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Abstract

We consider an epidemic model where the spread of the epidemic can be described by
a discrete-time Galton–Watson branching process. Between times n and n + 1, any
infected individual is detected with unknown probability π and the numbers of these
detected individuals are the only observations we have. Detected individuals produce
a reduced number of offspring in the time interval of detection, and no offspring at all
thereafter. If only the generation sizes of a Galton–Watson process are observed, it is
known that one can only estimate the first two moments of the offspring distribution
consistently on the explosion set of the process (and, apart from some lattice parameters,
no parameters that are not determined by those moments). Somewhat surprisingly, in
our context, where we observe a binomially distributed subset of each generation, we are
able to estimate three functions of the parameters consistently. In concrete situations,
this often enables us to estimate π consistently, as well as the mean number of offspring.
We apply the estimators to data for a real epidemic of classical swine fever.
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1. Introduction and motivation

It is known that it is impossible to consistently estimate more than two moments of the
offspring distribution of a supercritical Galton–Watson process if only the generation sizes, Xn,
of the process are observed [4, Theorem 1.3]. However, it is not a-priori clear what can be
estimated consistently in a situation where, between times n and n + 1, any infected individual
is detected with unknown probability π and the numbers of these detected individuals are the
only observations we have. Detected individuals produce a reduced number of offspring in the
time interval of detection, and no offspring at all thereafter.

The kind of partial observation we are dealing with is especially interesting for estimation in
epidemics of infectious diseases. If the number of susceptible individuals (where an ‘individual’
may also refer to a herd as well as to an individual animal) is very large, we may describe the
start of an idealized epidemic using a Galton–Watson process where discrete points in time
index the generations (see, e.g. [1, Chapter 3] or [10]). As soon as an infectious disease is
observed in an individual, it stops being infective, because of either isolation (in the case of
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human infections) or culling (in the case of very contagious animal diseases like classical swine
fever, foot-and-mouth disease, or avian influenza).

In the time interval of detection, the individual is only infectious during a fraction of the
interval length, which implies that observed individuals have a reduced number of offspring.
In this epidemiological setting, an individual that is infectious but not detected in a certain
generation will still be infectious in the next one, so a surviving individual will cause there to
be at least one infective individual in the next generation, namely itself. Our aim is to estimate
parameters of the offspring distribution using only this partial information. This interpretation
should be compared with the work in [2]. In that paper, estimation takes place under the
assumption that one also observes, in addition to individuals with no further offspring, the total
number of infectious individuals at both the beginning and the end of the observation period.

Assuming that Xn denotes the generation sizes of a branching process and πn denotes
a known sequence converging to π , Jacob and Peccoud [6] showed that if the number of
observations in generation n + 1 is binomially distributed with parameters Xn and πn and the
offspring distribution has a finite fourth moment, then it is also possible to estimate the first
two moments of the offspring distribution consistently on the explosion set (i.e. the set where
limn→∞ Xn = ∞). Under the assumptions of [6], the observed individuals may produce
offspring, but the number of these offspring is supposed to be distributed in the same way as
the number of offspring of L unobserved individuals, where L is a nonnegative integer.

Our set-up differs from that of [6] in two aspects. First, we are interested in the case
where πn ≡ π is constant but unknown. Second, we assume that the offspring distributions
of unobserved and observed individuals have a finite fourth moment, but make no further
assumptions about them. Our methods are also quite different; our martingales are based on
observable quantities. Besides proving some results analogous to [6], we show that π can, in
certain circumstances, be estimated consistently.

Our main interest is in estimating the offspring mean and the parameter π , because these
parameters are extremely important for decisions about measures to be taken to stop an epidemic.
We are able to estimate the offspring mean very efficiently. On the explosion set, we are (under
certain conditions) able to consistently estimate two other functions of π and the parameters
of the offspring distribution. These three estimators will lead to a system of three equations.
For many models we also have three unknowns, namely the offspring mean, the offspring
variance, and π . In principle, we can therefore often estimate these quantities. However, it
turns out that what is theoretically possible is not always practically feasible, due to extremely
slow convergence of the second and third estimators. Note that we can only hope to obtain
consistency if the process explodes; otherwise, the number of observations and the number of
involved individuals will be finite.

In the next section we set up the problem formally. In Section 3 we give consistent
estimators for three functions of the parameters and results about the rates of convergence
of these estimators. We apply this to real data from the 1997 epidemic of classical swine fever
in the Netherlands. In Section 4 we prove the consistency of two estimators for the offspring
mean on the explosion set of the branching process. In Section 5 we estimate a second function
of the parameters. This function can be interpreted as a second moment, as we will explain. In
Section 6 we show that the estimator for a third function of the parameters is consistent.

2. Formal set-up

We let Gn denote the collection of infected individuals at the discrete time instants n, n =
0, 1, 2, . . . , and we let Xn = |Gn| denote its cardinality. In our context, the Xn are not
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observable. The dynamics from time n to time n+ 1 is as follows. Between times n and n+ 1,
a certain (random) number of the infected individuals in Gn is detected; we assume that each
infected individual is detected with probability π during this time interval, independently of
the others. The parameter π is unknown. The collection of individuals detected between time
n and time n + 1 is denoted by Dn+1, and the number of individuals in Dn+1 is denoted by
Zn+1; this random quantity is observable. So, given Xn, Zn+1 has a binomial distribution with
parameters Xn and π . Individuals in

⋃
n Dn produce no offspring.

An individual in Gn which is detected (and which therefore produces an element in Dn+1)
may also produce offspring in Gn+1 (in our terminology, ‘offspring’ always means ‘direct
offspring’). An individual in Gn which is not detected will remain infective, and will possibly
infect other individuals. The offspring of such an individual in Gn+1 therefore consists of at
least one individual, namely itself. Note that, as a result, one physical individual corresponds
to various individuals of the process. The whole process now constitutes a two-type branching
process.

The offspring distributions of detected and undetected individuals are different. We denote
by m+ the expected number of X-offspring of an infected individual at time n (that is, offspring
in Gn+1), given that it is not detected between time n and time n + 1. Similarly, m− is
the expected number of X-offspring of an infected individual given that it is detected. The
corresponding variances are denoted by σ 2+ and σ 2−, respectively. In formulae, this reads as
follows:

m+ := E(X1 | X0 = 1, Z1 = 0),

m− := E(X1 | X0 = 1, Z1 = 1),

σ 2+ := E((X1 − m+)2 | X0 = 1, Z1 = 0),

σ 2− := E((X1 − m−)2 | X0 = 1, Z1 = 1).

Finally, we write m for the unconditional expected number of X-offspring of an infected
individual:

m = E(X1 | X0 = 1) = (1 − π)m+ + πm−.

Similarly, the unconditional variance is denoted by σ 2. From [4, Lemma 2.1], for a random
variable Y and an event F (with complement F c), we have

var(Y ) = P(F ) var(Y | F) + P(F c) var(Y | F c)

+ (E(Y | F) − E(Y | F c))2 P(F ) P(F c).

Applying this with F = {Z1 = 0} yields

σ 2 = var(X1 | X0 = 1) = (1 − π)σ 2+ + πσ 2− + (m+ − m−)2π(1 − π).

We assume that the offspring distributions have finite fourth moments, i.e. for i ∈ {0, 1},
E([X1 − E(X1 | X0 = 1, Z1 = i)]4 | X0 = 1, Z1 = i) < ∞.

Define A to be the explosion set, that is, the set where limn→∞ Xn = ∞. Because A is a
tail event, conditioning on this event is, strictly speaking, not correct for estimation purposes;
but analysing the behaviour of the process on the set A is necessary, for only on this set do we
obtain infinitely many observations. In practical situations we can simply ignore this, since we
only use observable quantities.
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We are able to estimate several functions of m+, m−, σ 2, and π on A. One of those functions
is m, and the other two are given by

γ ≡ γ (m+, m−, σ 2, π) := (1 − π)m + πσ 2 + πm2 + m2 − 2πmm−,

γ∗ ≡ γ∗(m+, m−, σ 2, π) := (m2 + m)γ − 2m3 + 2πm2m−.

The reason for these somewhat complicated expressions will become clear soon.

3. Results and application

3.1. The main result

In this section consistent estimators for three different functions of the parameters are given.

Theorem 3.1. Using the notation and assumptions of Section 2, we have, as n → ∞,

(a) m̄n → m almost surely (a.s.) on A,

(b) m̃n → m a.s. on A,

(c) n−1S̃n(m̃n) → γ in probability on A,

(d) n−1S̃∗
n(m̃n) → γ∗ in probability on A,

where

m̄n = Zn+1

Zn

, m̃n =
∑n+1

i=2 Zi∑n
i=1 Zi

,

S̃n(m) =
n∑

i=1

(Zi + 1)

(
Zi+1

Zi + 1
− m

)2

,

S̃∗
n(m) =

n∑
i=1

(Zi + 1)

(
Zi+2

Zi + 1
− m2

)2

.

In principle, this theorem gives three equations with four unknowns, namely m, π , σ 2,
and m−. If we have further information, or make further assumptions about the relationship
between m and m−, then we can estimate all parameters consistently, in theory at least.

The speed of convergence of our estimators is given by the following two theorems.

Theorem 3.2. The random variables (
∑n

i=1 Zi)
1/2(m̃n −m) converge in distribution to a sum

of three normal random variables with zero mean and finite variance.

This theorem implies that m̃n − m converges to 0 with a rate of order (
∑n

i=1 Zi)
−1/2.

Theorem 3.3. As n → ∞, for all δ > 0 we have

(a) n1/2−δ(n−1S̃n(m̃n) − γ ) → 0,

(b) n1/2−δ(n−1S̃∗
n(m̃n) − γ∗) → 0,

in probability on A.

This theorem implies that n−1S̃n(m̃n) − γ and n−1S̃∗
n(m̃n) − γ∗ converge with a rate of

order at least n−1/2+δ , for any δ > 0.
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The proofs of Theorem 3.1(a), Theorem 3.1(b), and Theorem 3.2 are given in Section 4.
The proofs of Theorem 3.1(c) and Theorem 3.3(a) are given in Section 5. Finally, the proof of
Theorem 3.1(d) is given in Section 6. Theorem 3.3(b) can be proved in exactly the same way
as Theorem 3.3(a), and the proof is thus omitted.

3.2. Application to an epidemic model

In this subsection we apply our results to a concrete example from epidemic theory. We anal-
yse the discrete approximation of the standard SIR (susceptible–infective–removed) epidemic
(see, e.g. [3]), where we take the number of susceptible individuals to be infinite.

3.2.1. The model. We assume that if an infective individual is not detected in a certain interval,
then the number of new infections caused by this infective individual is Poisson distributed
with parameter λ. Since an individual that is not detected remains infective itself, this implies
that

m+ = λ + 1, σ 2+ = λ.

Next we need to choose what happens during the interval in which an individual is detected.
In order to keep the model general, we assume that the detected individual is infective during
a (known) fraction, φ, of the detection interval. It then follows that

m− = φλ, σ 2− = φλ,

and, hence,

m = (1 − π)(λ + 1) + φλπ,

σ 2 = (1 − π)λ + φλπ + π(1 − π)((1 − φ)λ + 1)2.

One remark: if we assume that the detection time is uniformly distributed over the interval
of detection, then m− will equal λ/2. The variance of the offspring in the interval of detection
will be slightly larger than λ/2 because the randomness of the detection time will cause some
extra variance. In fact, the variance will be λ/2 + λ2/12.

We are particularly interested in estimating m (which describes the mean growth of the
number of infectious individuals) and π (needed to estimate the number of infectious individuals
at a certain time, which is very important in order to make decisions about measures to stop the
epidemic). In the context of the present example, Theorem 3.1 gives

m̃n → (1 − π)(λ + 1) + φλπ a.s. on A,

n−1S̃n(m̃n) → (1 − π)λ + (1 − π)2 + (1 − π)(λ + 1)2 + φλπ in probability on A,

n−1S̃∗
n(m̃n) → (m2 + m)γ − 2m2(1 − π)(λ + 1) in probability on A.

(3.1)

For ease of notation, we have not expanded the quantity on the right-hand side of the final
expression. In (3.1) we have, after substituting the estimates for m, γ , and γ∗, three equations
with two unknowns, λ and π . At this point, it seems that the third equation does not help us
very much. There are two ways to proceed.

First, we can ignore the third equation and solve the other two for λ and π . However,
it turns out that n−1S̃n(m̃n) converges very slowly, meaning that we need a huge number of
generations to obtain reliable estimates (see the next subsection). Second, we can use the
information contained in the third equation in a meaningful way, to reparametrize the epidemic
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Table 1: Maximum likelihood estimates (MLEs) from the 1997 Dutch classical swine fever outbreak.

Duration Number of MLEs Computed values Estimated values
Stage (weeks) observations π λ m γ γ∗ m γ γ∗

2 10 101 0.4 0.6 1.08 2.376 3.098 1.15 1.03 0.942
3 8 160 0.5 0.7 1.025 2.220 2.822 1.04 1.87 2.57
4 9 107 0.3 0.3 0.955 1.928 1.940 0.857 0.813 0.935
5 30 51 0.05 0.25 1.194 2.631 3.505 0.880 0.859 0.867

process using m and π instead of λ and π . The parameter m is estimated using m̃n, and we
may use the combination

(1 + m̃−1
n )n−1S̃n(m̃n) − m̃−2

n n−1S̃∗
n(m̃n)

to estimate 2(1 − π)(λ + 1). Since m = (1 − π)(λ + 1) + φλπ , we may write

λ + 1 = m + φπ

(1 − π) + φπ
,

so we again have a system of two equations with two unknowns. From simulation results, it
turns out that we can give reasonable estimates for π that converge much faster than in the case
where we use only the estimators for m and γ , but for practical purposes our new estimator for
π still converges too slowly.

3.2.2. The data. We have analysed the data from the 1997 Dutch classical swine fever outbreak
as treated in [8]. In that paper, the outbreak was modelled using a Galton–Watson process.
Because of changing measures taken by the Dutch government, the parameters π and λ differ
at different stages of the epidemic. For this reason, we divide the epidemic into five stages. The
time unit is one week, and it is assumed that, on average, detections take place in the middle
of a time interval, so φ is set to 0.5. In [8] a time-consuming algorithm was used to find the
maximum likelihood estimators for π and λ at the different stages. Klinkenberg [7, Chapter 6]
has shown that these maximum likelihood estimates are not very reliable.

We will use our estimators to estimate m and γ at the different stages. We omit the first
stage, because for that stage we have only one observation. We compare our estimates with
the values for m and γ computed from the maximum likelihood estimates of λ and π given in
[8]. The results are given in Table 1. We also give the duration of the stage (in weeks) and the
number of observed individuals in a stage of the epidemic in this table.

In the second, third, and fourth stages of the epidemic, our estimates for m seem to be rather
good, as we might expect. The estimates for γ do not seem to be very informative. In the
final stage of the epidemic, significantly fewer cases were observed than in the second, third,
and fourth stages, and there were many weeks in which no observations were made. For this
reason, we may expect our estimators not to converge very quickly. In none of the stages could
we estimate π and λ by using our estimated m and γ in (3.1), as the solutions of this system
of equations gave no real solution for π between 0 and 1. We have simulated the epidemic
using the maximum likelihood estimates from [8] as the real parameter values to obtain some
idea about the speed of convergence of the estimator of π (see Table 2). We see that, even after
750 weeks, π is not accurately estimated.

https://doi.org/10.1017/S0001867800001464 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001464


1104 R. MEESTER AND P. TRAPMAN

Table 2: Estimated values at different generations of simulated data, for λ = 0.6, π = 0.4, and φ = 0.5.

Generation (n) m̃n n−1S̃n(m̃n) (n − 1)−1S̃∗
n−1(m̃n) Estimated π

20 1.112 2.907 2.745 —
50 1.082 2.849 3.142 —

100 1.082 2.928 3.750 —
250 1.080 2.478 3.424 0.4601
500 1.080 2.522 3.288 0.2852
750 1.080 2.398 3.059 0.3318

4. Estimating the offspring mean

In this section we discuss the two consistent estimators for m given in Section 3.1. We
start with the estimator m̄n := Zn+1/Zn. Theorem 3.1(a) states that this estimator is indeed
consistent on the explosion set A.

Proof of Theorem 3.1(a). The proof is based on a simple martingale argument. Let

Mn :=
n∏

i=0

Zi+1 + 1

πXi + 1
.

Note that this is a (positive) martingale with respect to Fn, the σ -algebra generated by
{Zi+1, Xi : 0 ≤ i ≤ n}. Since supn E(Mn) ≤ 1, the martingale convergence theorem implies
that Mn converges a.s. to an a.s. finite random variable M .

We need to show that M is strictly positive on A. To do this, we define

M̄n :=
n∏

i=0

π(Xi + 1)

Zi+1 + 1
.

Elementary computations yield

E

(
1

Z1 + 1

∣∣∣∣ X0 = k

)
= 1

π(k + 1)
(1 − (1 − π)k+1) ≤ 1

π(k + 1)
, (4.1)

so M̄n is a supermartingale with respect to Fn. By the martingale convergence theorem, we
know that M̄n converges a.s. to an a.s. finite random variable M̄ . Now write

MnM̄n =
n∏

i=0

π(Xi + 1)

πXi + 1
=

n∏
i=0

(
1 − 1 − π

πXi + 1

)
.

The Xi a.s. grow exponentially on A, so

∞∑
i=1

1 − π

πXi + 1
< ∞

a.s. on A, which implies that

MM̄ = lim
n→∞ MnM̄n =

∞∏
i=0

(
1 − 1 − π

πXi + 1

)
> 0 (4.2)

a.s. on A. Because M̄ is a.s. finite, (4.2) is only possible if M is a.s. positive on A.
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Now, since Xi+1/Xi → m a.s. on A [4, Theorem 2.1], we have

Xn+1 + π−1

Xn + π−1 → m a.s. on A.

Thus,
Zn+1 + 1

Zn + 1
= Mn/Mn−1

Mn−1/Mn−2

πXn + 1

πXn−1 + 1
→ m a.s. on A,

because, since 0 < M < ∞ a.s. on A, it follows that

Mn

Mn−1
→ M

M
= 1 a.s. on A.

On A, Zn will a.s. tend to infinity, so (Zn+1 + 1)/(Zn + 1) will have the same limit as
Zn+1/Zn, proving the theorem.

Clearly, m̄n does not use all the available information. To this end, we also considered the
second estimator, namely

m̃n :=
∑n+1

i=2 Zi∑n
i=1 Zi

.

Theorem 3.1(b) states that m̃n also is a consistent estimator for m. To prove this theorem, we
start with a lemma from [5].

Lemma 4.1. ([5, Lemma 2.18].) Let (Sn = ∑n
i=1 ξi, Fn : n ≥ 1) be a martingale and

let (Un : n ≥ 1) be a nondecreasing sequence of positive random variables such that Un is
Fn−1-measurable. Then U−1

n Sn → 0 a.s. on the set

{
lim Un = ∞,

∞∑
i=1

U−2
i E(ξ2

i | Fi−1) < ∞
}
.

Corollary 4.1. On the explosion set A, we have, as n → ∞,

∑n
i=1 Zi∑n−1
i=0 Xi

→ π a.s.

This corollary is intuitively obvious because the denominator is the total number of individ-
uals in the first n generations (including generation 0), while the numerator is the number of
observed individuals in these generations. Here is a formal proof.

Proof of Corollary 4.1. Write

∑n
i=1 Zi∑n−1
i=0 Xi

=
∑n

i=1(Zi − πXi−1)∑n−1
i=0 Xi

+ π.

We define

Un =
n−1∑
i=0

Xi, ξi = Zi − πXi−1, Sn =
n∑

i=1

ξi .
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Note that Un is Fn−1-measurable, where Fn−1 is the σ -algebra generated by X0, X1, . . . , Xn−1,
Z1, . . . , Zn−1. Furthermore,

∞∑
i=1

U−2
i E(ξ2

i | Fi−1) =
∞∑
i=1

E((Zi − πXi−1)
2 | Fi−1)

(
∑i−1

j=0 Xj)2

=
∞∑
i=1

π(1 − π)Xi−1

(
∑i−1

j=0 Xj)2

≤
∞∑
i=1

π(1 − π)

Xi−1
.

The last sum is a.s. finite on A, because Xi is strictly positive and a.s. grows exponentially in i.
So the set {

lim Un = ∞,

∞∑
i=1

U−2
i E(ξ2

i | Fi−1) < ∞
}

contains A up to a set of measure 0. Now we may apply Lemma 4.1, and conclude that

∑n
i=1 Zi∑n−1
i=0 Xi

→ 0 + π = π a.s. on A,

as n → ∞.

Proof of Theorem 3.1(b). From [4, Theorem 2.1], we have (
∑n

i=1 Xi)/(
∑n−1

i=0 Xi) → m

a.s. on A. We apply Corollary 4.1, giving

∑n+1
i=2 Zi∑n
i=1 Zi

= (
∑n+1

i=2 Zi)/(
∑n

i=1 Xi)

(
∑n

i=1 Zi)/(
∑n−1

i=0 Xi)

∑n
i=1 Xi∑n−1
i=0 Xi

→ π

π
m = m a.s. on A,

which proves the theorem.

The rate of convergence follows from Theorem 3.2. We use part of [4, Theorem 2.3] as a
lemma to prove Theorem 3.2.

Lemma 4.2. Assume that m > 1 and let Y be a standard normal random variable independent
of Xn. For any x, we have

P

(
1

σ

( n∑
i=1

Xi−1

)1/2( ∑n
i=1 Xi∑n

i=1 Xi−1
− m

)
≤ x

∣∣∣∣ Xn > 0

)
→ P(Y ≤ x).

In the same way, we can prove that

P

(
1√

π(1 − π)

( n∑
i=1

Xi−1

)1/2( ∑n
i=1 Zi∑n

i=1 Xi−1
− π

)
≤ x

∣∣∣∣ Xn > 0

)
→ P(Y ≤ x).
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Proof of Theorem 3.2. First we rewrite (
∑n

i=1 Zi)
1/2(m̃n − m) as

( n∑
i=1

Zi

)1/2

(m̃n − m) =
( n∑

i=1

Zi

)−1/2 n∑
i=1

(Zi+1 − mZi)

=
( n∑

i=1

Zi

)−1/2[ n∑
i=1

(Zi+1 − πXi) + π

n∑
i=1

(Xi − mXi−1)

− m

n∑
i=1

(Zi − πXi−1)

]
. (4.3)

We already know that, on A, (
∑n

i=1 Zi)/(
∑n

i=1 Xi−1) converges a.s. to the constant π

and (
∑n

i=1 Xi)/(
∑n

i=1 Xi−1) converges a.s. to the constant m. Now, the second term on the
right-hand side of (4.3) can be rewritten as

π

( ∑n
i=1 Zi∑n

i=1 Xi−1

)−1/2( n∑
i=1

Xi−1

)−1/2 n∑
i=1

(Xi − mXi−1)

= π

( ∑n
i=1 Zi∑n

i=1 Xi−1

)−1/2( n∑
i=1

Xi−1

)1/2( ∑n
i=1 Xi∑n

i=1 Xi−1
− m

)
.

From Lemma 4.2, we see that the second term converges in distribution to a normal distribution
with zero mean and finite variance. We can treat the other terms on the right-hand side in the
same way, proving the theorem.

5. Estimating a second function of the parameters

Next we want to prove Theorem 3.1(c), which gives a consistent estimator for γ . We first
do this for the special case where m− = σ 2− = 0. Then we treat the general case, and finally
we interpret the function of the parameters that we can estimate.

5.1. The case m− = σ 2− = 0

If m− = σ 2− = 0 then γ = (1 − π)m + πσ 2 + πm2 + m2. Theorem 3.1(c) now reads as
follows.

Theorem 5.1. As n → ∞, we have

n−1
n∑

i=1

(Zi + 1)

(
Zi+1

Zi + 1
− m̃n

)2

→ (1 − π)m + πσ 2 + πm2 + m2

in probability on A.

We first compute

E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)
.

To do this, we recall from (4.1) that

E

(
1

Z1 + 1

∣∣∣∣ X0 = k

)
= 1

π(k + 1)
(1 − (1 − π)k+1),
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and note that elementary computations yield

E

(
X1

Z1 + 1

∣∣∣∣ X0 = k

)
= m

π
(1 − (1 − π)k),

E

(
(X1)

2

Z1 + 1

∣∣∣∣ X0 = k

)
= m2k

π
(1 − (1 − π)k−1) + m2 + σ 2

π
(1 − (1 − π)k).

Now we can compute the desired expectation in a straightforward way:

E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)

= E

(
π(1 − π)X1

Z1 + 1

∣∣∣∣ X0 = k

)
+ E((Z1 + 1)−1(πX1 − m(Z1 + 1))2 | X0 = k)

= ((1 − π)m + πσ 2 + πm2)(1 − (1 − π)k) + m2(1 − kπ(1 − π)k−1)

= ((1 − π)m + πσ 2 + πm2) P(Z1 	= 0 | X0 = k) + m2 P(Z1 	= 1 | X0 = k).

With this expression in hand, we can identify a suitable martingale. We denote by Fn the
σ -algebra generated by {Zi : 1 ≤ i ≤ 2n}.
Lemma 5.1. (The process of random variables.)

Mn :=
n∑

j=1

(
(Z2j−1 + 1)

(
Z2j

Z2j−1 + 1
− m

)2

− [((1 − π)m + πσ 2 + πm2) 1{Z2j−1>0} +m2 1{Z2j−1 	=1}]
)

is a martingale with respect to Fn.

Proof. It is clear that Mn is measurable with respect to Fn. Let ξn+1 := Mn+1 −Mn denote
the increments and note that E(ξn+1 | X2n, Fn) = E(ξn+1 | X2n) = 0, where the last equality
follows from the computation just above this lemma. Hence,

E(Mn+1 | Fn) = Mn + E(E(ξn+1 | X2n, Fn) | Fn) = Mn.

Theorem 5.2. As n → ∞, we have

n−1
n∑

j=1

(Z2j−1 + 1)

(
Z2j

Z2j−1 + 1
− m

)2

→ (1 − π)m + πσ 2 + πm2 + m2 a.s. on A.

Furthermore, writing

S̃n(m) :=
n∑

i=1

(Zi + 1)

(
Zi+1

Zi + 1
− m

)2

,

we have

n−1S̃n(m) → (1 − π)m + πσ 2 + πm2 + m2 a.s. on A.
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Proof. From Lemma 5.1, it follows that Mn is a martingale with respect to Fn, with
increments

ξj := (Z2j−1 + 1)

(
Z2j

Z2j−1 + 1
− m

)2

− [((1 − π)m + πσ 2 + πm2) 1{Z2j−1>0} +m2 1{Z2j−1 	=1}].
Now we apply Lemma 4.1 with the given ξj and Un = n. On the set A, we have Un → ∞. To
show that

∑∞
i=1 U−2

i E(ξ2
i | Fi−1) < ∞ on A, we claim that there exists a constant C < ∞

such that

var

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)
< C,

uniformly in k. The computations that justify this claim are lengthy but straightforward, and
are omitted (see the appendix of [9, Chapter 3] for details). Now we have

E(ξ2
i | Fi−1) = var

(
(Z2i−1 + 1)

(
Z2i

Z2i−1 + 1
− m

)2 ∣∣∣∣ Fi−1

)

= E

(
var

(
(Z2i−1 + 1)

(
Z2i

Z2i−1 + 1
− m

)2 ∣∣∣∣ X2(i−1)

) ∣∣∣∣ Fi−1

)

< C,

and we conclude that
Mn

n
→ 0.

Now write n−1M̄n = n−1 ∑n
j=1 ξ̄j , where

ξ̄j = (Z2j + 1)

(
Z2j+1

Z2j + 1
− m

)2

− [((1 − π)m + πσ 2 + πm2) 1{Z2j >0} +m2 1{Z2j 	=1}]

are the martingale increments. Define F̄j to be the σ -algebra generated by {Z1, . . . , Z2j+1}.
Now, using the same arguments as for the a.s. convergence of n−1Mn, we may prove that
n−1M̄n → 0 a.s. on A. Finally, note that

1

2n

2n∑
i=1

(Zi + 1)

(
Zi+1

Zi + 1
− m

)2

− [((1 − π)m + πσ 2 + πm2) 1{Z2j−1>0} +m2 1{Z2j−1 	=1}]

is equal to
1

2n
(Mn + M̄n).

The second result of the theorem now follows.

We remark that

n∑
i=1

(Zi + 1)

(
Zi+1

Zi + 1
− m

)2

− [((1 − π)m + πσ 2 + πm2) 1{Zi>0} +m2 1{Zi 	=1}]

is not a martingale itself, so we cannot use Lemma 4.1 directly.
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Because we do not know m, we cannot use S̃n(m) for estimation purposes, and we also need
to analyse the behaviour of S̃n(m̃n). Some algebra yields

n−1(S̃n(m) − S̃n(m̃n)) = n−1(m − m̃n)
2

n∑
i=1

Zi + (m2 − m̃2
n). (5.1)

From Theorem 3.2, we know that the square root of (m − m̃n)
2 ∑n

i=1 Zi is the sum of three
random variables, each converging in distribution to a normally distributed random variable
with finite variance. The square root of the first term on the right-hand side thus converges in
distribution to 0. Because 0 is a constant, the convergence also holds in probability. If An → 0
in probability then A2

n → 0 in probability, so n−1(m − m̃n)
2 ∑n

i=1 Zi converges in probability
to 0 on A. Together with Theorem 5.2, this proves Theorem 5.1.

5.2. The general case

Up until now, we have considered the situation where the observed individuals have no further
offspring. We now allow observed individuals to have some X-offspring in the generation after
the observation. Hence, in terms of epidemics, in this section we allow detected individuals
to infect other individuals during the interval of detection. Theorem 3.1 gives us a consistent
estimator (in probability) of (1 − π)m + πσ 2 + πm2 + m2 − 2πmm− on the explosion set A.

To prove the theorem, we can compute that (again omitting lengthy details)

E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2

− [(1 − π)m + πσ 2 + πm2] 1{Z1>0}

− m2 1{Z1 	=1} +2πm(m−) 1{Z1>1}
∣∣∣∣ X0 = k

)

+ E

(
π [πσ 2− + (1 − π)(m−)]

Z1 + 1
1{Z1>0} −π2(m−)2

Z1 + 1
(1{Z1>1} − 1{Z1=1})

∣∣∣∣ X0 = k

)

= 0.

This leads to the following lemma, which can be proved in the same way as Lemma 5.1.

Lemma 5.2. Let Fn be the σ -algebra generated by {Zi : 1 ≤ i ≤ 2n}. Then the sequence of
random variables

Mn :=
n∑

j=1

[
(Z2j−1 + 1)

(
Z2j

Z2j−1 + 1
− m

)2

− [(1 − π)m + πσ 2 + πm2] 1{Z2j−1>0} − m2 1{Z2j−1 	=1}

+ 2πm(m−) 1{Z2j−1>1} +π [πσ 2− + (1 − π)(m−)]
Z2j−1 + 1

1{Z2j−1>0}

− π2(m−)2

Z2j−1 + 1
(1{Z2j−1>1} − 1{Z2j−1=1})

]

is a martingale with respect to Fn.

Using this lemma, we can now prove our next theorem.
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Theorem 5.3. Let γ and S̃n(m) be as in Theorem 3.1. As n → ∞, we have

n−1
n∑

j=1

(Z2j−1 + 1)

(
Z2j

Z2j−1 + 1
− m

)2

→ γ a.s. on A.

Furthermore, we have
n−1S̃n(m) → γ a.s. on A.

We can prove this in the same way as we did for the special case of the previous subsection.
The only extra thing to prove is that there exists a C < ∞ such that

var

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)
< C

for all k in the general case, too. Again, the computations that verify this inequality are lengthy
but straightforward, and are omitted (see the appendix of [9, Chapter 3] for details).

The remainder of the argument proving Theorem 3.1(c) now follows exactly as in the previous
section.

It seems rather difficult to establish the rate of convergence for the estimator of the second
function of the parameters, but Theorem 3.3(a) gives a bound for this rate.

Proof of Theorem 3.3(a). From [5, Corollary 3.1] it follows that if {Sn,i , Fn,i : 1 ≤ i ≤ n}
is a square-integrable martingale array with differences Xn,i := Sn,i − Sn,i−1 (where Sn,0 is
defined as 0) and such that

n∑
i=1

E(X2
n,i | Fn,i−1) → 0 in probability

and Fn,i ⊆ Fn+1,i for 1 ≤ i ≤ n, then Sn,n = ∑n
i=1 Xn,i → 0 in probability.

We use this withSn,n = n−(1/2+δ)Mn, whereMn is as in Lemma 5.2, andXn,i = n−(1/2+δ)Ti ,
where Ti are the summands of Mn. We define Fn,i , 1 ≤ i ≤ n, to be the σ -algebra generated
by {Zi : 1 ≤ i ≤ 2n}, so Fn,i ⊆ Fn+1,i holds for 1 ≤ i ≤ n. We have already shown that
E(T 2

i ) < C for some C, uniformly in i. Hence,

n∑
i=1

E(X2
n,i | Fn,i−1) ≤ n−(1+2δ)nC → 0 in probability,

so n−(1/2+δ)Mn → 0 in probability. In the same way, we can prove that n−(1/2+δ)M̄n → 0,
where M̄n is as in the proof of Theorem 5.2. Now, by the definitions of Mn and M̄n, we see
that, on the explosion set A,

n1/2−δ(n−1S̃n(m) − γ ) = n−(1/2+δ)Mn + n−(1/2+δ)M̄n + n−(1/2+δ)
n∑

i=1

f (Zi),

where f (x) = O(1/x). Since Zi+1/Xi → π a.s. on A and m−iXi converges a.s. to a finite
random variable, we know that m−iZi a.s. converges to an a.s. finite, positive random variable,
W̄ say. Now we use the Toeplitz lemma [4, Lemma 1.2] to see that

∞∑
i=1

f (Zi) <

( ∞∑
i=1

m−i

)
C

1

W̄
< ∞,

for some C. Thus, n1/2−δ(n−1S̃n(m) − γ ) → 0 in probability on the explosion set A.
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By using the rate of convergence of m̃n, (5.1), and the arguments following (5.1), we see
that, for all δ1 > 0, n−δ1 S̃n(m) − n−δ1 S̃n(m̃n) → 0 in probability on A. The theorem now
follows, with δ1 = 1

2 + δ.

5.3. Interpretation of γ

The expression

γ = (1 − π)m + πσ 2 + πm2 + m2 − 2πmm−,

which appeared as the limit in the previous subsection, turns out to have a somewhat surprising
interpretation: it appears as a second moment if we treat our sequence of observations itself as
a Galton–Watson process. To explain what we mean by this, we compute P(X0 = l | Z1 = k)

when the a-priori distribution of X0 is uniform on the integers between k and N , N � k. After
this we let N tend to ∞. We obtain

P(X0 = l | Z1 = k) = P(Z1 = k | X0 = l) P(X0 = l)∑N
i=k P(Z1 = k | X0 = i) P(X0 = i)

= P(Z1 = k | X0 = l)∑N
i=k P(Z1 = k | X0 = i)

.

First we compute the denominator as N → ∞:

lim
N→∞

N∑
i=k

P(Z1 = k | X0 = i) =
∞∑
i=k

(
i

k

)
πk(1 − π)i−k

= 1

π

∞∑
j=0

(
k + j

j

)
πk+1(1 − π)j .

The summands are exactly the probabilities of a negative binomial distribution with parameters
k + 1 and π , so

∑∞
j=0

(
k+j
j

)
πk+1(1 − π)j = 1. Therefore, we know that the denominator

converges to π−1.
With some abuse of notation, we will henceforth write a superscript ‘∗’ when we discuss

probabilities and the accompanying expectations and variances after taking the limit as N → ∞.
Thus,

P∗(X0 = l | Z1 = k) =
(

l

k

)
πk+1(1 − π)l−k.

It is now easy to compute that

E∗(X0 | Z1 = k) = k + 1

π
− 1,

var∗(X0 | Z1 = k) = (1 − π)(k + 1)

π2 ,

and some straightforward computations yield

E∗(Z2 | Z1 = k) = (1 − π)m+ + mk,

var∗(Z2 | Z1 = k) = [(1 − π)m + πσ 2 + (1 + π)m2 − 2πmm−](k + 1)

− (1 − π)πm− − π2σ 2−.

We see that E∗(Z2 | Z1 = k) = mk + O(1) as k → ∞ and var∗(Z2 | Z1 = k) = γ k + O(1)

as k → ∞. In this sense, we again estimate a first and a second moment, just as in the classical
case, where the full generation sizes are observed.
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6. Estimating a third function of the parameters

From [4, Theorem 1.3], we know that we can estimate two moments of the offspring
distribution of a Galton–Watson process and no other functions of the parameters consistently
if only the generation sizes are observed. However, in our context, Theorem 3.1 implies that
we can, under certain conditions, estimate a third function of the parameters.

We have already shown that, as k → ∞,

E

(
Z2

Z1 + 1

∣∣∣∣ X0 = k

)
→ m,

E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)
→ γ.

We next compute E((Z1 + 1)(Z3/(Z1 + 1) − m2)2 | X0 = k):

E

(
(Z1 + 1)

(
Z3

Z1 + 1
− m2

)2 ∣∣∣∣ X0 = k

)

= E

(
(Z1 + 1)

[(
Z3 − πX2

Z1 + 1

)2

+ π2
(

X2 − mX1

Z1 + 1

)2

+ m2
(

πX1

Z1 + 1
− m

)2] ∣∣∣∣ X0 = k

)

= π(1 − π)m E

(
X1

Z1 + 1

∣∣∣∣ X0 = k

)
+ π2σ 2 E

(
X1

Z1 + 1

∣∣∣∣ X0 = k

)

+ m2 E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)
− m2π(1 − π) E

(
X1

Z1 + 1

∣∣∣∣ X0 = k

)

= ((1 − π)m + πσ 2 − m2(1 − π)) E

(
Z2

Z1 + 1

∣∣∣∣ X0 = k

)

+ m2 E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)
.

Now note that, on A,

E

(
(Z1 + 1)

(
Z3

Z1 + 1
− m2

)2 ∣∣∣∣ X0 = k

)

= ((1 − π)m + πσ 2 − m2(1 − π)) E

(
Z2

Z1 + 1

∣∣∣∣ X0 = k

)

+ m2 E

(
(Z1 + 1)

(
Z2

Z1 + 1
− m

)2 ∣∣∣∣ X0 = k

)

→ (γ − 2m2 + 2πmm−)m + m2γ

= (m2 + m)γ − 2(1 − π)m2m+
= γ∗,

where the convergence is almost sure. Recall that

S∗
n(m) :=

n∑
i=1

(Zi + 1)

(
Zi+2

Zi + 1
− m2

)2

.

We can use the martingale argument used to prove Theorem 5.3 to prove the following result.
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Theorem 6.1. The quantity

n−1
n∑

i=1

[([∑n+1
j=2 Zj∑n
j=1 Zj

]2

+
∑n+1

j=2 Zj∑n
j=1 Zj

)
(Zi + 1)

(
Zi+1

Zi + 1
−

∑n+1
j=2 Zj∑n
j=1 Zj

)2]
− n−1S∗

n(m)

converges (on A) in probability to 2(1 − π)m2m+. Hence,

n−1S∗
n(m) → γ∗

in probability on A.

In order to obtain an observable quantity (m is not observable), we need to bound

n−1(S∗
n(m̃n) − S∗

n(m)).

We claim that

S̃∗
n(m) − S̃∗

n(m̃n) ≤ n(m4 − (m̃n)
4) + 2(Z2 − m̃n+1Z1)[m2 − (m̃n)

2]

+ m(m + m̃n)(m − m̃n)
2
( n∑

i=1

Zi

)

+ (m + m̃n)(m − m̃n+1)
2
((n+1∑

i=1

Zi

)
− m̃nZ1

)
.

This claim can be justified by a long but straightforward computation, which can be found in [9,
Section 3.6].

Now, n−1Z1 and n−1Z2 converge a.s. to 0. We can use the arguments used to prove the
convergence of n−1(Sn(m̃n)−Sn(m)) in Section 5 to see that n−1(S∗

n(m̃n)−S∗
n(m)) converges

to 0 in probability, which proves Theorem 3.1(d).
Note that 2(1−π)m2m+ is not necessarily determined by m and γ , so we are able to estimate

a third function of the parameters. Also note that if m− = 0 then we are unable to estimate the
third parameter in this way. However, if we look at the case where we observe a binomially
distributed number of individuals from each generation, but observations do not influence the
offspring distribution (that is, m+ = m− = m and σ 2+ = σ 2− = σ 2), then we have an estimator
for (1 − π)m3 and, because we have an estimator for m that converges a.s., we are in theory
able to estimate π consistently.

7. Conclusions

(A) From [4, Theorem 1.3], we know that we cannot estimate more than two functions
of the parameters (the first two moments) consistently if only the generation sizes, Xn, of a
branching process are given. In [6] it was shown that if we observe only a binomial(Xn, π)-
distributed fraction of the generation sizes, then we can estimate two functions of the parameters
consistently if π is known. In this paper we have shown that, under certain conditions, we can
estimate three functions of the parameters, even when we do not know π .

(B) For epidemiological purposes, we also want to estimate π , because this parameter gives an
indication of how many individuals are infectious at a certain time, which may be important
for implementing measures to counter the epidemic. In order to estimate this parameter in a
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reasonable time, we apparently need more, and other, information. We can possibly obtain
this information by using contact tracing, i.e. finding out what contacts were made by an
individual before it was observed and which contact may have caused the infection. Sometimes
it is possible to obtain experimental information about the time between the infection and the
removal of an individual, from which we may also estimate π . Note that Becker and Hasofer
were able to estimate π and λ in [2], but needed information about the number of infectious
individuals at the time of estimation, which is typically not available.
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