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GROUPS WITH NO NONTRIVIAL LINEAR REPRESENTATIONS
A.J. BERRICK

We study the class of groups having no nontrivial linear representations over certain
fields. After showing the class to be closed under perfect extensions with locally
soluble kernel, we expand considerably the number of acyclic groups known to be
in the class, by application to both binate groups and the acyclic automorphism
groups of de la Harpe and McDufF.

Our aim is to initiate the study of groups G whose finite-dimensional linear rep-
resentations G —* GLn(t) over a field I are all necessarily trivial. This note has three
main features:

(1) We survey the existing literature on such groups. Noteworthy here is
the surprising interaction with the phenomenon of acyclic (homologically
trivial) groups. For further discussion see Remark 1.10 below.

(2) We contribute to the theory of this class of groups by showing it to be
closed under perfect extension with locally soluble kernel (Theorem 2.1).

(3) Applications of this key result are given to two important classes of acyclic
groups, namely binate groups and groups of automorphisms of large ob-
jects (Theorems 3.1, 3.4).

We call a group G with no nontrivial finite-dimensional 6-representation counter-
t-linear. For p ^ 0, we say that G is counter-p-linear ii it is counter 6-linear for every
field I of characteristic p. Finally, when G is counter-p-linear for all p (or equivalently,
counter-6-linear for all 6), we say that G is counter-linear.

(Evidently we are considering a special case of the following. Let C be a class of
groups. Then we may call a group G counter-C if G has no nontrivial homomorphic
image in C A brief discussion of this general notion appears below as an appendix.)

1. EXAMPLES

EXAMPLE 1.1. Perhaps chronologically the first example is Higman's four generator,
four relator group

H = {n, i € Z/4 | [n, xi+i] = xi+1)

which is shown in [18] (by means of combinatorial group theory) to be counter-finite.
Then, as in (2.5) below, it is also counter-linear. This also appears to be the first
example in the literature of an acyclic group.
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EXAMPLE 1.2. By a theorem of Zassenhaus [23, (15.1.3)] any perfect, locally soluble
group is counter-linear. (Compare (2.4) below.) In particular, the perfect, locally
nilpotent groups of McLain [23, (12.1.9)] are counter-linear, as are their generalisations
in [3] which can have as their centre any given Abelian group. These groups are also
acyclic [3]. Also, Heineken and Wilson [16] exhibit locally soluble groups with minimal
condition on normal subgroups. The intersection of the derived series is therefore a
perfect, locally soluble group.

EXAMPLE 1.3. The extreme subclass of counter-linear groups is the class of simple
non-linear groups. A simple, locally finite group G is, according to [19], counter-
linear if for all primes p there is an infinite strictly descending chain of p-subgroups, or
equivalently, if G involves all finite groups. For an example, see [14]. Further examples
include certain existentially closed groups, which are again acyclic [4].

EXAMPLE 1.4. For any associative ring R with 1, consider the group G = ER which is
the union of all the groups Em(R) generated by elementary mxm matrices (nested by
adjunction of identity matrices). Then G contains, for example, elementary matrices of
the form Im + reim where r £ R is arbitrary. Note that these elementary matrices lie
in the fcth term of the derived series of the upper unitriangular matrix group Um(R),
where k — [log2 (TO — 1)] + 1 and so increases unboundedly with TO. If now G admits
a finite-dimensional representation p, then by Zassenhaus it follows that there is a
bound on the derived length of the image of any soluble subgroup of G under the
representation. Therefore for arbitrary r 6 R the matrix Im + reim lies in the kernel
of p. However, the conjugates of such matrices generate G. This forces p to be trivial.
Hence G is counter-linear.

When the Milnor K-group K2R of R is nonzero, an interesting phenomenon oc-
curs here. For KiR is just the Schur multiplier of G. By the relationship between
Schur multipliers and projective representations [10, (11.15)], it follows that when the
multiplier is nonzero there exists a projective representation G —» PGL(V) of G which
fails to lift to a linear representation G —> GL(V), where V is a complex vector space.
Now, as in Theorem 2.1 below, there is an embedding PGL(V)^GL(R(PGL(V))).
Thus counter-linearity forces any finite-dimensional projective representation of G to
be trivial and so equivalent to a linear representation. On the other hand, because
K2R 7̂  0, there exists an infinite-dimensional such V, and thereby a nontrivial infinite-
dimensional linear representation G -> PGL{V)^>GL(R{PGL{V))).

EXAMPLE 1.5. Let D be a noncommutative division algebra which is infinite-dimensional
over its centre. Then by [11] the commutator subgroup SLn(D) of GLn(D) is counter-
linear (n Jj 2), as is the special unitary group SUn{D) with Witt index greater than
1. Proofs here use the theory of algebraic groups.
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EXAMPLE 1.6. By topological methods, [5] shows that any torsion-generated acyclic
group is counter-C-linear. (Recall that such a group is generated by elements of finite
order and has the same homology, with trivial coefficients, as the trivial group.) This
paper also makes a number of deductions about the internal structure of such groups
which are applicable more generally to perfect, counter-finite or counter-C-linear groups.
For example, if a normal subgroup N has N/N" finitely generated, then N is either
finitely generated Abelian or (infinite perfect)-by-(finitely generated Abelian). A further
example occurs in (2.6) below.

EXAMPLE 1.7. Again using algebraic topology, [7] generalises the above results, prov-
ing the counter- C-linearity of any torsion-generated group G having only finitely many
nonzero (trivial coefficient) homology groups Hn(G; Z). Note here that the Schur mul-
tiplier H2(G;Z) need not vanish; indeed, according to [7] any Abelian group is pos-
sible for £T2(G;Z). Then the argument concerning projective representations given in
Example 1.4 also applies here, at least with respect to complex vector spaces V.

EXAMPLE 1.8. Another interesting example from [7] (settling an issue raised in [2]) is
of a (universal) finitely presented torsion-generated acyclic group. From Example 1.5
and (2.5) below, it follows that this group must be counter-linear. On the other hand,
[2] exhibts a finitely presented torsion-free acyclic group which has the simple group of
order 60 as a quotient.

EXAMPLE 1.9. Strongly torsion generated groups were introduced in [6] and analysed
in [7]. Their characteristic property is that, for each n ^ 2, there is an element xn of
order n whose conjugates generate the group G. Exidently any homomorphic image
is also strongly torsion generated, so we consider the case when G is linear. Then over
characteristic p > 0 we have

this makes xp and its conjugates unipotent. Since the conjugates of xp generate G,

G is itself unipotent, hence nilpotent. However, the only Abelian strongly torsion
generated group is trivial. We conclude that strongly torsion generated groups are
counter- p-linear for all p > 0.

REMARK 1.10. In the the above examples, certain aspects of the relation between
counter-linearity and acyclicity are worth emphasising. General implications of counter-
linearity from acyclicity, as in (1.6) - (1.9), rely on the presence of torsion. For torsion-
free acyclic groups, more ad hoc methods have had to be used, as in (1-1), (1-2). Clearly
it would be desirable to find a more general approach to counter-linearity for acyclic
groups. That this is impossible in complete generality follows from examples of torsion-
free acyclic groups with nontrivial finite quotients [2]. In fact, given any perfect group
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P, it is known that there is a torsion-free acyclic group with P as quotient [17]. A
large class of acyclic groups, including many without torsion, arises via binate groups.
This prompts investigation of the counter-linearity of binate groups, aided by the work
of [9] on binate towers. A partial result concerning non-linearity of the universal binate
tower has been obtained in [12]; it motivated the present work.

We first obtain a key lemma on counter-linearity and extensions. When combined
with work of [1] on the universal binate tower it leads to counter-linearity of binate and
related acyclic groups.

2. BASIC RESULTS

By means of the following fundamental result, we are able to enlarge consider-
ably the class of counter- 6-linear groups. Throughout t always denotes a field whose
algebraic closure is I.

THEOREM 2 . 1 . There is a function m = m(n) with the following property.
Suppose that a group G has a nontrivial n-dimensional t-representation. Then either

(i) G has a nontrivial 1-dimensional t-representation, or
(ii) for each locally soluble proper normal subgroup N of G there is a non-

trivial m-dimensional t-representation of G/N.

PROOF: By passing to the image of the given representation, we may assume G
to be a subgroup of GLn(t). Then by Zassenhaus [23, (15.1.3)] N is soluble, of
derived length d bounded by a function d(n) of n. Since one can argue inductively
up the derived series of JV, it suffices to consider the case where N is Abelian. Now
for K normal in G we define R{K) to be the E-subalgebra of Mn{t) generated by
K. Then G acts on R{K), a subspace of En' , with kernel CG(K). Thus G acts on
5 = R(N)®R(CG{N)) with kernel CG(N) D CG{CG{N)) - Z(CG{N)) > N, affording
a 6-representation of G/N. If this representation is trivial, then, because its Abelian
kernel Z{CG(N))/N coincides with the group G/N, G is Abelian 6-linear and so is
a subgroup of GL\ (I) x . . . xGLi (t) . Evidently m = m(n, d) = m(n, d(n)); we may
take m(n, 0) - n and, for d ^ 1, m(n, d) = 2m(n, d - I ) 2 . D

When G is locally soluble we may take N in the above to be the commutator
subgroup G' of G. (It follows from the theorem of Zassenhaus cited above that G'
must be proper in G since G has a nontrivial soluble image.) The complete reducibility
of Abelian subgroups of GLm (I) is now seen to have the following counterpart for locally
soluble groups.

COROLLARY 2 . 2 . If a locally soluble group has a nontrivial t-representation of
any dimension then it has a nontrivial 1-dimensional t-representation.

https://doi.org/10.1017/S0004972700009503 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009503


[5] Groups with no nontrivial linear representations 5

It is perhaps interesting to observe that [21, (13.6)] shows that, in the special
case of the above where the group algebra t[G] has a faithful representation over some
commutative E-algebra, then G is locally soluble-by-finite.

Returning to counter-p-linear groups, we note that, under favourable circum-
stances, one can specialise to particular fields 6. For this result, we recall that a rational
group is one which embeds in Q; and for prime p ^ O we write Fp for the algebraic
closure of the prime field of characteristic p .

THEOREM 2 . 3 . Let G have no noncyclic free subgroup.

(a) For p ^ 0, G is counter-p-lineai if and only if G is both counter-¥p-linear
and counter-rational.

(b) T i e following are equivalent:

(i) G is counter- 0-linear;

(ii) G is perfect and there exists a field t of characteristic 0 with G

counter- t-Hnear;

(Hi) G is perfect and counter-finite.

PROOF: (a) Note that the condition of counter-rationality has force only when
p > 0, since Q embeds in GLa(Q) (via unitriangular matrices). Now the "only if"
direction is immediate, except that, when p > 0, one also appeals to (a)( i ) of the
following data obtained from [13, (127.3)] concerning the groups GLi(t).

(a) Fix p > 0. Then

(i) there exists a field 6 with characteristic p having Q a subgroup

of G£i(6); and

(ii) for any field t of characteristic p , a subgroup of GLj(l) is

counter-rational if and only if it is a subgroup of GL\ (Fp) .

(/3) Any nontrivial subgroup of G£i ( l ) (with 6 of characteristic 0) has a

nontrivial quotient in GL\ (Fo) .

For the converse argument, since the various properties are preserved by quotients,
assume that G $ GLn (I) with char 6 = p , and that G is counter- Fp-linear and counter-
rational. By a result of Tits [25, pp.145,146] this forces G to have a soluble normal
subgroup N with G/N locally finite. If G is itself soluble, then by the corollary above
G has a nontrivial image in GL\ (1) . Similarly if G is not soluble (so that N is proper)
and (l . l)(i) applies. Therefore, by (a)(ii) and (/?) above, G has a nontrivial image in
( J L I ( F P ) . This leaves the case where we may apply (2.1)(ii) to the pair G, N. Here
we obtain a nontrivial f-representation of locally finite G/N. Then the argument of
[20, (1.L.2)] leads to a nontrivial ^-representation, as required.

(b) To see that (i) =>• (ii), note that, because GLi(C) is divisible (hence injective)
and contains all possible torsion, any Abelian group has a nontrivial image in GLi(C).
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Thus, counter-C-linear implies perfect.
Next, (ii) => (iii) because every finite group is Q-linear. There remains the proof

that (iii) =>• (i). As with (a), from a nontrivial t-representation p: G —> GLn(t) we
obtain a nontrivial locally finite image Q of G which is t-linear. (Since G is perfect
the other possibilities are excluded.) However, since 6 has characteristic zero, a result
of Schur [20, (1.L.4)] gives Q as Abelian-by-finite. Because G is perfect, this forces
Q, hence G, to have a nontrivial finite image. D

Combination of the last two results readily yields the following.

COROLLARY 2 . 4 . Let G be a locally soluble group. Then the following state-
ments are equivalent:

(i) G is counter-linear;
(ii) G is counter-I-linear for some Held I of characteristic 0;

(iii) G is perfect.

Although well-known, the following is worth noting in this context.

PROPOSITION 2 . 5 . Suppose G is finitely generated. Then the following are
equivalent.

(i) G is counter-linear.
(ii) There exists a field t with G counter- fi-linear.

(iii) G is counter-finite.

PROOF: Evidently (i) =>• (ii), while (ii) =>• (iii) because any finite group has a faith-
ful representation by permutation matrices. Finally, after Mal'cev [25, p.51], finitely
generated linear groups are known to be residually finite; thus (iii) =>• (i). u

The next result belongs to the genre of [5]. Here we apply it to obtain further
information about perfect group extensions with counter-linear quotient.

LEMMA 2 . 6 . If a soluble m'mimax subgroup N of a counter- 0-linear group G is
normal in G, then it is central.

PROOF: Since G is perfect (compare (2.3)(b)) we pass to the centreless group
G/Z(G), or equally, assume G to be centreless. Again, by considering the minimal
nontrivial term of the derived series of N, we may assume N to be Abelian. Now the
torsion subgroup T(TV) of N has min [23, (Exercise 4.4.7)] and so is Cernikov. By [20,
(3.38)] it follows that its automorphism group is linear over some field of characteristic
zero. Thus conjugation by G on T(N) is trivial; since G is centreless, this makes
N torsion-free. Various standard results on torsion-free Abelian minimax groups [23,
Chapter 4] imply that IV has finite rank, TO say, and embeds as a subgroup of a rational
vector space of dimension 771. By tensoring over Q any automorphism of N, we obtain
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an embedding of Aut (JV) in G £ m ( Q ) . Again this forces the conjugation action of G
on N to be trivial, whence N is trivial as required. U

THEOREM 2 . 7 . Let N be a soluble minima^ group. Tien N can be the kernel

of a perfect group extension with counter-0-linear quotient if and only if N is Abelian

and the extension is central.

PROOF: First suppose that the extension is not central. Then by the lemma the
extension group cannot be counter- 0-h'near. Then Theorem 2.1 implies that the quotient
group also fails to be counter-0-linear. On the other hand, if N is Abelian then as in
(1.2) above it follows from [3] that N embeds as the centre of a perfect counter-linear
group. U

Note that in (2.7) the hypothesis of perfectness is necessary, to avoid for example
the possibility that the extension reduces to a direct product of N with the quotient
group.

3. APPLICATIONS

We now apply Theorem 2.1 to results of [1] to discover new classes of counter-0-
linear groups. Recall from [4] that binate groups form a very important class of acyclic
groups. A binate group G has the property that for each finitely generated (necessarily
proper) subgroup H of G there is a homomorphism <p: H —> G and element a € G — H

such that for all h £ H

h = [<p(h), a}.

Since the subgroup generated by H, <p(H) and a is in turn finitely generated, this
allows one to iterate, leading to a binate tower of finitely generated subgroups H =

HQ ^ Hi ^ Binate towers are analysed at length in [9].

THEOREM 3 . 1 . Any binate group G is counter-O-Hnear.

PROOF: Suppose otherwise, and let G have a nontrivial representation p: G —>
GLn(l), where J has characteristic zero. Given a finitely generated subgroup H of G,
let H - Ho < Hx < . . . be a binate tower in G with base H. Then, by [1, (1.1)], each
p(H{) is soluble-by-finite. This makes p{G) (locally soluble)-by-(locally finite). So we
obtain from Theorem 2.1 above a nontrivial representation v: p(G) —» GLm(t) with
vp[G) locally finite. However, by a result of Schur [20, (1.L.4)], vp{G) has an Abelian
subgroup of finite index. Since vp{G) is perfect, the subgroup must be proper. Hence
G has a proper subgroup of finite index, contradicting [1, (1.4)(d)]. D

Recall from [4] that any group is normal in a normal subgroup of a binate group.
We therefore have an immediate consequence.
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COROLLARY 3 . 2 . Any group is two-step subnormal in a counter-0-iinear group.

However, Lemma 2.6 above shows that there are considerable constraints on the
class of normal subgroups of counter- 0-linear groups.

These techniques also enable one to say something about positive characteristics.

COROLLARY 3 . 3 . If a binate group G has no proper normal subgroup of count-
able index, then G is counter-linear.

PROOF: Again suppose the existence of a nontrivial representation p: G —•
GLn(t), where 6 is now any field. As above, G has a nontrivial locally finite image in
GLm(t) for some m. Then the result follows from [27], [20, (1.L.2)]. D

The above result does not apply directly to the acychc groups of automorphisms
considered by de la Harpe and McDuff [15] (although they are known to be counter-
countable), for they need not be binate. Recall that those groups are the following:-

(a) the group of all permutations of any infinite set;
(b) the group of measure-preserving automorphisms of a Lebesgue measure

space with infinite, nonatomic measure;
(c) the group of all linear automorphisms of an infinite-dimensional vector

space;
(d) the group of all continuous linear automorphisms of an infinite-dimensional

Hilbert space V over M, C or El, as well as the group of invertible isome-
tries of V;

(e) the group of invertible elements in a properly infinite von Neumann alge-
bra, and its subgroup of unitary elements.

However, the proof of acyclicity of the above groups relies heavily on the existence
of families of binate subgroups. Thus, with a little care, one can modify our previous
argument for binate groups, to obtain the following result.

THEOREM 3 . 4 . Tie groups of [15] are counter-iinear.

PROOF: Let G be such a group, with nontrivial representation p: G —> GLn{V).
For each flag F defined in the grassmannian of subspaces of the space on which G
acts, there is a subgroup Gp of G denned in [15]. By applying the fundamental
group functor to Lemma 11 of [15] (or, more directly, from Lemma 10 of [15] - see
also (3.3) of [24]), one sees that G is the union of finite products of subgroups of
the form GF . Moreover, each Gp is a semi-direct product' A xi G'F of an Abelian
normal subgroup A by a binate group G'F (see [15, Section 2] and [4, (3.8)]). Now by
[1, (1.1)] p(G'F) is (locally soluble)-by-(locally finite), and hence, by Zassenhaus [23,
(15.1.3)] soluble-by-(locally finite). Thus each P{GF) is also soluble-by-(locally finite),
and again, after taking the direct limit of finite products, we have that the perfect group
p(G) is soluble-by-(nontrivial locally finite). So, by (2.1) above, p(G) has a nontrivial
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locally finite t-linear image, and hence, by [20, (1.L.2)] a nontrivial countable image.
However, this contradicts Corollary A4 of [15]. u

REMARK 3.5. Subsequent work [1, Section 3] shows that it is possible to remove the
condition on the binate group G in (3.3). Using this result, I believe one can construct
an alternative proof of (3.4) above.

APPENDIX ON COUNTER-C GROUPS

Let C be a class of groups. We call a group G counter-C (or say that G belongs to
the class counter-C, denoted C~M in [22]) if G has no nontrivial homomorphic image
in C. One seeks to describe the class of all counter-C groups. Some cases of particular
interest are the following.

The counter-finite groups are those with no proper subgroups of finite index. (I
understand that an investigation of (counter)2-finite groups is now being made by
V. Walter, a student of D.J.S. Robinson at Urbana.) The counter-Abelian (equally,
counter-nilpotent, counter-soluble) groups are just the perfect groups. One can iterate
the process: the (counter) 2-Abelian groups are the imperfect groups; these form the
object of study in [8]. Then the (counter) 3-Abelian groups are the perfect groups
again (for, their commutator quotient groups must be Abelian groups with no nontrivial
Abelian image, hence trivial). Thus in this case the iteration becomes stationary. In
fact, in general at most three new classes of groups may be produced by iteration in this
way, as is seen from the following chain of easily checked results. (For an alternative
derivation of (v) from (i), see [22] (1.39).)

PROPOSITION A . I . Let C be a class of groups. Then

(i) the class counter-C is closed under the formation of quotients;
(ii) CC (counter)2 -C if and only if C is closed under the formation of simple

quotients;

(iii) counter-CC. (counter)3-C;

(iv) (counter)3 -C — counter-C if and only if C is closed under the formation

of simple quotients;

(v) (counter)*-C = (counter)2-C.

The concept of counter-C groups is in a sense dual to that of just-not-C groups
(whereby every homomorphic image, but not the group itself, lies in C) studied by
Wilson [26] et al.
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