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PROPERTIES OF AXIAL DIAMETERS

PAUL R. SCOTT

A is a lattice and K a bounded, open, convex set in En . An axial diameter of K is the
maximal length Xi of chords of K parallel to the tth lattice basis vector (1 ^ i ^ n). A
number of properties of the axial diameters are developed. For sets K containing just one
lattice point, an inequality is established; when A is the integral lattice, this inequality

n

takes the form £) Xr1 ^ n/(n + 1).

1. INTRODUCTION

Let A be a lattice in n-dimensional Euclidean space En , having determinant d(A),
and being generated by the vectors x\, a?2, • • •, i n • Suppose that \xi\ = £;(1 < i ^ n).
Let K be a bounded, open, convex body in En.

In the literature, there are many known inequalities relating various attributes of
K, such as the volume, surface area, diameter and width. Some similar results have
been established for bodies K with lattice point constraints; see for example [1, 4, 5].
However, these results are often difficult to establish, and are in a sense unnatural, in
that the measurements being compared are not related to the lattice in any particular
way. Thus for lattice related inequalities, it may be more profitable to investigate
inequalities involving projections on the coordinate hyperplanes, or the axial diameters
defined in [6]. For each i, amongst all lines parallel to Xi, there exists (at least) one
which intercepts K in a segment of maximal length. We call this maximal length an
axiai diameter of K, and denote it by Xi(K) — Xj(l < i < n). In [6] we obtained the
pretty result:

THEOREM 1. If K contains no points of A, then

and this inequality is best possible.

One advantage of working with the axial diameters depends on the fact that ratios
of lengths in the same direction are left invariant under affine transformation. This
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means that a result like the above theorem is essentially independent of the particular
lattice used, and there is no loss in generality in taking Xi to be the unit vector e, for
each i, (1 < i ^ n) . In this case A becomes the integral lattice, and d(A) = 1. We
assume henceforth that we are working with the integral lattice.

Our purpose in this paper is to establish a number of interesting properties of the
axial diameters (Sections 2-4), and to establish a generalisation of Theorem 1 for convex
bodies containing one lattice point (Section 5).

2. CENTRE OF SYMMETRY AND CENTRE OF GRAVITY

In this section, let if be a bounded, open, convex body in En, having centre of
gravity G. The following result is stated by Ehrhart [2], and an outline proof for convex
bodies in En is given by Hammer in [3].

LEMMA 1. In En , any chord of K which passes through the centre of gravity, G,
of K , is partitioned by G into two segments; the ratio of the lengths of these segments
lies between 1/n and n, and each of these bounds can be attained.

THEOREM 2. Suppose that K contains the origin O, but no non-zero points of
the integral lattice.

(a) If K is symmetric about the origin, then Xi ^ 2(1 ^ i ^ n).
(b) If K has its centre of gravity at the origin, then Xi ^ n + 1(1 ^ i < n).

PROOF: The proof of (a) is trivial. For given i, K does not contain the lat-
tice points ±ei; since K is convex, K is bounded by hyperplanes through these two
points. Further, since K is symmetric about O, we may assume that these supporting
hyperplanes are parallel. Since the distance between them is at most 2, it follows that

In case (b), for given i, K does not contain the point — e;. Hence, as above, K
is bounded by a hyperplane H through this point. We assert that K is also bounded
by the parallel hyperplane H' through the point nej. For suppose this is not true.
Then K has a boundary point A such that A and O are separated by H'. Let
AO meet the boundary of K again in B, and the hyperplanes H, H' in Q, Q'
respectively. By Lemma 1 OB/OA ^ 1/n. But by the definition of the hyperplanes,
OB/OA < OQ/OQ' = 1/n. This contradiction establishes our result. |

COROLLARY. If K has centre of gravity at the origin, then
n

y—^ 1 n

3. AXIAL DIAMETERS AND SUPPORTING HYPERPLANES

It is interesting to ask whether the axial diameters share any of the properties of the
more commonly defined diameters. It is well-known that the supporting hyperplanes
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to K at the endpoints of a diameter are always parallel. The traditional proof allows

the possibility of the existence of a diameter in any direction. The result remains true

for any axial diameter, but we require a different proof.

THEOREM 3. Tie supporting hyperplanes to K at the endpoints of any axial

diameter are parallel.

PROOF: Let AB be an axial diameter of K in the Zi-direction, having length Xi.

Then since K is open, for all points u, v G K with UJ = Vj(l < j ^ n,j ^ i), we have
\ui -Vi\ < Xt.

Now translate K through AB to position KT . We assert that K n KT = 0.
For if not, there exists a vector v G K n KT which arises from a u G K. For this
u, v, Uj — Vj{\ ^ j < n,j ^ i), and ttj + Xi = V{. But now u, v G K, and \ui — VJ| =
Xi, a contradiction.

Hence, since K, KT are open and convex, and K fl KT = 0, there exists a hyper-
plane which separates K and KT • By construction, this hyperplane passes through
the point B on the boundary of each. We deduce that K is supported by parallel
hyperplanes at the endpoints A and B of the axial diameter. |

COROLLARY. The supporting hyperplanes to K at the endpoints of a diameter
are parallel.

PROOF: This follows immediately by regarding the diameter as the axial diameter
in that direction. |

4. AXIAL DIAMETERS AND VOLUME

We can use the axial diameters to provide a lower bound for the volume of K.

THEOREM 4. If K is a convex body in En with volume V and axial diameters
- ^ i > -^2 j • • • > - ^ n > t h e n

n!
PROOF: We symmetrise K about each of the coordinate hyperplanes in turn to

obtain the symmetraJ K* . By the properties of Steiner symmetrisation,

V(K') = V(K), Xi{K*) > Xi{K){\ ^i^n).

Now for K* , an axial diameter in each direction lies along the corresponding axis,
and is bisected by the origin. Since K* is convex, K* contains the convex hull of these
n axial diameters, a generalised octahedron of volume X*X% • • .X*/n!. Hence

v{K) = v(K')> - x ; x ; . . . x * n > -x,x2...xn
n\ n!
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as required.
We observe that no similar upper bound exists for the volume. For example, in

E2 , the infinite strip bounded by y = x, y = x -f- 1 has infinite area ("volume"), and
unit axial diameters.

5. CONVEX BODIES CONTAINING ONE LATTICE POINT

We now establish a generalisation of Theorem 1.

THEOREM 5. If K is a convex set in En which contains the origin, but no non-zero
points of the integral lattice, then

2-^> x

This result is best possible: it is attained for the simplex An having vertices at
the origin and the n lattice points (n + l)ej(l ^ i ^ n).

PROOF: The proof is similar to the proof of Theorem 1 given in [6]. We sym-
metrise the set K about each of the coordinate hyperplanes in turn, to obtain a
new set K* . Such symmetrisation does not decrease the axial diameters. Also,
since K contains no lattice points on the hyperplanes xi — ± 1 , so K* contains
none of the points (±1, i§> •••, i ^ ) ) where the prime indicates all possible per-
mutations of the coordinates. In particular, in the positive orthant, K* contains
none of the points (l, i , . . . , A) . Hence by convexity it does not contain the cen-

troid ^ 53 (l» j» • • •» f) = {(n + l)/2n, .. .(n + l)/2n) of the (n — 1)-dimensional de-
termined simplex. Using Xi(l < i ^ n) to denote the axial diameters of K* , K*
contains the n points (jA'i, 0, . . . , 0), . . . , (0, 0, .. ., | X n ) . The condition that the
hyperplane determined by these n points separates the above centroid from the origin
easily simplifies to

Xj 0 ... 0 1
0 X2 ... 0 1

0 0 ... Xn 1
1 1 1 - n -

n

Replacing row (n + 1) by row (n + 1)— J2 (Xf1 x row i), we obtain immediately
t=i

the required condition.
Notice that Corollary 1 of Theorem 2 gives a special instance of this result. |
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