A NOTE ON COMMUTATIVE SEMIGROUPS

T. P. SPEED

(Received 17 March 1967)

1. Introduction

In 1962, O. Frink [2] showed that in a pseudo-complemented semilattice $\langle P; \wedge, *, 0 \rangle$, the closed elements form a Boolean algebra. We shall consider an extension of this result to arbitrary commutative semigroups with zero.

Let $S = \langle S; \cdot, 0 \rangle$ be a commutative semigroup with zero. For a subset $A \subseteq S$ we define $A^* = \{s \in S : sA \subseteq r(S)\}$, where r(S) denotes the set of all nilpotents of S (the radical). A^* is called the *r*-annihilator of A. If $A = \{a\}$ we write $\{a\}^* = (a)^*$ since $\{a\}^*$ coincides with $(a)^*$, where (a) denotes the principal ideal (a) = aS generated by a.

A well-known congruence definable in semigroups with zero is the congruence R defined by

$$\langle a, b \rangle \in R \equiv_{Df} (a)^* = (b)^*.$$

Our main result is

THEOREM 1. In a commutative semigroup $S = \langle S; \cdot, 0 \rangle$, S/R is a Boolean algebra if and only if for all $x \in S$ $(x)^{**} = (x')^*$ for some $x' \in S$.

We also consider when S/R is a Boolean algebra with a higher degree of (lattice) completeness, and determine the normal completion of S/R in a special case.

2. Proof of Theorem 1

We need some results on *r*-annihilators - the first result being straightforward has its proof omitted.

LEMMA 2.1. For subsets A and B of S we have

(i) $A^* = \bigcap_{a \in A} (a)^*$, (ii) $A \subseteq B$ implies $A^* \supseteq B^*$ and thus, $A^{**} \subseteq B^{**}$, (iii) $A \subseteq A^{**}$, (iv) $A^* \cap A^{**} = r(S)$ and $A^{***} = A^*$. LEMMA 2.2. For any two ideals I and J of S

 $(I \cap J)^{**} = I^{**} \cap J^{**}$

PROOF. Since $I \cap J \subseteq I$ and $I \cap J \subseteq J$ we have, by 2.1 (ii) $(I \cap J)^{**} \subseteq I^{**}$ and $(I \cap J)^{**} \subseteq J^{**}$ and so $(I \cap J)^{**} \subseteq I^{**} \cap J^{**}$.

For the reverse inclusion, let $s \in I^{**} \cap J^{**}$ and $t \in (I \cap J)^*$, $i \in I$ and $j \in J$. Clearly $ij \in I \cap J$ and so $tij \in r(S)$ or $ti \in (j)^*$ for any $j \in J$. Thus $ti \in \bigcap_{i \in J} (j)^* = J^*$. This implies $sti \in r(S)$ since $s \in J^{**}$ and thus $st \in (i)^*$ for any $i \in I$.

We then have $st \in \bigcap_{i \in I} (i)^* = I^*$ and so $st \in I^{**} \cap I^* = r(S)$, or $s \in (t)^* \quad \forall t \in (I \cap J)^*$, which gives us the result $s \in (I \cap J)^{**}$ or

 $I^{**} \cap J^{**} \subseteq (I \cap J)^{**}.$

The reverse inclusion is now proved and the result follows.

COROLLARY. $(ab)^{**} = (a)^{**} \cap (b)^{**}$.

Rather than work with S/R. which is a semi-lattice by a result of R.S. Pierce [5], we prefer to consider the isomorphic semilattice $S^{**} = \langle S^{**}; \cap, (0)^{**} \rangle$ where $S^{**} = \{(a)^{**}; a \in S\}$.

Lemma 2.3. $S/R \simeq S^{**}$.

PROOF. If we let ρ denote the natural homomorphism existing between S and S/R we may define a map $\phi : S/R \to S^{**}$ by $a\rho\phi = (a)^{**}$. ϕ is welldefined, for if $a\rho = b\rho$, $(a)^* = (b)^*$ and hence $(a)^{**} = (b)^{**}$. This argument reverses to show ρ is an injection, and ϕ is obviously surjective. The corollary above shows that ϕ is a semigroup homomorphism and so the result follows.

We now proceed to the main part of our proof using the postulate set for Boolean algebras of O. Frink [1]. The postulates are in terms of semilattice meet (\wedge), and complement (').

P1. $a \wedge b = b \wedge a$ P2. $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ P3. $a \wedge a = a$ P4. $a \wedge b' = 0 \Leftrightarrow a \wedge b = a$.

Clearly P1, P2 and P3 are postulates for a semi-lattice, and P4 is the only postulate which needs considering in detail.

LEMMA 2.4. If the commutative semigroup $S = \langle S; \cdot, 0 \rangle$ satisfies Condition (*): For any $x \in S$, $(x)^{**} = (x')^*$ for some $x' \in S$, then $S^{**} = \langle S^{**}; \cap, r(S) \rangle$ is a Boolean algebra.

PROOF. In S** the semi-lattice operation is set intersection \cap , the zero $r(S) = (0)^{**}$ and we define the complement of $(a)^{**} \in S^{**}$ by $(a)^{**'} = (a')^{**}$

where a' is defined by Condition (*). Lemma 2.3 tells us that S^{**} is a semi-lattice so we need only consider P4. Suppose $(a)^{**} \cap (b)^{**'} = (0)^{**}$. Then $(a)^{**} \cap (b')^{**} = (ab')^{**} = (0)^{**}$ and hence $ab' \in r(S)$ by 2.1 (i). This implies $b' \in (a)^*$ and so $(b') \subseteq (a)^*$, giving $(b')^* = (b)^{**} \supseteq (a)^{**}$. Thus $(a)^{**} \cap (b)^{**} = (a)^{**}$ and the left-right implication of P4 is proved.

Next, suppose $(a)^{**} \cap (b)^{**} = (a)^{**}$. Then $(ab)^{**} = (a)^{**}$ and $(a)^{**} \cap (b)^{**'} = (a)^{**} \cap (b')^{**} = (ab)^{**} \cap (b')^{**} = (abb')^{**}$. Now $bb' \in (b)^{**} \cap (b')^{**} = r(S)$ and so $(abb')^{**} \subseteq (bb')^{**} = r(S)$. Thus $(a)^{**} \cap (b)^{**} = r(S)$ and the right-left implication is proved.

LEMMA 2.5. Suppose $S = \langle S; \cdot, 0 \rangle$ is a commutative semi-group with zero, and that $S^{**} = \langle S^{**}; \cap, (0)^{**} \rangle$ is a Boolean algebra. Then S satisfies Condition (*): For any $x \in S$, $(x)^{**} = (x')^*$ for some $x' \in S$.

PROOF. Since S^{**} is a Boolean algebra, P4 is satisfied; i.e. for any $(b)^{**}$ there is a $(b)^{**'}$ such that

$$(a)^{**} \cap (b)^{**'} = (0)^{**} \Leftrightarrow (a)^{**} \cap (b)^{**} = (a)^{**}$$

Defining $(b')^{**}$ by $(b')^{**} = (b)^{**'}$ we show that $(b)^* = (b')^{**}$ or, equivalently (2.1 (iv)) $(b)^{**} = (b')^*$. Put a = b in the above equivalence and, since the right side is clearly true, we deduce that $(b)^{**} \cap (b)^{**'} = (b)^{**} \cap (b')^{**} = (bb')^{**} = (0)^{**}$. Thus, by 2.1 (i) $bb' \in r(S)$ and so $b' \in (b)^*$, giving $(b') \subseteq (b)^*$ or $(b')^* \supseteq (b)^{**}$. Now take $a \in (b')^*$ and put it in the left side of the equivalence. For such an a, we see that

$$(a)^{**} \cap (b)^{**'} = (a)^{**} \cap (b')^{**} = (ab')^{**} = (0)^{**},$$

and so we deduce that $(a)^{**} \cap (b)^{**} = (a)^{**}$. This means, by 2.1 (ii) that $a \in (b)^{**}$ and we have thus proved $(b')^* \subseteq (b)^{**}$. Combining this with the reverse inclusion obtained above gives us $(b')^* = (b)^{**}$ and the Lemma follows.

THEOREM 1. Let $S = \langle S; \cdot, 0 \rangle$ be a commutative semi-group with zero. Then S/R is a Boolean algebra if and only if Condition (*) holds in S.

PROOF. Lemmas 2.3, 2.4, and 2.5.

REMARK. A commutative semigroup with zero is called a Baer semigroup if for each $s \in S$ there exists an idempotent $e \in S$ such that

$$\{t:st=0\}=Se.$$

J. Kist [4] has shown that in a commutative Baer semigroup r(S) = (0) and so for any $s \in S$, $(s)^* = Se$ for some idempotent $e \in S$. This enables us to give a new proof of Theorem 7.3 of J. Kist [4].

COROLLARY 1. If $S = \langle S; \cdot, 0 \rangle$ is a commutative Baer semigroup, then S/R is a Boolean algebra.

PROOF. For $s \in S$, $(s)^* = Se$. We then show $(e)^* = (s)^{**}$ and so we may take s' = e in Condition (*). Observe that $(s)^{**} = (Se)^*$. Now if tSe = (0), then $tee = te^2 = te = 0$ and so $t \in (e)^*$. Further, if $t \in (e)^*$, then tse = 0 for $s \in S$, and so $t \in (Se)^*$. Thus $(Se)^* = (e)^*$ and the Corollary is proved.

COROLLARY 2. (O. Frink [2]) If $S = \langle S; \land, *, 0 \rangle$ is a pseudo-complemented semi-lattice, then S^{**} is a Boolean algebra.

PROOF. A pseudo-complemented semi-lattice is a commutative Baer semigroup and so the result follows from Lemma 2.3 and Corollary 1 above.

3. Completeness of S/R

In this section we generalise Condition (*) to the following (m denotes an arbitrary cardinal)

CONDITION $\mathfrak{m}(*)$. For any $A \subseteq S$ with $|A| \leq \mathfrak{m}$, $A^{**} = (a')^*$ for some $a' \in S$.

REMARK. Condition $\mathfrak{m}(*)$ implies Condition $\mathfrak{n}(*)$ for \mathfrak{n} a cardinal, $\mathfrak{n} \leq \mathfrak{m}$.

THEOREM 2. Let $S = \langle S; \cdot, 0 \rangle$ be a commutative semi-group with zero. Then $S^{**} = \langle S^{**}; \cap, (0)^{**} \rangle$ is an m-complete Boolean algebra if and only if S satisfies Condition $\mathfrak{m}(*)$

PROOF. Assume S satisfies Condition $\mathfrak{m}(*)$ and take $\{a_{\gamma} : \gamma \in \Gamma\} \subseteq S$ with $|\Gamma| \leq \mathfrak{m}$. Then $\bigcap_{\gamma \in \Gamma} (a_{\gamma})^{**} = \bigcap_{\gamma \in \Gamma} (a_{\gamma})^{*} = A^{*} = (a')^{**}$ where $A = \{a'_{\gamma} : \gamma \in \Gamma\}$ and a'_{γ} , a' exist because of Condition $\mathfrak{m}(*)$. Thus S^{**} is closed under intersections of \mathfrak{m} elements, and by Condition (*), it is complemented.

This implies $S^{**} = S/R$ is an m-complete Bolean algebra, and the first half of our proof is complete.

Next we assume S^{**} is an m-complete Boolean algebra. Then S^{**} is closed under intersections of m elements, and satisfies Condition (*), by Theorem 1. Take $A = \{a_{\gamma} : \gamma \in \Gamma\}, |\Gamma| \leq m$.

$$A^* = \bigcap_{\gamma \in \Gamma} (a_{\gamma})^* \text{ by } 2.1 \text{ (i)}$$

and so
$$= \bigcap_{\gamma \in \Gamma} (a'_{\gamma})^{**} \text{ by Condition (*)}$$
$$= (a')^{**} \text{ since } S^{**} \text{ is m-complete.}$$

Thus $A^{**} = (a')^*$ and our theorem is proved.

COROLLARY. S** is a complete Boolean algebra if and only if for $A \subseteq S$, $A^{**} = (a')^*$ for some $a' \in S$.

[4]

4. The normal completion of S/R

We next consider the normal completion of $S/R = S^{**}$. Our construction applies to the class of commutative semi-groups without radical for which the mapping $a \rightarrow (a)$ is injective. A wide class of semigroups satisfying this condition is the class of semi-lattices. The result is in fact mainly of interest in the case of semi-lattices. For this reason we shall formulate our results for semi-lattices, although the extension to the class of semi-groups mentioned above is immediate.

LEMMA 4.1. If $E = \langle E; \wedge, 0 \rangle$ is a semi-lattice with zero, then the semilattice of ideals, $\mathscr{I}(E) = \langle I(E); \cap, (0) \rangle$ is a pseudo-complemented semi-lattice. The pseudo-complement of $J \in I(E)$ is simply J^* . Further, $\mathscr{I}(E)^{**}$ is a complete Boolean algebra.

PROOF. Only the last statement really needs checking. Suppose $\mathscr{A} = \{I_{\alpha} : \alpha \in A\}$ is an arbitrary family of ideals of *E*. Then

$$\mathscr{A}^{**} = (\bigcup_{\alpha} I_{\alpha})^{**} = (\bigcap_{\alpha} I_{\alpha}^{*})^{*} = I^{*}$$

where $I = \bigcap_{\alpha} I_{\alpha}^*$.

We see that the conditions of the preceding Corollary are satisfied and so the result follows.

Next we note, by the comments above, that there is a faithful copy of E embedded in $\mathscr{I}(E)$. More important is that this implies E^{**} is a subsemilattice of $\mathscr{I}(E)^{**}$, since $\{a\}^{**} = (a)^{**}$. A subset Q of a semi-lattice with zero $\langle P; \wedge, 0 \rangle$ is said to be dense if for any $p \in P$, $p \neq 0$, there is $q \in Q$ with $0 < q \leq p$.

LEMMA 4.2. E^{**} is a dense subsemi-lattice of $\mathscr{I}(E)^{**}$.

PROOF. We must show that for any $I^{**} \in \mathscr{I}(E)^{**}$ such that $I^{**} \neq (0)$ there is $(a)^{**} \in E^{**}$, $(0) \subset (a)^{**} \subseteq I^{**}$. This follows readily since $I^{**} \neq (0)$ implies $(i)^{**} \neq (0)$ for some $i \in I$. Clearly then $(0) \subset (i)^{**} \subseteq I^{**}$ and our result is proved.

An immediate consequence of 4.2 is

THEOREM 3. Let $E = \langle E; \wedge, 0 \rangle$ be a semi-lattice with zero. If E^{**} is a Boolean algebra, then $\mathscr{I}(E)^{**}$ is the normal completion of E^{**} .

PROOF. E^{**} as a Boolean algebra is a dense subsemi-lattice of $\mathscr{I}(E)^{**}$. It is well known that under these conditions $\mathscr{I}(E)^{**}$ is the normal completion of E^{**} . See R. Sikorski [6] p. 153.

5. Concluding remarks

In this note our method of proof of the main theorem follows that of O. Frink [2] using the postulates of O. Frink [1]. In the author's thesis

these results followed (in the case of distributive lattices and semi-lattices) from theorems regarding the space of minimal prime ideals. Condition (*) was introduced by M. Henrikson and M. Jerison [3] and was related to the congruence R via distributive lattices.

References

- O. Frink, 'Representations of Boolean algebras', Bull. Amer. Math. Soc. 47 (1941), 755-756.
- [2] O. Frink, 'Pseudo-complements in semi-lattices', Duke Math. Journ. 29 (1962), 505-513.
- [3] M. Henriksen & M. Jerison, 'The space of minimal prime ideals of a commutative ring', Trans. Amer. Math. Soc. 115 (1965), 110-130.
- [4] J. Kist, 'Minimal prime ideals in commutative semi-groups', Proc. Lond. Math. Soc. Ser. 3. xiii (1963), 31-50.
- [5] R. S. Pierce, 'Homomorphisms of semi-groups', Ann. Math. 59 (1954), 287-291.
- [6] R. Sikorski, Boolean algebras (2nd Edition, Springer-Verlag 1964).