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REPRESENTATION-DIRECTED DIAMONDS

PETER DRÄXLER

Abstract

A module over a finite-dimensional algebra is called a ‘diamond’ if it
has a simple top and a simple socle.Using covering theory, the classi-
fication of all diamonds for algebras of finite representation type over
algebraically closed fields can be reduced to representation-directed
algebras. We prove a criterion referring to the positive roots of the
corresponding Tits quadratic form, which makes it easy to check
whether a representation-directed algebra has a faithful diamond.
Using an implementation of this criterion in the CREP program sys-
tem on representation theory, we are able to classify all exceptional
representation-directed algebras having a faithful diamond. We ob-
tain a list of 157 algebras up to isomorphism and duality. The 52
maximal members of this list are presented at the end of this paper.

1. Introduction and main result

Following the conventions used in [11], a (right) moduleD over an associative ringA is
said to be adiamond, provided that it has an essential simple submodule and a superfluous
maximal submodule. Obviously, any diamond is indecomposable. IfA happens to be a
finite-dimensional algebra over a fieldk, then a moduleD is a diamond if and onlyD is a
finite-dimensional module with a simple socle and a simple top. (Recall that the top of a
module is the factor module by the Jacobson radical.) Since any indecomposable module
of length 2 is a diamond, a finite-dimensional algebraA will usually have infinitely many
isomorphism classes of diamonds. On the other hand, an algebraA of finite representation
type (that is,A has only finitely many indecomposable modules up to isomorphism) can have
only finitely many isomorphism classes of diamonds. At least, if the fieldk is algebraically
closed, the algebras of finite representation type have been well studied. We refer to [9] for
an introduction to this theory.

Using the covering theory developed in [3], we may reduce the study of modules over
finite-dimensional algebrasA of finite representation type over an algebraically closed field
k to the case thatA is representation-directed. In particular, any diamond over an algebra of
finite representation type is obtained from a diamond over a representation-directed algebra
by the application of the push-down functor associated with the universal Galois covering.
Recall that, following [10], an algebraA is said to berepresentation-directedif there exists
no sequenceX0, . . . , Xn of indecomposable finite-dimensionalA-modules withn > 0 and
X0 ∼= Xn such that for eachi = 1, . . . , n there is a homomorphismXi−1→ Xi which is
neither an isomorphism nor zero.

Since factor algebras of representation-directed algebras are representation-directed,
in order to find all diamonds over representation-directed algebras it suffices to look at
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Representation-directed diamonds

all representation-directed algebras which have faithful indecomposable modules, and to
check which of these modules are diamonds. Fortunately, all the representation-directed
algebras over an algebraically closed field which have an indecomposable faithful module
have been classified. They appear in 24 families (see [1]), together with many exceptions
in low dimensions (see [4]). These exceptions were found by a computer program, and
are accessible via a data base in the CREP system (see [6]). Hence, it remains only to
find out which of the algebras appearing in the families and in the data base have a faithful
indecomposable module which is a diamond. It is the aim of this paper to present a convenient
criterion to determine when this happens.

Theorem. LetA be a representation-directed algebra over an algebraically closed fieldk.
ThenA is obtained from a representation-directed algebra having a faithful diamond by a
reorientation of the arms if and only if the vectorε = (1, . . . ,1) is the only sincere positive
1-root of the Tits form ofA.

We explain all the notation in the next section. Here, we note that the lists mentioned
above give, for each algebra, the maximal (with respect to the natural product order onZ

r )
positive roots of the associated Tits form. It is observed in [11] that, of the 24 families, only
those which are listed in [10] as (Bo1), (Bo15), (Bo16), (Bo17), (Bo19), (Bo20) and (Bo21)
have a faithful diamond. An implementation of the above criterion, which searches the data
base in the CREP system, yields a list of 157 exceptional algebras (up to isomorphism and
duality) having a faithful diamond. As we shall explain in the next section, any such algebra
is the incidence algebra of a finite, partially ordered set. In order to present our list in a
compact way, we display the Hasse diagrams of its 52 maximal members in Figures2 and
3, at the end of this paper.

2. Representation-directed algebras

We use the terminology of [10]. For the study of diamonds, we may assume, without
loss of generality, that our given algebraA is basic and connected. It is well-known (see
[8]) that any basic finite-dimensional algebraA over an algebraically closed fieldk up to
isomorphism can be written ask E1/I , where E1 is a finite quiver andI is an admissible
ideal of the path algebrak E1. We denote bya(x, y) the number of arrows fromx to y in E1,
and byb(x, y) the number of minimal generators ofI starting inx and ending iny. After
labelling the vertices ofE1 by 1, . . . , r we obtain a quadratic formqA : Z

r → Z, called
the Tits form, given byqA(x) = ∑r

i=1 x2
i −

∑r
i,j=1 a(i, j)xixj +∑r

i,j=1 b(i, j)xixj for
x = (x1, . . . , xr ) ∈ Z

r . If A is representation-directed, then by [2] qA is weakly positive
(that is,qA(x) > 0 for all 0 6= x ∈ Z

r with non-negative entries). Consequently, in this
caseqA has only finitely manypositive1-roots; that is, vectorsx ∈ Z

r with non-negative
entries satisfyingqA(x) = 1.

The A-modules can be identified with the contravariant representationsX of E1, such
thatX(%) = 0 for all elements% of I (see [10]). Using this identification, thedimension
vectordim X ∈ Z

r is given by(dim X)i = dimk X(i) for all verticesi = 1, . . . , r. By [2],
for representation-directedA, the mapdim yields a bijection from the set of isomorphism
classes of indecomposableA-modules to the set of positive 1-roots ofqA. A vectorx in Z

r is
calledsincereif xi 6= 0 for all i = 1, . . . , r. Analogously, anA-moduleX is calledsincere
provided thatX(i) 6= 0 for all i = 1, . . . , r. Thus the mapdim also yields a bijection
between the set of isomorphism classes of sincere indecomposableA-modules and the set
of sincere positive 1-roots ofqA.
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It is well-known (see, for example, [10]) that an indecomposable module over a represen-
tation-directed algebra is faithful if and only if it is sincere. Moreover, it is shown in [10] that
a representation-directed algebra which has an indecomposable sincere module issimply
connected(see [3]). HenceA is completely separatingin the terminology of [5], and can
therefore be written askS/J , whereS is a finite partially ordered set andJ is an ideal of
the incidence algebrakS generated by elements(y, x) such that there isz in S satisfying
y < z < x. Recall that the incidence algebrakS is the vector space with the basis given by
all pairs(y, x) such thaty 6 x in S. The product(z, y)(y′, x) in kS is (z, x) for y = y′,
and 0 otherwise. ForA = kS/J , the quiverE1 of A is the Hasse diagram ofS, and we can
also writeA asA = k E1/I , whereI is the ideal ofk E1 generated by all differencesu − v

of paths inE1 with the same origin and terminus, together with all pathsw starting inx and
ending iny such that there is a generator(y, x) of J .

Let A be an algebra of the shapeA = kS/J for a finite partially ordered setS. With
any subsetT of S which is convex andrelation-free(that is, for each generator(y, x) of J ,
x andy may not both lie inT ) there is an associatedindicator moduleδT , which is defined
by δT (x) = k for all x ∈ T , andδT (x) = 0 otherwise. Moreover, the arrowsα : x → y of
E1 are sent to the identity ofk for x andy in T , and 0 otherwise.

If S is a finite partially ordered set with a unique maximal and a unique minimal element,
then the algebrakS has a sincere diamond, namelyδS . The following proposition establishes
the converse of this observation for representation-directed algebras.

Proposition 1. If A = kS/J is a representation-directed algebra with a sincere diamond
X, thenJ = 0, S has a unique minimal and a unique maximal element,X is isomorphic to
δS , andX is up to isomorphism the only sincere indecomposableA-module.

Proof. SinceX is a diamond, there is an epimorphismφ : P(x) → X for some element
x of S whereP(x) comprises the indecomposable projective modules associated withx.
It is easy to see thatP(x) ∼= δT , whereT is the subset of ally in S such thaty > x

and (x, y) 6∈ J . The sincerity ofX shows thatS = suppX ⊆ suppP(x) = T . (For
an A-moduleX, we denote by ‘suppX’ the set of all elementsy of S with X(y) 6= 0.)
Hencex is the unique minimal element ofS, and moreoverJ = 0 becauseT = S is
relation-free. Dually,S has a unique maximal element. Ifφ were not an isomorphism, then
its kernel would be non-zero, andX would not be sincere. Finally, letN be another sincere
indecomposableA-module. SinceX is projective and dually also injective, there exist non-
zero homomorphismsX→ N andN → X. Consequently,X andN have to be isomorphic
becauseA is representation-directed.

The above proposition shows that, ifA = kS is a representation-directed algebra with a
sincere diamond, then there are two possible cases. EitherS is a finite chain, or the Hasse
diagramE1 of S has the shape shown below, wherea(1) has at least two lower neighbors,
b(1) has at least two upper neighbors, and all elementsu of U satisfya(1) > u > b(1).

�� HH
��HH Ub(n) b(1) a(1) a(m)

If A = k E1/I , where E1 is a quiver formed by attaching one end of a quiverC of type
Ar to a quiver E1′, and the admissible idealI is generated by elements ink E1′, then the Tits
form forA is independent of the orientation ofC. Algebras obtained from a given algebraA

by changing the orientation for various subquiversC in this fashion are said to be obtained
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from A by a reorientation of arms. Thus we have shown the following corollary to the
theorem.

Corollary. If A = kS is a representation-directed algebra with a sincere diamond, and if
A′ = kS′ is obtained fromA by a reorientation of arms, thenA′ is a representation-directed
algebra such thatε = (1, . . . ,1) is the only sincere positive1-root of the Tits form ofA′.

3. The combinatorial part of the proof

Lemma 1. If A = kS/J is a representation-directed algebra, and ifε = (1, . . . ,1) is the
only sincere positive1-root ofqA, thenJ = 0.

Proof. If X is the indecomposableA-module withdim X = ε, then by [5] we know that
X ∼= δsuppX = δS . HenceS is relation-free, and thereforeJ = 0.

Lemma 2. Suppose thatA = kS is a representation-directed algebra, thatε = (1, . . . ,1)

is the only sincere positive1-root of qA, and thatx is an element ofS which is neither
minimal nor maximal. IfS′ is the full subposet ofS associated withS \ {x}, thenA′ = kS′
is representation-directed, andε′ = (1, . . . ,1) is the only positive sincere1-root ofqA′ .

Proof. It is clear thatS′ is connected,kS′ is representation-directed, andX′ = δS′ is a sincere
indecomposablekS′-module. We assume that there is another sincere indecomposablekS′-
moduleY ′, different fromX′. From [5], there has to be an elementy of S′, satisfying
dimk Y ′(y) > 2. LetL be the left adjoint of the restriction functor from the category ofkS-
modules to the category ofkS′-modules. HenceLY ′ is an indecomposablekS-module such
thatLY ′(z) = Y ′(z) for all elementsz of S different fromx. From [2], the support ofLY ′
is convex, and thereforeLY ′ is a sincere module, not isomorphic toδS , a contradiction.

Before continuing, we have another prerequisite. Let(−,−)A be the symmetric bilinear
form associated with the quadratic formqA, and letσi be the reflection with respect to
(−,−)A along the canonical base vectore(i) for i = 1, . . . , r. This means thatσi(x) =
x − 2(e(i), x)Ae(i) for all x in Z

r . Forx a 1-root, the vectorσi(x) is also a 1-root ofqA.
In particular, if ε is the only sincere positive 1-root ofqA, then 2(e(i), ε)A > 0 for all
i = 1, . . . , r, because otherwiseσi(ε) would be another sincere positive 1-root.

Proposition 2. If A = kS is a representation-directed algebra such thatε = (1, . . . ,1) is
the only positive1-root of the Tits formqA, thenA is obtained from a representation-directed
algebra with a sincere diamond by a reorientation of arms.

Proof. We proceed by induction on the cardinalityr of S, and observe that forr = 1 there
is nothing to prove. Forr > 1 we first consider the case where every element ofS is either
maximal or minimal. ThuskS = k E1 is a hereditary algebra of finite representation type. By
Gabriel’s theorem (see [7]) the graph1 underlyingE1 has to be one of the Dynkin diagrams
Ar , Dr or E6, E7, E8. But for all of these diagrams exceptAr , the corresponding Tits forms
have more than one sincere positive 1-root.

Now we have to deal with the case where there exists an elementx of S which is neither
minimal nor maximal. By Lemma 2, we can apply induction to the full subposetS′ of S

associated withS \ {x}. Let us consider the Hasse diagramE1′ of S′. The case where1′ is
a graph of typeAr−1 is clear. Otherwise,E1′ has the shape given in Figure1.
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Figure 1: Hasse diagram ofS′

We denote bySu the set of upper neighbours, and bySl the set of lower neighbours ofx

in S. The setsSu andSl are disjoint non-empty antichains inS′, such thatz 6 y for eachz in
Sl andy in Su. ThatkS is representation-directed implies immediately that|Sl |+ |Su| 6 3.
If Sl ∪ Su is contained inU ′ := U ∪ {a(1), . . . , a(s), b(1), . . . , b(t)}, then the claim is
clear. So we assume otherwise, and distinguish several cases.

• Case1: |Sl | + |Su| = 2. Since bothSl andSu are non-empty, we haveSl = {z} and
Su = {y} with z < y in S′. Up to duality, we may assume thaty 6∈ U ′.

• Case1.1:y ∈ {b(t + 1), . . . , b(n)}; hencez ∈ {b(t), . . . , b(n)}. If there is an arrow
y → z in E1′, then in E1 it is replaced by two arrowsy → x andx → z. Thus E1
has the correct shape. Otherwise,y has two lower neighbours, andz has two upper
neighbours inE1. Consequently,1 contains a subgraph of typẽDp which is not bound
by relations. We arrive at a contradiction toA being of finite representation type.

• Case1.2: y ∈ {a(s + 1), . . . , a(n)}; hencez ∈ {a(s + 1), . . . , a(m)}. The same
arguments as those used in Case 1.1 can be applied.

• Case2: |Sl | + |Su| = 3. Up to duality, we may now assume thatSl = {z1, z2},
and thatSu = {y}. Thus, eithery 6∈ U ′, or (without loss of generality)z2 6∈ U ′. In
both situations, we observe that there does not exist any elementw of S′ satisfying
z1 > w 6 z2. Therefore,E1 contains a full subquiver of the following shape, where
no other arrows, and no relations, start or stop atx.

y

↓
z1 ← x → z2

We obtain a contradiction by the calculation 2(e(x), ε)A = 2− 3= −1.

Remark.If kS is a representation-directed incidence algebra with a sincere diamond, then
for any full subposetU of S with a unique minimal and maximal element, the algebrakU

is representation-directed with a sincere diamond as well. Thus, in the list given in Figures
2 and3, we present only the Hasse diagrams of the maximal posetsS such thatkS is an
exceptional representation-directed algebra having a sincere diamond.
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Figure 2: Hasse diagrams for the maximal exceptional representation-directed algebras
having a faithful diamond (Continued in Figure3)
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Figure 3: Hasse diagrams for the maximal exceptional representation-directed algebras
having a faithful diamond (Continued from Figure2)
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