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Abstract We define the notion of diffractive geodesic for a polygonal billiard or, more generally, for a
Euclidean surface with conical singularities. We study the local geometry of the set of such geodesics of
given length and we relate it to a number that we call classical complexity. This classical complexity is
then computed for any diffractive geodesic. As an application we describe the set of periodic diffractive
geodesics as well as the symplectic aspects of the ‘diffracted flow’.
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1. Introduction

The propagation of singularities on a smooth Riemannian manifold states that the singu-
larities of one solution of the wave equation propagate along the geodesics. This theorem
has been proved in more general settings such as manifolds with a smooth boundary, with
conical singularities, polygonal domains (see [5,6,11]). In all these cases the propagation
of singularities is true, provided that one takes the suitable generalization of geodesics,
i.e. broken (or reflective) geodesics in the boundary case, diffractive geodesics in the case
of conical singularities. In order to understand more precisely the propagator of the wave
equation, it is then very helpful to know how these ‘generalized’ geodesics behave. One
important issue is the description of the so-called geometric wavefront, which consists in
the endpoints of all the possible geodesics emanating from a given starting point. The
aim of this paper is to answer this question for the generalized (here diffractive) geodesics
of a Euclidean surface with conical singularities (a setting which includes polygonal bil-
liards). As stated previously, this study is principally motivated by the description of the
wave propagator on such surfaces. However, since the notion of a diffractive geodesic is
closely related to that of a generalized diagonal (introduced by Katok in [8]), we also
believe that this paper can provide some more understanding of the dynamical properties
of polygonal billiards. To this purpose, we also remark here that the results we obtain
are independent of whether or not the polygon is rational.

In the rest of the paper, M will always be either a Euclidean surface with conical
singularities [10] or a polygonal domain in R

2. We will begin by defining the set of

71

https://doi.org/10.1017/S0013091504001075 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001075


72 L. Hillairet

(possibly) diffractive geodesics of M and we will call ΓT (M) the set of all the geodesics
of length T . Seeing an element of ΓT (M) as a mapping from [0, T ] in M , this set comes
naturally equipped with a topology. Given [p], any ordered sequence of conical points,
we will also define Γ

[p]
T (M) as the geodesics of length T that go through the conical

points prescribed by [p]. The local geometry of ΓT (M) near a geodesic g is described by
the number of strata Γ

[p]
T to which g is adherent. This number, which we call classical

complexity (see Definition 3.1) is the central object of this paper. The main result that
we obtain is the following theorem (see Theorem 3.12), which computes the classical
complexity of a geodesic g from the sequence of its diffraction angles.

Theorem 1.1. Let g be a geodesic of length T with n diffractive points and such that
its sequence of diffraction angles is written as

(ε0π, . . . , ε0π︸ ︷︷ ︸
k0

, βg,l0 , . . . , βg,l1 , ε1π, . . . , ε1π︸ ︷︷ ︸
k1

), βg,li �= εiπ.

Then one of the following holds:

(i) if k0 + k1 < n, then cc(g) = (k0 + 1)(k1 + 1);

(ii) if k0 + k1 = n and k0k1 �= 0, then cc(g) = (k0 + 1)(k1 + 1);

(iii) if k0 + k1 = n and k0k1 = 0, then cc(g) = 1
2n(n + 1) + 1.

We also give two important applications when aiming at a trace formula for such
surfaces: the description of the set of periodic orbits and the symplectic interpretation
of the geometrical wavefront.

The paper is organized as follows. In the next section we will introduce the geomet-
rical setting and the diffractive geodesics; we will also establish the topological nature
of ΓT (M). In § 3 we will define the notion of classical complexity. We will then give
some useful examples and, finally, we will compute the classical complexity of any given
diffractive geodesic. Section 4 will be devoted to applications.

2. Diffractive geodesics

2.1. Geometrical setting

The notion of a Euclidean surface with conical singularities (ESCS) is defined in [10].
We recall that M is an ESCS if M can be partitioned in two sets M = M0 ∪P , where M0

is a (non-complete) Riemannian surface that is locally isometric to the Euclidean plane.
The set P is discrete and, in the neighbourhood of each pi ∈ P , M is locally modelled
on the Euclidean cone of total angle αi. Throughout the paper, the ESCS will always be
assumed to be complete.

Examples.

(i) The Euclidean cone of angle α (denoted by Cα) is an ESCS. We denote by p the
tip of the cone. The smooth part Čα (where Čα = Cα \{p}) is globally parametrized
by (r, x) ∈ (0,∞) × R/αZ with the metric dr2 + r2 dx2.
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Q M

Figure 1. Doubling a polygon.

(ii) A simple way of constructing an ESCS is by glueing Euclidean polygons along sides
of same length. For instance, taking two copies of a polygon Q and glueing them
along the sides gives an ESCS where each conical point corresponds to a vertex
of the polygon. The angle αi is then twice the corresponding angle of the polygon
shown in Figure 1. This doubling method is standard in the study of billiards and
was first used by Birkhoff.

(iii) A translation surface is a surface with conical singularities, and equipped with
an atlas (outside the singularities) such that the transition functions are given by
translations (see [7] for a more precise definition). Such a translation surface is
automatically an ESCS, in particular the one that is associated with a rational
polygon.

We now want to define the geodesics of such a surface. We denote by Pr the subset of P

consisting of the conical points pi such that αi = 2π/k (and we let Pd be the complement
of Pr in P , the conical points in Pd will be called diffractive). Locally, near any point of
M0 ∪ Pr, M is (up to a finite covering) isometric to R

2. There is also no ambiguity in
defining the geodesics as the projection of the geodesics of R

2 (i.e. straight lines). This
defines the non-diffractive geodesics of M . Any non-diffractive geodesic either can be
extended to infinity or ends at a diffractive conical point in finite time. Since we need to
extend such a geodesic, we give the following definition.

Definition 2.1. A geodesic of an ESCS will be a mapping g : [0,∞) → M such that

(i) g−1(Pd) is discrete,

(ii) if g(t) ∈ M0 ∪ Pr, there exists ε such that the restriction of g to (t − ε, t + ε)
parametrizes by arc length a non-diffractive geodesic.

Remarks.

(1) We have found it more convenient to define a geodesic as a mapping and not as a
curve.

(2) On the Euclidean cone of angle α (α �= 2π/k), this definition leads to two types of
geodesics:
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(i) the non-diffractive ones, which are straight lines avoiding the tip of the cone,

(ii) the diffractive ones, which are formed by the juxtaposition of an incoming and
of an outgoing ray, i.e. which are parametrized by

gγ(T1) = p, gγ(t) =

{
(T1 − t, xi) t < T1,

(t − T1, xo) t > T1.
(2.1)

For such a geodesic, the angle β = xo − xi is called the angle of diffraction; it
belongs to R/αZ. This angle of diffraction depends on the orientation of Cα.

(3) The reason for this definition is the theorem of propagation of singularities on a
Euclidean cone [1,2].

This definition implies that, near a conical point, g parametrizes a geodesic of the
corresponding cone; it allows us to define an angle of diffraction for each value of t such
that g(t) ∈ Pd.

Remark 2.2. These angles β depend on the orientation of M near the conical points.
When M is not orientable, there is no preferable choice. In this case, we choose an
orientation near the beginning of the geodesic, we transport it along and we consider the
angles relative to this compatible orientation. Changing the orientation at the beginning
will then multiply all the angles of diffraction by −1. This has no consequences for us
since the information we need is invariant under this change (see (3.2), below).

Notation. Along a geodesic g we will denote by pg,i the ith diffractive conical point,
tg,i the time at which the diffraction occurs, and βg,i the ith angle of diffraction. We will
also denote by [p]g the sequence of diffractive points along g.

There is a globally defined distance d on M that is obtained by minimizing the length
of curves. Locally, this distance coincides with that of the plane or of the corresponding
Euclidean cone. We note that here a diffractive geodesic g minimizes this distance locally
near g(t) if and only if

g(t) ∈ M0 or g(t) ∈ Pd and |β| � π.

This fact is a direct consequence of the explicit expression of the distance on the cone
Cα that is given by

[r2
1 + r2

2 − 2r1r2 cos(|x1 − x2|)]1/2 if |x1 − x2| � π,

r1 + r2 if |x1 − x2| � π,

where |x1 − x2| is the distance in R/αZ.
Using this expression, for any geodesic g on the cone we have the following inequality:

d(g(t), p) � |t − r0| ∀t. (2.2)

Since we aim to study the set of all the geodesics on an ESCS, it is helpful to first
address the topological nature of this set.
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2.1.1. Topology of the set of geodesics

By definition, a geodesic of length T is an element of C0([0, T ], M). The norm of uniform
convergence gives us a topology on all the following sets.

Definition 2.3.

(i) For any subset N of M , we denote by ΓT (N) the set of all the geodesics of length T

whose starting point is in N . The notation ΓT will be a shortcut for ΓT (M).

(ii) Given any (ordered) finite sequence of diffractive conical points [p] = [pi1 , . . . , pin
],

we denote by Γ
[p]
T the set of all the geodesics of length T having exactly n diffrac-

tive conical points such that pg,j = pij
. The set corresponding to non-diffractive

geodesics will be denoted by Γ 0
T .

Remarks.

(i) These sets may be empty. For instance, if the sequence [p] has at least two elements,
the sets Γ

[p]
T are empty for small T .

(ii) Consider a geodesic g of Γ
[p]
T ; any other geodesic g′ in Γ

[p]
T close to g is uniquely

determined by its starting point and its last diffraction angle. This parametrization
shows that, for any sequence [p], and any time T , the set Γ

[p]
T is a three-dimensional

manifold.

The following theorem and its corollary establish the topological nature of ΓT (N).

Theorem 2.4. For any T , ΓT (N) is compact if and only if N is compact. In particular,
if M is compact, ΓT (M) is compact.

Corollary 2.5. The set ΓT (M) is always complete.

Proof. As in the smooth case, such a theorem is a direct consequence of Ascoli’s
theorem [3] and of the fact that a limit of geodesics is still a geodesic. The proof of this
latter point consists here in two steps. We first address what happens away from the
diffractive points (the proof then runs as in the smooth case). We then show that g−1(P )
is still discrete when g is a limit of geodesics. This is ensured by the inequality (2.2). �

We now want to study in more detail the set ΓT and in particular the stratification of it
by the Γ

[p]
T . This is the goal of the following section. We will also completely forget about

C0: from now on every topological statement is to be understood in ΓT (M) (equipped
with the topology of uniform convergence).

3. Classical complexity

As we already have pointed out, the geometry of one Γ
[p]
T is rather simple, so the local

geometry of ΓT only depends on the way these sets are close one to another. In order to
understand this we introduce the following definition.
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Definition 3.1. The classical complexity of a geodesic g is the number of sequences
of diffractive points [p] such that

g ∈ Clos(Γ [p]
T );

we denote it by cc(g).

Remarks.

(i) The number cc(g) is the answer to the following question.

How many sequences (possibly empty) of diffractive conical points [p]
are there such that there exists a sequence (gn)n∈N ∈ (Γ [p]

T )N converging
to g?

(ii) For fixed T and g, the number of possible sequences [p] is bounded, and thus we
have the following equivalence:

cc(g) = 1 ⇔ g ∈ Int(Γ [p]g
T )

(we recall that the Int is taken relative to ΓT ).

(iii) A priori, this definition has nothing to do with the complexity of an orbit in a
polygonal billiard [9, p. 63].

(iv) The case of non-diffractive geodesics is easily handled. For any T we find that Γ 0
T

is open. Equivalently, if g is a non-diffractive geodesic, then cc(g) = 1.

Consider a sequence gn converging to g. There exist ε and n0 such that, for all n � n0

and for all i, the restriction of gn to the interval [tg,i − ε, tg,i + ε] can be identified with
a geodesic on the corresponding cone. A consequence of the non-diffractive case is that,
on the complement of these intervals, for large n, gn cannot have any diffraction. Thus
the sequence [p] such that g ∈ Clos(Γ [p]

T ) can only be obtained by deleting some of the
diffractive points in [p]g. Before addressing a general geodesic, it is instructive to study
some examples in detail.

Example 3.2 (angles of ±π are special). In a plane wedge of angle α �= π/k,
consider an incoming ray γ hitting the tip of the sector, and consider the two families of
parallel rays ‘above’ and ‘under’ γ. In each family, every ray will make the same reflections
and eventually leave a neighbourhood of the vertex following the same direction. This
gives two geodesics consisting of γ followed by the outgoing ray parallel to one of these
directions. We denote these geodesics by g±. Along these geodesics, the diffraction angle
is ±π, as can clearly be seen by unfolding the orbit (see Figure 2).

These two diffractive geodesics are, by definition, limits of non-diffractive ones. Con-
versely, consider a sequence of non-diffractive geodesic converging to γ on some small
interval (a, b). This sequence can be decomposed into two subsequences depending on
which side of the wedge the geodesic hits first. Since the sequence converges to γ on
(a, b), one of these subsequences converges to g+ and the other to g−. If the sequence is
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 R−

Figure 2. Definition of g−.

known to converge, then only one of the two subsequences can be infinite and the limit
is either g+ or g−.

This example gives the complete classification on the cone by doubling the wedge.

Proposition 3.3. Let g be a geodesic on the Euclidean cone of angle α (�= 2π/k).
Then cc(g) = 2 if and only if either g begins (or ends) at p or g is diffractive in its interior
with β = ±π.

Remarks.

(i) The notion of diffraction angle is not well defined for an incoming (or outgoing) ray.
However, such a geodesic is always a limit of non-diffractive geodesics; for instance,
the outgoing ray defined by g(t) = (t, x0) is the limit of the family (gε)ε>0 defined
by gε(t) = (t + ε, x0).

(ii) Since the diffraction angle is ±π, there is a continuous choice of a normal vector
n(t) along g+ such that the mapping j(t, s) = g+(t) + sn(t) is well defined on
R

2 \ {(t+, s), s � 0}. Moreover, j a local isometry into Čα.

(iii) This example shows that, on a general ESCS, diffraction angles of ±π will play a
special role (for instance, see the following lemma).

Lemma 3.4. Let g be a geodesic having all its diffraction angles different from ±π.
Then cc(g) = 1.

Proof. We can find a ε such that, on each interval [tg,i − ε, tg,i + ε], gn is a geodesic
of the corresponding cone converging to a diffractive geodesic whose angle of diffraction
is not ±π. Necessarily, for large n, gn is thus diffractive at this conical point. �

Example 3.5 (rectangles with slits). We want to generalize the first example by
considering geodesics with several diffractions, such that each diffraction angle is ±π.
Let g be such a geodesic. We first show that a rectangle with slits can be put around
g. This is done by matching the local isometries j constructed for each diffraction (see
remark (ii) above). More precisely, if the sequence of diffraction angle is (εiπ)i we let

R = [0, T ]× ]−δ, δ[ \ ∪ Si,
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Figure 3. Rectangles with slits.

where Si is the segment (slit) {(tg,i, s) | 0 � εis < δ}. There is a continuous choice of a
normal vector n(t) along g such that, for δ small enough, the mapping

j : R → M \ Pd,

(t, s) �→ g(t) + sn(t)

is a local isometry. This construction is summarized in the following lemma.

Lemma 3.6. Let g be a geodesic such that βg,i = εiπ with εi = ±1. Then a neigh-
bourhood of g can be identified with the rectangle with slits R via the local isometry j

that is constructed above.

Remark 3.7. We have made the choice that a diffraction angle of +π or −π corre-
sponds to an upward or downward slit, respectively. See Figure 3 for examples of such
rectangles with slits.

Lemma 3.6 will allow us to compute simply the classical complexity of a geodesic such
that all the diffraction angles are ±π, since it says that we can do this computation
in the rectangle R. For instance, if the sequence of diffraction angles is (π, π, π) we
can construct approaching sequences of geodesics with the following diffractions: none,
[p1], [p2], [p3], [p1, p2], [p2, p3], [p1, p2, p3] and thus cc(g) = 7. If the sequence of diffraction
angles is (−π, π,−π), the possible diffraction sequence for an approaching sequence of
geodesics is [p1, p2], [p1, p2, p3], [p2], [p2, p3] and thus cc(g) = 4.

Using these rectangles with slits, we can also find the diffractive geodesics that are
limits of non-diffractive ones.

Lemma 3.8. A geodesic g is a limit of non-diffractive ones if and only if the sequence
of its diffraction angles can be written

(ε0π, . . . , ε0π︸ ︷︷ ︸
k0

,−ε0π, . . . ,−ε0π︸ ︷︷ ︸
k1

), (3.1)

with ε0 = ±1 and k0 and k1 possibly zero.

Proof. We already know that all the diffraction angles must be ±π, so, using
Lemma 3.6 we can identify a neighbourhood of g with a rectangle with slits R. In any
other case than those given in the lemma, the position of the slits in the rectangle R
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forbids the existence of a sequence of non-diffractive geodesics approaching g. Conversely,
if the sequence of diffraction angles is as in the lemma, such a sequence is easily con-
structed. �

These examples show that not only the angles of ±π but also the place they occupy
in the sequence of diffraction angles plays a special role in computing the classical com-
plexity. Among all geodesics, those having all their diffraction angles equal to π (or −π)
are special. They are studied in the following section.

3.1. Geodesics g±

We begin by constructing geodesics having only π (or −π) as diffraction angles. We
start from a point m in direction v; the geodesic is non-diffractive for small times. If it
reaches a conical point, we define t+1 = t−1 as the first time this happens. We continue
the geodesic in two ways, making angle ±π. This gives two geodesics: g±. Each of these
is defined until it reaches another conical point. If g+ reaches a second diffractive point,
we denote by t+2 the time it happens and continue g+, making the angle of diffraction
+π, and so on. We do the same with g−. This construction gives, for any initial data
(m, v), two infinite geodesics g± with sequences of diffraction times (t±i ) and angles of
diffraction βg±,i = ±π.

The existence of rectangles with slits along the geodesics g± allows the following propo-
sition.

Proposition 3.9. For all starting points m and all times T , there is only a finite
number of directions vi such that the geodesic emanating from m in the direction vi hits
a diffractive point before the time T .

Proof. Take such a direction vi. This gives rise to two geodesics, g±. For any time T ,
we construct two rectangles R± along g±(]0, T [) (see Example 3.5). Take another geodesic
emanating from m; for small times it can be lifted to a small segment in R+ and in R−. If
the direction is close enough to vi, this small segment can be extended to length T without
leaving the rectangles R±. In one of these rectangles, it does not cross the slits, so the
segment projects onto a non-diffractive geodesic. Since the set of directions is compact,
there are only a finite number of directions that are diffractive before time T . �

Proposition 3.9 implies the following two technical lemmas that will reduce the compu-
tation of the classical complexity to a combinatorial problem. The first lemma will show
that if a sequence of Γ

[p]
T converges to g then [p] is obtained from [p]g by deleting the

first k0 and the last k1 conical points of [p]g. The second lemma will then prove that the
conical points deleted at the beginning must all have the same diffraction angle, which,
moreover, is ±π. An analogous statement is true for the conical points that are deleted
at the end (see Figure 4).

Lemma 3.10. Let (gn) be a sequence of geodesics of length T converging to g and
such that, for some j0 � j1, there exist two sequences (t0n) and (t1n) converging to tg,j0
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and tg,j1 , respectively, such that

∀n, gn(tin) = pg,ji
, i = 0, 1.

Then the following holds:

∃n0, ∀n > n0, gn(t) = g(t − t0n + tg,j0) on [t0n, t1n].

In particular, for n > n0, gn is also diffractive at pg,j for every j0 � j � j1.

Proof. On [t0n, T ], gn is a geodesic emanating from pg,j0 that is diffractive at some
time t1n. Since gn converges to g, Proposition 3.9 shows that, for large n, gn and g follow
the same outgoing ray at pg,j0 . If j1 = j0 + 1, the conclusion then holds; otherwise, we
can iterate the argument starting from pg,j0+1. �

Lemma 3.11. Let g be a geodesic emanating from m in the direction v that reaches a
diffractive point before time T . Let (gn) be a sequence of geodesics of length T emanating
from m, non-diffractive on ]0, T ] and such that

∃0 < a < b | gn|[a,b] → g|[a,b].

Then the geodesics g± emanating from (m, v) are the only accumulation points of the
sequence (gn).

Proof of Lemma 3.11. We put rectangles R± along g±, respectively. For n large
enough, each gn corresponds to a segment in each rectangle but only in one does it
not cross the slits. Since we are dealing with segments, convergence on [a, b] implies
convergence on [0, T ] and we are done. �

Remarks.

(i) A symmetrical statement is true for geodesics ending in m.

(ii) The assumption on the length of gn can be relaxed if we know that gn does not
coincide with g. Indeed, using the rectangles R± once again, it can be shown that
any geodesic that does not coincide with g|[a,b], but that is sufficiently close to g|[a,b],
can be uniquely extended to a non-diffractive geodesic defined on [a, T ].

(iii) We remind the reader that a limit of non-diffractive geodesics is not necessarily
a geodesic of type g± (see Lemma 3.8). The assumption that all the geodesics gn

emanate from m deals with this point.

These two lemmas lead to the computation of the classical complexity.
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3.2. Classical complexity: computation

Consider a geodesic g of length T with n diffractive points and assume that g is
in Clos(Γ [p]

T ), the first diffractive point in [p] is some pg,j0 , and the last one is some pg,j1

with j1 � j0. Lemma 3.10 implies that, since there exists a sequence of Γ
[p]
T converging

to g then, necessarily, [p] = [pg,j0 , pg,j0+1 · · · pg,j1 ]. Then, using Lemma 3.11, we show
that

∃ε0, ε1 ∈ {+,−} | ∀j < j0, βg,j = ε0π and ∀j > j1, βg,j = ε1π. (3.2)

Conversely, suppose that j0 and j1 exist such that j0 � j1 and satisfy condition (3.2).
Then we can claim that there exists a sequence of geodesics in Γ

[pg,j0 ,...,pg,j1 ]
T converging

to g. Indeed, on [tg,j1 , T ], (3.2) implies that g is of type ε1 and is thus a limit of non-
diffractive rays emanating from pg,j1 . The same is true on [0, tg,j0 ] since, on this interval,
g is of type ε0. The concatenation of a ray coming into pg,j0 followed by g until pg,j1

followed by a ray emanating from pg,j1 forms a geodesic that can be as close to g as
is desired. This construction can clearly be seen using a rectangle with slits along the
beginning and along the end of the geodesic (see Figure 4).

Finally, the families of approaching geodesics are obtained by avoiding the first j0 − 1
and the last n − j1 diffractive points (see also Figure 4). Computing the classical com-
plexity thus amounts to enumerating the couples (j0, j1) satisfying (3.2) and addressing
the possibility for g to be a limit of non-diffractive geodesics (which has been done in
Lemma 3.8).

It is always possible to write the sequence of diffraction angles in the following way:

(ε0π, . . . , ε0π︸ ︷︷ ︸
k0

, βg,l0 , . . . , βg,l1 , ε1π, . . . , ε1π︸ ︷︷ ︸
k1

), βg,li �= εiπ, (3.3)

where the subsequence βg,l0 , . . . , βg,l1 may be empty. This latter case corresponds to the
geodesics that are limits of non-diffractive geodesics and we say that g is of empty type.

We then have the following discussion.

(1) The geodesic g is not of empty type. Condition (3.2) is then equivalent to j0 � l0
and j1 � l1. Since the geodesic is not a limit of non-diffractive geodesics, we have

cc(g) = (k0 + 1)(k1 + 1).

(2) The geodesic is of empty type and k0k1 �= 0. The geodesic is a limit of non-diffractive
ones and (3.2) is equivalent to

j0 � k0 + 1, j1 � k1 + 1, j1 � j0.

There are (k0 + 1)(k1 + 1) − 1 pairs satisfying this condition. Adding the non-diffractive
geodesics, we find

cc(g) = (k0 + 1)(k1 + 1).

(3) The geodesic is of empty type and k0k1 = 0. The geodesic is then a limit of non-
diffractive geodesics and (3.2) is equivalent to j0 � j1. This gives 1

2n(n + 1) pairs and
the following complexity:

cc(g) = 1
2n(n + 1) + 1.
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p1 p2 pNpN − 2 pN − 1

Figure 4. An example.

We resume these computations in the following theorem.

Theorem 3.12. Let g be a geodesic of length T with n diffractive points and such
that its sequence of diffraction angles is written in the form (3.3). One of the following
then happens:

(i) g is not of empty type and cc(g) = (k0 + 1)(k1 + 1);

(ii) g is of empty type and k0k1 �= 0 so then cc(g) = (k0 + 1)(k1 + 1);

(iii) g is of empty type and k0k1 = 0 so then cc(g) = 1
2n(n + 1) + 1.

In Figure 4 we have represented the rectangles with slits along the beginning and
along the end of the geodesic. The approaching geodesics are obtained by following
some ray missing the first diffractive points, then the geodesic itself and then some ray
emanating from another diffractive point that misses the last diffractive points. The
circles correspond to the locus of the starting points and endpoints of the geodesics
belonging to one particular family of approaching geodesics (the hatched part corresponds
to points of the circle that cannot be attained because of the slits). They also correspond
to the projection of the Lagrangian submanifolds described in § 4.2, below.

4. Applications

We will give two straightforward applications of the previous discussion. The first one
describes the periodic (eventually diffractive) geodesics of an ESCS, and the second one
describes geometrically what is to be understood as the canonical relation associated
with the (diffractive) geodesic flow on an ESCS.
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4.1. Periodic geodesics

One question of interest (in particular when aiming to prove some kind of trace for-
mula [4]) is to know whether a given periodic geodesic is isolated or part of a family. We
state the proposition in the case when M is oriented (see the remark (i) after it for the
non-oriented case).

Proposition 4.1. Let g be a periodic geodesic of length T of an oriented ESCS. One
of the following then occurs.

(i) The geodesic g is non-diffractive; it is then interior to a family of non-diffractive
periodic geodesics of the same length.

(ii) All the angles of diffraction are π (or −π); g is then the boundary of a family
described in the first case.

(iii) In any other case, g is isolated in the set of periodic geodesics.

Proof. In the first case everything happens in M0, where the metric is Euclidean. Since
M is oriented, the normal vector to g is well defined and the geodesics gε(t) = g(t) + εn(t)
are periodic and of the same length. In the second case we use a rectangle of type ±, and
we can define geodesics parallel to g by using the same argument as in the non-diffractive
case. The only difference is that, because of the slits, ε must be of chosen sign. In the
third case, assume first that g has a diffraction angle βg,j different from ±π. Consider
an approaching sequence (gn) of periodic geodesics. All these geodesics must go through
pg,j at times tn + kT . Lemma 3.10 implies that, for large n, gn and g coincide. If all
the angles of g are ±π but not all of the same sign (which is addressed by case (ii)),
then g (or its double) is not of empty type. Consequently, there is also one conical point
through which any approaching sequence of geodesics must go. Repeating the preceding
argument gives the conclusion. �

Remarks.

(i) If the surface is not orientable, then in the first two cases a neighbourhood of
geodesic can cease to be orientable. The argument then breaks down and g is
isolated. In this case, the former proposition remains true for the double of g.

(ii) The existence of a rectangle R± along a geodesic g of the second type implies
that the only periodic geodesics of period bounded by some T ′ close to g are the
non-diffractive geodesics of the corresponding family. This isn’t true anymore if
you allow the period to go to infinity. In fact, there are translation surfaces for
which the geodesics emanating from a given point are periodic for a dense set of
directions, in which case one can find a sequence gn of periodic geodesics (of period
Tn → ∞) such that

∀T, ∀ε ∃n0

∣∣∣ sup
[0,T ]

d(gn(t), g(t)) � ε.
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(iii) We could define a notion of classical complexity for a periodic geodesic by asking
the following question. For a given periodic geodesic g of period less than T , how
many different types of periodic geodesics of period less than T can approach g?
The proposition answers this question, but it tells more since it also proves that
‘most’ diffractive periodic geodesics will be isolated.

One interesting question is as follows. Given an ESCS, how complex can the classical
complexity be? The following proposition answers this question (at least partly).

Proposition 4.2. Let M be an ESCS such that there exists a non-diffractive periodic
orbit. Then, for any given N , there is a geodesic g such that cc(g) = N .

Proof. The existence of a non-diffractive periodic orbit implies the existence, at the
boundary of the corresponding family, of a periodic diffractive geodesic g such that all
its diffraction angles are π. We will construct a geodesic having a sequence of diffractions
angles written in the form (3.3) with arbitrary k0 and k1. We pick a point on g, and
begin by following g for a time long enough to have k0 diffraction angles. We then leave g

and go to another diffractive point; we follow then some diffractive geodesic that comes
back to g and follow again g enough time to have k1 diffractions. This gives the desired
geodesic. �

The next application is concerned with symplectic aspects associated with ΓT .

4.2. Symplectic aspects

The set ΓT gives a relation ΛT from T ∗(M0) to itself which is defined by

ΛT = {(m1, m0, µ1, µ0) ∈ T ∗(M0) × T ∗(M0) | ∃g ∈ ΓT , |µ0| = |µ1|,
g(0) = m0, µ0 = |µ0|〈g′(0), ·〉m0 , g(T ) = m1, µ1 = |µ1|〈g′(T ), ·〉m1},

where 〈· , ·〉m is the Euclidean scalar product in TmM0 and | · | is the associated norm.

Remark 4.3. The same definition on a smooth Riemannian manifold makes ΛT the
canonical relation associated with the geodesic flow at time T .

Given any subset V of ΓT we can define ΛV
T by specifying, in the definition of ΛT , that

the geodesic g belongs to V. The classical complexity and the constructions made in the
previous sections allow us to prove the following proposition.

Proposition 4.4. Given any geodesic of length T starting and ending in M0, there
exist cc(g) Lagrangian submanifolds Λg,i of T ∗(M0) × T ∗(M0) such that, for any suffi-
ciently small neighbourhood V of g, we have the following inclusion:

ΛV
T ⊂

cc(g)⋃
1

Λg,i.

Furthermore, each Λg,i is determined by an explicit phase function and there exists Σ

such that, for i �= j,
Λg,i ∩ Λg,j = Σ,

the intersection being clean.
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Proof. We take a geodesic g and [p] such that g ∈ Clos(Γ [p]
T ) (by definition of cc(g)

there are cc(g) choices for [p]). We will construct a Lagrangian submanifold associated
with [p]. We begin by assuming [p] �= ∅; there exist j0 and j1 such that

[p] = [pg,j0 , . . . pg,j1 ]

and there exist ε0 and ε1 such that

∀j < j0, βg,j = ε0π,

∀j > j1, βg,j = ε1π.

Each geodesic in Γ
[p]
T consists of a ray coming in pg,j0 , the portion of g between pg,j0

and pg,j1 , and a ray coming out pg,j1 . There is a rectangle of type (ε0) around the first
diffractive points (if pg,j0 is the first diffractive point, then the rectangle has no slits) and
a local isometry jε0 such that jε0(tg,j0 , 0) = pg,j0 . We can define d0(· , pg,j0) in a small
neighbourhood of m0 by

d0(m, pg,j0) = dR2((jε0)−1(m), (tg,j0 , 0)).

The same construction around the end of g gives d1(pg,j1 , ·) defined in a neighbourhood
of m1. The phase function

[d0(m, pg,j0) + tg,j1 − tg,j0 + d1(pg,j1 , m
′) − T ]θ

defines a Lagrangian submanifold that includes the part of ΛT corresponding to the
geodesics of Γ

[p]
T close to g. For the non-diffractive geodesics close to g one should take

as a phase function
[dR2(j−1(m), j−1(m′)) − T ]θ,

where j is the local isometry between the rectangle of type

(+), (−) or (ε, . . . , ε,−ε, . . . ,−ε)

and a neighbourhood of g. In the definition of these Lagrangian submanifolds, we have
not taken the slits into account, so in fact the geodesics corresponding to ΓT form a subset
of the corresponding Lagrangian submanifold. The set Σ corresponds to the geodesic g.
We described using the following coordinates of T ∗M0: (x0, y0, ξ0, η0) near the beginning
of the geodesic g and (x1, y1, ξ1, η1) such that g corresponds to yi = 0. The intersection
Σ is then parametrized by

Σ = {(x1, y1 = 0, ξ1, η1 = 0, x0, y0 = 0, ξ0, η0 = 0) | x1 + x0 = T, ξ1 = ξ0}.

The fact that the intersections are clean is straightforward once good coordinates are
chosen. �

In Figure 4, the conormal sets to the circles correspond to some of the Lagrangian
submanifolds of Proposition 4.4.
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This proposition is very important, since it describes what should be taken as the
generalization of the geodesic flow (as long as propagation of singularities for the wave
equation is considered). It also gives the geometric wavefront. In particular we would like
to know whether the propagator for the wave equation is a Fourier integral operator and
with which canonical transformation it is associated. This study implies that if cc(g) > 1,
then the propagator is not in this class of operators.
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