (b)** and we have thus proved (b1)* Q (b)**. Combining this with the
reverse inclusion obtained above gives us (&')* = (b)** and the Lemma
follows.

THEOREM 1. Let S = <S; •, 0> be a commutative semi-group with zero.
Then SIR is a Boolean algebra if and only if Condition (*) holds in S.

PROOF. Lemmas 2.3, 2.4, and 2.5.

REMARK. A commutative semigroup with zero is called a Baer semi-
group if for each s e S there exists an idempotent e e S such that

{t : st = 0} = Se.

J. Kist [4] has shown that in a commutative Baer semigroup r(S) = (0)
and so for any s e S, (s)* = Se for some idempotent e e S. This enables us
to give a new proof of Theorem 7.3 of J. Kist [4].

COROLLARY 1. If S = <5; •, 0> is a commutative Baer semigroup, then
S/R is a Boolean algebra.
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PROOF. For s e S, (s)* = Se. We then show (e)* = (s)** and so we may
take s' = e in Condition (*). Observe that (s)** = {Se)*. Now if tSe = (0),
then tee = te2 = te = 0 and so t e (e)*. Further, if t e (e)*, then tse = 0
for s e S, and so t e (Se)*. Thus (Se)* = (e)* and the Corollary is proved.

COROLLARY 2. (0. Frink [2]) If S = <S; A, *, 0> ts a pseudo-complement-
ed semi-lattice, then S** is a Boolean algebra.

PROOF. A pseudo-complemented semi-lattice is a commutative Baer
semigroup and so the result follows from Lemma 2.3 and Corollary 1 above.

3. Completeness of S/R

In this section we generalise Condition (*) to the following (m denotes
an arbitrary cardinal)

CONDITION m(*). For any A QS with \A\ ^ m, A** = (a')* for some
a'eS.

REMARK. Condition tn(*) implies Condition n(*) for n a cardinal, n s£ nt.

THEOREM 2. Let S = <S; •, 0> be a commutative semi-group with zero.
Then S** = •(S**; n, (0)**) is an m-complete Boolean algebra if and only if
S satisfies Condition nt(*)

PROOF. Assume S satisfies Condition tn(*) and take {ay '-yer}QS
with \r\ ^ nt. Then f]yer (ay)** = f |7er K ) * = A* = (a1)** where A =
{a'y :y e F} and a'y, a' exist because of Condition nt(*). Thus S** is closed
under intersections of m elements, and by Condition (*), it is complemented.

This implies 5** = SjR is an m-complete Bolean algebra, and the first
half of our proof is complete.

Next we assume S** is an tn-complete Boolean algebra. Then S** is
closed under intersections of nt elements, and satisfies Condition (*), by
Theorem 1. Take A = {ay : y e T}, \T\ ^ ttt.

A* = f) (ay)* by 2.1 (i)

and so = f\ (a'y)** by Condition (*)

= (a1)** since 5** is m-complete.

Thus A** = (a')* and our theorem is proved.

COROLLARY. 5** is a complete Boolean algebra if and only if for
AQS, A** = (a')* for some a' e S.
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4. The normal completion of S/R

We next consider the normal completion of S/R = S**. Our construc-
tion applies to the class of commutative semi-groups without radical for
which the mapping a -»• (a) is injective. A wide class of semigroups satis-
fying this condition is the class of semi-lattices. The result is in fact mainly of
interest in the case of semi-lattices. For this reason we shall formulate
our results for semi-lattices, although the extension to the class of semi-
groups mentioned above is immediate.

LEMMA 4.1. If E = (E; A, 0> is a semi-lattice with zero, then the semi-
lattice of ideals, J1(E) = (I{E); n, (0)> is a pseudo-complemented semi-lattice.
The pseudo-complement of Jel(E) is simply J*. Further, y(E)** is a
complete Boolean algebra.

PROOF. Only the last statement really needs checking. Suppose s/ =
{Ia: a.e A) is an arbitrary family of ideals of E. Then

where / = f\J*.
We see that the conditions of the preceding Corollary are satisfied and

so the result follows.
Next we note, by the comments above, that there is a faithful copy

of E embedded va.J(E). More important is that this implies E* * is a subsemi-
lattice of <f(E)**, since {a}** = (a)**. A subset Q of a semi-lattice with
zero <P; A, 0> is said to be dense if for any p e P, p ^ 0, there is q e Q
with 0 < q 5S p.

LEMMA 4.2. E** is a dense subsemi-lattice of <?(E)**.

PROOF. We must show that for any /** e J'(E)** such that /** ^ (0)
there is {a)** e E**, (0) C («)** C/**. This follows readily since I** # (0)
implies (i)** # (0) for some iel. Clearly then (0) C (i)** QI** and our
result is proved.

An immediate consequence of 4.2 is

THEOREM 3. Let E = <£; A, 0> be a semi-lattice with zero. If E** is a
Boolean algebra, then ^(E)** is the normal completion of E**.

PROOF. E** as a Boolean algebra is a dense subsemi-lattice of J(£)**.
It is well known that under these conditions ^(E)** is the normal comple-
tion of E**. See R. Sikorski [6] p. 153.

5. Concluding remarks

In this note our method of proof of the main theorem follows that of
O. Frink [2] using the postulates of O. Frink [1]. In the author's thesis
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these results followed (in the case of distributive lattices and semi-lattices)
from theorems regarding the space of minimal prime ideals. Condition (*)
was introduced by M. Henrikson and M. Jerison [3] and was related to the
congruence R via distributive lattices.
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