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Abstract

In 1903 H. Minkowski obtained two integral formulae for closed convex surfaces in three dimensional
Euclidean space. In this paper we obtain generalised Minkowski formulae on compact orientable
immersed submanifolds of an arbitrary Riemannian manifold. By successive specialisation we indicate
how known integral theorems can be obtained as particular cases of our result.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 C 42, 53 C 40.

1. Introduction

In 1903, H. Minkowski [9] obtained the following two integral formulae for a
closed convex surface M in Euclidean 3-space E3:

f (1 +PH)dA = 0, f (H + pK)dA=0,

where H and K are respectively the mean curvature and Gaussian curvature of M
and p is the function of support.

In order to generalise these equations to a submanifold of a Riemannian
manifold we need a replacement for the position vector which appears via the
support function p. One method of doing this is to assume (as was done by
Katsurada [6]) that the enveloping space admits a conformal vector field. How-
ever, this is sometimes an unnecessarily restrictive assumption and it is preferable
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[2] Generalised Minkowski formulae 379

to assume only that there is a conformal variation of the submanifold. (We
explain this concept in Section 2.) The reasons why conformal variations are
preferred is discussed in [11].

In Section 2 we give a brief outline of relevant results from the theory of
submanifolds of a Riemannian manifold. In Section 3 we prove a sequence of
integral formulae which generalise the above results and we conclude in Section 4
by indicating how known results of various authors may be obtained by special-
isation of the results in Section 3.

2. Preliminary results

We use the notation and terminology of Kobayashi and Nomizu [7] unless
otherwise stated. We assume all maps and manifolds to be C°°.

Let / : A/ -> M' be an immersion of an /w-dimensional manifold M as a
submanifold of an (m + />)-dimensional Riemannian manifold M'. We denote
the metric on M' by g or ( , ) according to convenience and we give M the
induced metric.

A vector field over the map f is a map W: M -» T(M') such that W(x) £
Tj(X)(M') for all x G M. Since the map/is an immersion it need not be injective
so that it is possible to have distinct points x, y G. M with f(x) — f(y) but
W(x) ¥= W(y). Hence W need not be the restriction to/(M) of any vector field
on A/'. If x €E M and if U is a neighbourhood of x on which/is injective then for
any vector field W over /we write W±(x) (respectively W'(x)) for the compo-
nent of W(x) perpendicular (respectively tangential) to f{U) at/(x).

In what follows we assume that there exist p linearly independent vector fields
Nu...,Np over / such that Nt(x) = Nf (x) and (Nt(x), Nj(x))= 8,7 for all
x G M and /, j = 1,... ,p. Such vector fields are called normal vector fields over f.

The evaluation of tensor quantities at a point is a purely local matter and since
an immersion is locally an imbedding it simplifies matters to assume that /
actually is an imbedding and to identity/(Af) and M. We shall do this unless the
distinction between an immersion and an imbedding becomes important. The
differences will be discussed as they arise.

Let X and Y be vector fields on M and let N be a normal vector field on M. We
have [7]

(1) D'XN = -ANX+ VXN (Weingarten's formula),

where D' denotes covariant differentiation on M' and -ANX and VXN denote the
tangential and normal components of D'XN respectively. (The reader is referred to
[7], Chapter 7 for the reasons behind this particular choice of notation.)
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380 Geoffrey Howard Smith [3)

Let iV,,... ,Np be an orthonormal set of normal vector fields on M. We write At

for AN. Then we have [7]

p

(2) D'XY = DXY + 2 ( A,x> Y > Ni (Gauss' formula).

Let W be a vector field over / . For each x £ M there exist open neighbour-
hoods V of x and U of f(x) w i th / (F ) C U and a smooth vector field W on U
such that W(/(>>)) = fP(jO for all y G F Then, if L denotes the Lie derivative,
we have

(Lwg)(X, Y) = (D'xYf, Y)+ (D'rVf, X).

Using equations (1) and (2) we find that

(3) (Lvg){X,Y)=(DxW,Y)+{DyW*tX)

-2^(AiX,Y){Ni,W).

The significance of this equation is that the right hand side depends only on W
and not the particular extension W of W. Hence we can unambiguously write
(Lwg)(X, Y) for (Lwg)(X, Y) if A"and Yaxe tangent to M.

A vector field £ o v e r / i s a conformal variation o f / ( M ) in M' with conformal
scalar <P if (Z^gX/^A", f+Y) = 2<b(X, Y) for some scalar $ and any vector
fields X and Y on M. This concept is preferable to assuming that the enveloping
space admits a conformal vector field as is done by Katsurada [6] and subsequent
authors. The reader is referred to [11] for reasons as to why this is so.

Let e , , . . . ,em be an orthonormal moving frame on some open set F in M. It is
possible to choose the frame so that at a point x G F the vectors el,...,em are
eigenvectors for the self-adjoint operator A = A{ with corresponding eigenvalues
X,, . . . ,Xm. For A: = l , 2 , . . . ,mwe define

" j . = = Zi X, X, • • • X, ,
Ac i-l ' I ' 2 ' * '

im\ „ , . , .ks
I , I Hi. — a t , Mr. — tr ( A ) ,

while for the sake of consistency we put Ho = 1 = a0, Mo = m.
The following results are well-known (for example [8]):
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For any vector field A' on Af we deduce from equation (5) that

(6) X{or)= 2 {-\)k+X{or.kX{Mk).
k=\ K

Let

^e« = 2 **&?/».

with

K^> [ 0

For any vector field A" on V we have

On the other hand

2((DxA)(ea),X
k-lea)\x

a

Hence

a

a fact we shall use in the proof of Lemma 3.

3. The general integral formulae

As before let f:M^> M' be an immersion of an w-dimensional manifold M in
an (m + p) - dimensional manifold AT. Suppose that £ is a conformal variation of
M in A/', that is (Lf g)( A", 7 ) = 2$< A", 7> for vector fields A1 and Y on M.

For non-negative integers k, _/,, y2, . . . J r we define a covariant vector u by

« (X) = co*.. 7V(A") = ( A//. • • • A / / ^ ^ , | ) .
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Then

and after some simplification using equation (2) we find that

(Dxa)(X) = (DX(M{> • ••M^Ak)(X), Z)

+ 2 (A,X, M{> • • • MJ'AkX)(N,,
i=\

••MJ
r'{AkX,D'xi).

[ 51

We put X = ea, 7) = 17* .. .j = g(w, •) (where g is the contravariant metric tensor)
and sum over a = 1,2,..., m.

The result is

div i, = 2 \{D
L

M}'Ak){ea, 0 , 0

+ 2 K l- ( Atea, ea)(N,,Z)

Now form the sum

7) = 2,
rj, = r-k l JT,7,

" ' " r 'J\ ' ' ' Jr

We note that as k assumes the values 1,2,3,... we must have jr, j r _ , , jr_ 2 , . . .
equal to zero. Bearing this in mind and using equations (4) and (5) we find after
some simplification that

div rj — (m — r)or<!>

I

{D(o,_kA
k)(ea,ea),Z)
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that is

(8) divij=(m-

2 2(-l)*fi
a=\ k=0 L/=2

(D(or_kA
k)(ea,ea),S)

where N — N{.
We shall obtain an alternative expression for div TJ after proving some lemmas.

LEMMA 1.

2(-0V***= 2 V"V
* = 0 / , < • • • <ir

ij*a

7 = 1 , 2 r

PROOF. (By induction on r.) For r — 1 we have

2 (-l)*a,-*X*« = a , - X a = 2 ^-
k = 0 k¥=a

Assume the result to be true for r = s, that is assume

Then for /• = s + 1 we have

= 2

The result follows.
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384 Geoffrey Howard Smith [7]

As an immediate consequence of this result we have

LEMMA 2.

m r p

V V V (~l)ka _ \k (A e ,e )(iV, £) = -
a=\ k = 0 i = 2 r .\m ~

where

(9) Ft
r(N)=-^ j —(N,,£)2 2 \ -

7=1.. . . .r

L E M M A 3.

m r I
V * v * / \\k / T } ( n A ^ \ ( p ^ ^ ^ \ •

o=i*=o r.{m — r —

(10)

m r

x 2 2
« = 1 i = l

(H)

m r s—\ P

%=1s=1k=0i=1

The factorials are introduced for later convenience.

PROOF. The proof is essentially a coordinate-free generalised version of the
proof of Rund [10] for a hypersurface. We begin by noting the following two
results

{{DrA
k)(Z),x)= (Z,{DrA

k)(X))
and

(12) ((M)(e,,O,0=2lC-
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The first result follows from a straightforward calculation using the fact that A
is self-adjoint and the second may be proved by induction on r and use of the first
result.

If we put £' = T) and

then by Codazzi's equation [7, Volume 2] we have

(13) (R'(ea, i,)eB, N)= ((DA){ea, ea), n > - ((DnA)(ea), ea

We multiply equation (13) by Xr~\ sum over a, make use of equation (7), and
rearrange the result to get

(14)

Using equations (12) and (14) we have

(15)
m

2 ((DA')(ea,ea),t)
a=\

r-\

We also have

(16) r

= 2 (-i
A: = 0

The first term on the right hand side of equation (16) may be rewritten as

2 (-l)Vi,)(ar_ft)= 2 (-\Y+r(A'-'r,)(os),
k=0 s=\

which with the aid of equation (7) becomes

(17) 2 (-l)k(Akv)(or-k)= 2 2 (-l)k+r+'+l\°k-W-ki){M,)-
k=0 k=\ s=l
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Since DA0 = DI = 0 the second term on the right hand side of equation (16)
becomes, on making use of equation

Rie«, *v)ea, N)- Ea(A'V)])\.

2 2 (-l)kor-k(DAk(ea,ea),n)
k=\ a=\

(is) = 2 (-i)V,{'

The first term on the right hand side of equation (18) is seen, after some
rearrangement, to be the additive inverse of the term on the right hand side of
equation (17). Substitution of equations (17) and (18) into equation (16) yields the
desired result.

THEOREM. Let f: M -> M' be an immersion of a compact orientable m-dimen-
sional manifold Min an(m + p) -dimensional Riemannian manifold M'. Let £ be a
conformal variation off(M) in M' with conformalscalar O. Assume that there exists
an orthonormal set N{,..., Np of normal vector fields over f. Let N — Nxbe one such
vector field and let A be the corresponding second fundamental tensor. Then for
r = 0,1,2,...,m - 1

(19)

where F^N), S'(£) and £ r (£) are given by equations (9), (10) and (11) respectively
forr^l and 5°(|) = 0 = £°(£), Ft°(N) = (A,ea, ea)(Nt, £>•

PROOF. By Stokes' theorem /Mdiv TJ dA = 0, so that for r = 1,2,... ,m — 1 the
theorem follows on using equation (8), Lemma 2 and Lemma 3. We remark that if
/ is an immersion then by abuse of notation the vector field rj in equation (8)
really denotes the unique field Z on M such that/^Z = fj. It is this vector field Z
that Stokes' theorem should be applied.

The case r = 0 follows from equation (3) by putting X = ea= Y, W = £,
summing over a = 1,..., m and then applying Stokes' theorem.
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4. Special cases of the integral formulae

1. Let M be a hypersurface of M'. Then £r(£) = 0 and Ft\N) = 0 for
/ = 2,... ,p. Formulae (19) then reduce to

(20) / { r r + x ( ) )
JM JM

a result of Rund [10]. (Note that equation (3.13) of [10] is missing a factor (-1)*.
Inserting this factor in the result (6.6) of [10] yields agreement with our equation
(20).)

2. Let M' be a space of constant curvature and let N be parallel in the normal
bundle over M. Then Sr(£) = 0 = Er(£), so that

(21) / (*H, + Hr+l(N,i))dA = -f 2Ft'(N)dA.

3. In addition to the hypotheses 2 above we assume that £ is coplanar with N
and N2 then equation (21) becomes

(22) / (9Hr + Hr+X (N, {)) dA = -f F{{N) dA,

a result of Hsiung, Liu and Mittra [5] who discuss some further special cases of
this result. If M' is a Euclidean space and £ is the position vector field then
equation (22) is due to Chen and Yano [2]. Chen [l,page 197] discusses several
examples where F{(N) vanishes if the imbedding space is Euclidean.

4. If we assume M to be a hypersurface of a space of constant curvature then
equations (20) and (22) yield the result

f {
JM

(Hsiung [3], [4], Katsurada [6]).
5. Let M' be an Einstein space. Then S'(£) = 0. If in addition M is a

hypersurface of M' then we have from equation (20) with r = 0,1

f
J

+ H2(N,£))dA=0.
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