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A CHARACTERIZATION OF LC1 COMPACTA 
IN TERMS OF GROMOV-HAUSDORFF CONVERGENCE 

KAZUHIRO KAWAMURA 

ABSTRACT. It is proved that a compactum is locally «-connected if and only if it 
is the limit (in the sense of Gromov-Hausdorff convergence) of an "equi-locally n-
connected" sequence of (at most) (n + l)-dimensional compacta. 

1. Introduction. A compact metric space is called a compactum and the set of all 
compacta is denoted by CM. Gromov [G] introduced a pseudo-metric on CM which 
induces a metric on the isometry classes of CM (called the Gromov-Hausdorff distance). 
It would be an interesting problem to study properties of various subsets of CM (for 
example, the set of all ANR compacta, the set of all finite dimensional compacta, etc.) 
with the topology induced by this (pseudo-) metric. In the present paper, we study the 
set of all LCn-compacta, denoted by LCn. Our main theorem (Theorem 3.1) states that 
a compactum is LCn if and only if it is the limit of an "equi-LCn" sequence of (at most) 
(n + l)-dimensional compacta, in the sense of Gromov-Hausdorff convergence. 

Here, we outline the proof. Suppose that X is an arbitrary LCn compactum. By Dran-
ishnikov's resolution theorem [Dl, D2], there is a polyhedrally (n + 1) soft map (See 
Section 2 for the definition) f:Dn+\ —> X of an (n + l)-dimensional LCn compactum 
Dn+\ onto X. Applying the method of T. Moore [M, Theorem 1] t o / instead of cell-like 
maps, we can see that X is the limit of a sequence of compacta with the required property. 
Conversely, suppose that X is the limit of a sequence (X,-) of compacta with the property 
as stated above. By a result of Gromov (Theorem 2.3 in this paper), we can reduce the 
proof to the case that all of X and X;'s lie in a single compactum. Next, we use an idea of 
Ferry [F, Proposition 5.6], where it is shown that if, M = lim (M/,jfc Mj+i —> Mi) is the 
limit of an inverse sequence of compact ANR's and UVn bonding maps, then M is LCn. 
Ferry used the "approximate lifting property" of UVn maps (up to dimension (n + 1)). 
Although our sequence (X/)/>i does not have maps X;+i —• X/'s with this property, a 
careful lifting process can be made to apply his argument. 
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2. Preliminaries. 

DEFINITION 2.1. (1) For a metric space (M, d) and its subset A, the ^-neighbourhood 
of A is denoted by N^(A). When there is no confusion, the symbol M will be omitted. 
The Hausdorff metric induced by d is denoted by dfj. 

(2) The set of all compact metric spaces is denoted by CM. For metric spaces (X, dx) 
and (Y, dy), we define 

dGH{X, Y) = inf {dH(i(X) J(Y)) \ i: X —• M and;: Y —• M are isometric imbed-
dings into a metric space (M, J)}. 

This defines a pseudo-metric on C^hi and it is known [G] that 

dGH(X, Y) = 0 if and only if (X, dx) and (7, dy) are isometric. 

Hence dcH defines a metric on CM modulo isometry classes, and it is called the Gromov-
Hausdorff distance. 

DEFINITION 2.2. (1) The ^-dimensional cell is denoted by Dk and Sk~l = dDk. 
(2) A (not necessarily continuous) function p: [0, R] —• [0, oo) is called a contractibil-

ity function if p(0) = lim,_>o p(t) = 0 and p(t) > t for each t G (0, R]. 
(3) A compactum X is said to be LGCn(p), where p is a contractibility function, if 

for each k = 0 , 1 , . . . , n, each map a: S* —• X with diam(im a) < t has an extension 
â: Dk+l —• X with diam(im â) < p(t). Clearly, a compactum is LC" if and only if it 
is LGCn(p) for some contractibility function p. The class of all LGCn(p) compacta is 
denoted by LQCn{p). 

(4) A sequence (X/)/>i of compacta in a metric space is said to be equi-LC1 if, for 
each e > 0, there is a 8 > 0 such that, for each i > 1, any map a: Sk —• X, with 
diam(im a) < 8 has an extension â: D*"1"1 —• X, such that diam(im ôt) < s. 

The following theorem is useful in understanding the Gromov-Hausdorff conver
gence. 

THEOREM 2.3 ([G] COMPACTNESS CRITERION P. 64-65). Suppose that a sequence 
(X/)/>i of compacta converges to a compactum X in the sense of Gromov-Hausdorff. 
Then, there exists a compact metric space (M, d) such that 

(1) there are isometric imbedding s f: X/ —+ M andf: X —• M, and 
(2) \imi^oodH(fi(Xi)J(X))=0. 

From the above theorem, it is easy to see the following: 

PROPOSITION 2.4. Suppose that a sequence (X/)/>i of compacta converges to a com
pactum X in the sense of Gromov-Hausdorff. Then (Xf)i>\ C LQCn{p) for some con
tractibility function p if and only if there exist imbeddings fs andf ofXiS and X in a 
compact metric space (M, d) such that the sequence (fi(Xi)) forms an equi-LCn family 
and\imi^00dH(fi(Xi)J(X)) = 0. 

We need the following result due to Dranishnikov [Di] and [D2]. 
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THEOREM 2.5 ([Di, D2]). For each n>0 and for each LCn compactum X, there is 
a polyhedrally (n +1 )-soft mapfn+\ : Dn+\ —• X of an (n +1 )-dimensional LC" compactum 
Dn+\ ontoX. 

A map/: X —• Y between compacta is said to be polyhedrally n-soft if it satisfies the 
following condition. 

For each pair (AT, L) of polyhedra with dim K < n and for each pair of maps <f>:K^Y 
and 7: L —• X such that <j>\L = f • 7, there is a map O: K —• X such that 0|L = 7 and 

L -^ X 

1 y [f 
K — > Y 

<f> 

3. Results. Now we can state our main theorem as follows. 

THEOREM 3.1. For a compactum X, the following conditions are equivalent: 
(a) X is LCn. 
(b) There is a sequence (X,-)/>i of compacta and a contractibility function p such that 

(1) (Xi)i>\ C LÇCn(p) anddimXi <n+lfor each i > 1. 
(2) lim/_+ooJG//(Z/,X) = 0. 

STEP 1. Proof of (a) —• (b). This is essentially the same as [M, Theorem 1], except 
we use polyhedrally (n + l)-soft maps instead of cell-like maps. We give a sketch of the 
proof for the sake of completeness. 

Let X be a LCn-compactum and take a polyhedrally (n + l)-soft map/ :D —• X of 
an (n + l)-dimensional LCn compactum D onto X. Let M(f) be the mapping cylinder of 
/ defined by M(f) = D x [ 0 , l ] U X/(JC, 1) ~ /(*), x E D. A map h: M(f) —• [0,1] is 
defined by h([x, t]) = t and h(f(xj) = 1 (x € D). We may assume that M(f) has a metric 
d such that X is isometrically imbedded as h~l(l). We identify X with &_1(i)-

Define X{ = h~l(l — 1 //)• It is clear that Lim/-*» J//(X/, X) = 0, hence doH(Xi, X) —* 
0. As dimZ/ < n + 1 for each /, it remains to prove that (X/)/>i C LQCn{p) for some 
contractibility function p. In view of Proposition 2.4, it suffices to show that (X/)i>i forms 
an equi-LCn family. 

Suppose not. Then, there are an integer k < n, and e > 0, and a sequence 
(or;: 5* —• Xni) such that lim«; = 00 and 

(1) For each /, diam(im a,) < \ji 
(2) The image of any extension â/: Dk+l —• Xn. of a/ has diameter > e. 

For each /, we can define a map <j>i'.Xni —> X by^([x, 1 — l/i]) = f(x). It is clear that 
each cj>i is polyhedrally (n + l)-soft and also, we may assume that d(<j>i, id) < 1/2'. Since 
X is L C \ there is a S > 0 such that 

(3) each map /3:Sk —• X with diam(im/3) < £ has an extension (3:Dk+l —• X such 
that diam(im^) < e/4. Take a sufficiently large / such that 
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(4) diam(im at) < 8/4, and d(fa, id) < 8/4. 
Then diam(im fa • af) < 8 and we obtain an extension faai:Dk+l —» X by (3). Apply the 
polyhedral (n + l)-softness to obtain a lift at of facti which is an extension of a, as well. 
It is easy to see that diam(im â;) < e which violates the condition (2). 

This completes the proof of (a) —* (b). 

STEP 2. Proof of (b) —• (a). Suppose the sequence of compacta (Xj) converges to X 
in the sense of Gromov-Hausdorff, satisfying the hypothesis of (b). By Proposition 2.4, 
there is a compact metric space M and isometric imbeddings of X/'s and X into M such 
that the images of X/'s converges to the image of X in the sense of Hausdorff metric. 
Hence it suffices to prove the following theorem to complete the proof of (b) —> (a). 

THEOREM 3.2. Let (X,-) be a sequence of compacta in a compactum M which con
verges to a compactum X in the sense of Hausdorff metric. Suppose that there is a con-
tractibility function p: [0, R] —» [0, oo) such that each X, is LGCn(p) and dimX, < n + 1. 
Then X is LCn. 

REMARK. If X is finite dimensional and dimX, < n (i.e. X,'s are ANR's), then the 
above result has been proved by Borsuk [B, p. 196]. 

For the proof of Theorem 3.2, we need some preparations. 

LEMMA 3.3. LetXbeLGCn(p)for some contractibility function p andp:X—+Ybe 
a map satisfying 

(1) |dy(/?(xi),p(x2)) —dx(x\,X2)\ < oc for each x\,x2 G X 
Suppose that K is a compact polyhedron with dim K < n + 1 and L is a subcomplex of 
K. Further assume thatf: K —> Y and ft. L —* X satisfy 

(2) dY(p-fa\L)<(3, 
(3) diamy/(a) < 7 for each a E K, and 
(4) diamx/zXT) < 8 for each r E L. 

Inductively, define rj by 
(5) r\ = p(max(a + /3 + 7,8)) and rj = p{l max(r;_i, 8)\ 

Then, there exists a mapf:K—*Xsuch that 
(6) f\L = fL and dip • / , / ) < rn+l + a + /? + 7. 

PROOF. The proof is a modification of the standard argument. We construct the re
quired map by an induction on the skeleton of K. The /-skeleton of K is denoted by K^. 

Take any vertex v E K^ and define fo(v) by 

/O(V)=/L(V) if veZ/°> and 

ep~l(f(v)) if vE(K-Lf\ 

Evidently, dY(p -fo,f\K{0)) < ^ < a + /3+7-
Construction off\ : Take any 1-simplex a E K and let da = {vi, V2}. Noticing that 

dx(fo(v\)Jo(v2J) < dY(p -/o(vi),p -/o(v2)) + oc by (1), 
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it is easy to see that 

dx(fo(v\),Mv2j) < max(a + /? + 7,£). 

There is a path aa from/o(vi) to/0(v2) whose diameter < p(max(a + (3+'yi8)y The map 
f\ |(j is defined along with this path. 

Making this process on each 1-simplex of K, we have a map/i:KS^ UL —+ X such 
that 

(a-1 ) diamx/i (a) < rx = p(max(a + /? + 7,6)). 

Let i G o " € ^T(1) and take a vertex v of a. Since diamy(p -/j )(<r) < r\ + a, we have 

dy{p -/i (*),/(*)) < dY(p -Mxlp ./i(v)) +dY(p -/i(v),/(v)) + *(f(v),/(r)) 

< n + a + /3+7, 

and, hence, 

(b-1) dY(p . / i , / ! ^ ) < n + a + /3 + 7. 

Construction of/j+i : Suppose that/: A^ —• X has been defined so as to satisfy 

(a-i) diamxikoO < max(r,, 6) for a € K^l) and 

(b-i) dY(p -fi,f\K®) < r/ + a + /3 + 7. 

Take any (/ + l)-simplex cr of K and consider/(3a). By (a-i), it is easy to see that 
diamx/00") < 2 max(r„ 8). There is an extension/Jj : a —• X such that diamx^j (a) < 
p(2max(r;,£)) = r,-+i. Repeating this process on each (i + l)-simplex, we obtain a map 
fi+\ : Ar(ï+1) —* X. A similar estimation can be applied to see that^+i satisfies (a-(i+l)) and 

(b-(i+D). 
The induction step can be continued until i = n + 1. Then the required map is/n+i. 

This completes the proof. 

The following lemma was essentially proved by Petersen ([P], Proposition on p. 390). 

LEMMA 3.4. Let p: [0,R] —• [0, oo) be a contractibility function and define pj(e) 
inductively by p\(e) = e + p(e), and pj(e) = e + p(pj-i(e)) (so far as it is defined, i.e. 
Pj-\(e) < R). Suppose that pn-\(4e) < R. Then the following holds: 

Let X and Y be compacta in a metric space (M, d) such that dimX < n + 1 
and Y is LGCn(p). IfX C Ne(Y), then there exists a map f:X —• Y such that 
d(f, ix) <2e + pn+\(4e), where ix is the inclusion ofX into M. 

PROOF OF THEOREM 3.2. By the Hausdorff metric extension theorem (See [T] for a 
simple proof), M can be isometrically imbedded in the Hilbert cube with some compatible 
metric. 

Take a map a: Sk —• X, where 0 < k < n. In the sequel, we construct an extension â 
of a to Z)^1 and estimate the diameter of its image. 
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Fix the following notation: 

NOTATION. (1) d#(X,X,-) = e,-, dH{XhXj) = e^ (dH denotes the Hausdorff metric 
with respect to the above metric on the Hilbert cube). We may assume that pn{^ij) < R 
for each ij. 

(2) (j>i\ X —• Pi is an ^-translation onto a compact polyhedron P,. 
We may assume that pn(4rji) + 4e; < R for each /. 
(3) dmma(Sk)<8. 
(4) j3i\ Sk —• P( is a simplicial approximation of (j>i • a and d(<j>i • a, Pi) < £/. Notice 

thatdim(im/3/) <k<n. 

Further, we define: 

A/ = 2p(4e/I-+i) + 4eI-/+i 

Q = P«(4(e/ + 77,)) + 2e, + 3r7/ + £/, where pn is as in Lemma 3.4 

£, = Ai + C; + Q+i, and 

Dt(S) = 5 + 2& + 4ef + 6r/f + 2p(4fe + T|f)). 

It should be observed that A,, Q, Bi and D/(£) converge to 0 if / —-• oo, r)i —» 0, £/ —• 0, 
and S —• 0. 

Applying Lemma 3.4 to Xi+\ and X/, we obtain a map/J: X/+i —• X; such that 

(5) d(fh idX/+1) < 2eiM + p„(4e//+i) < A/. 

Since d//(P£-,X/) < 77, + e/, we have im/?/ C Nm+£i(Xï). Applying Lemma 3.4 to im/?/ 
and X/, we have a map/?,: /?/ —+ X; such that 

(6) d(p,-, idimj9|.) < 2fe + 77,) + p(4(e/ + 77,)). 

Define a, = /?/ • /?/: S* —* X,. We have the following estimation: 

diam(im/?;) < diam(im(<^/ • a)) + 2$/ by (4) 

< diam(im(a)) + 2r]( + 2& by (2) 

< $ + 2TJ/ + 2 & by (3). 

Combining the above with (6), we have 

diam(impi) < 8 + 2ry/ + 2£; + 4(e,- + 77,) + 2p(4(e,- + 77;)) 
(7) 

= 5 + 2& + 4e/ + 677/ + 2p(4fe + 77,)) = A(<$). 

Taking a sufficiently large /, sufficiently "small" translation <f>i and sufficiently close 
approximation pi, we may assume that Di(6) < R/2. Since X; is LGCn(p), we have an 
extension a,: Dk+l —• X/ of a, such that 

(8) diam(imâ/)<p(A0)) . 
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We have the following estimation: 

d(a, âi\Sk) = d(a, a,-) = d(a,pi • ft) 

<d(a9Pi) + d(phprpï) 

(9) < d(a, fa • a) + d(fa • a, ft) + d(ft,/?; • ft) 

< r/i + & + 2(ef- + 77,) + p„(4(e/ +17/)) 

= & + 2e/ + 3r// + pn(4(e, + r//)) = Q. 

In what follows, we construct a sequence of maps («;+,-: D*+1 —» ^+/)/>i each of which 
is an extension of <*/+/. 

7 = 1 : First we estimate the distance d(fi • cci+i,âi\Sk). 

d(fi • ai+uâi\Sk) = d(/J- • ai+u<Xi) 

(10) < </(# • ai+uai+i) + d(ai+ua) + d(a,at) 

<Ai + Ci + Ci+x=Bi. 

Take a sufficiently small triangulation Ti+\ oïDk+x and let 

(11) diam â;(<r) < 7/ for any a E Ti+\, and 

diam a/+i (r) < Si+\ for any r E Ti+\ \Sk. 

Applying Lemma 3.3 to/? =fh (K9L) = (Dk+\Sk%f = âhfL = ai+u a = Ah p = Bt, 
7 = 7;, and <$ = 5/+i, we have a map â;+i : D*+1 —• Xi+\ such that 

(1-1) âi+i \Sk — ai+\ and 

(2-1 ) </(#• â|+i, at) <rs
n+ Ai + Bt + 7,- (= denoted by F/), where 

rjj is defined as in Lemma 3.3 in the above situation. From (9) and (1-1), it follows that 

(3-1) d(a,aM\&)<CM. 

Combining (5) with (2-1), we have that 

(4-1 ) d(âi+\, ai) < Ai + Fi (= denoted by F/). 

Having constructed â/+i,..., â/+/-i, F/+i,..., F/+/-1, and F/+i,..., F/+/_i satisfying 

(1-s) âi+s\S
k = ai+s and 

(2-s) d(fi+s • â/+5, âi+s-i) < Fi+s-i (s = 1 , . . . , ; - 1 ), 

we proceed to the construction of â/+/. As in (10), we have 

(12) */(#+,- • a/+7-, (Xi+j-i) < Ai+j-i + C/+7_i + Q+j = Bi+j. 

Take a sufficiently small triangulation 7̂ +,- of Dk+l and let 

(13) diamâi+j-\(&) < 7;+/-i for any cr E 7/+/ and 

diam al+j(r) < 5/+/_i for any r E TV^S*. 
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Applying Lemma 3.3 in a manner similar to that in the case; = 1, we obtain a map 

âi+j: D
k+l —• Xi+j such that 

(1-j) âi+j\S
k = ai+j and 

(2-j) d(fi+j • âi+j, âi+j-i) < r*J~l + Ai+j-\ + Bi+j-i + 7/+/-1 (= denoted by Fi+j-i ). 

This completes the inductive step. By (1-j) and (9), we have that 

(3-j) d(a,âi+j\S
k)<Ci+j f o r 7 > 0 . 

Further by (2-j) and (5), we have 

(4-j) d(âi+j, âi+j-\) < Ai+j-i + Fi+M (= denoted by Ei+j-\). 

Note that Ci+J9 Ei+j —> 0 as ; —• oo, r\i —• 0, & —• 0, 7/ —• 0 and 8t —• 0. 

To complete the proof of Theorem 3.2, take any e > 0. Take a sufficiently small 8 > 0, 
sufficiently large /, sufficiently small translation </>/+/s, sufficiently close approximations 
/3i+/s, and sufficiently small triangulations 7/+/s, so that p(A-(«)) < e/4, Ej£o 
e/4, and C/+/ —> 0 as7 —• 00. 

When a map a: Sk —• X is given so that diam(im a) < 5, we obtain a sequence 
(â|+/: D̂ "1"1 —• Xi+j) of maps by the above construction. By the choice of £/+/s and (4-j), 
this forms a Cauchy sequence.Let â:Dk+l —• Q be the limit map. Clearly, i m â C X and 
by (3-j), â\Sk = a. Finally, 

00 

diam(imâ) < p(D/(5)) + ]££/+/ < £-
7=0 

Therefore â is the required extension. This completes the proof. 
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