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Abstract

Childhood adversity is thought to undermine youth socioemotional development via altered neural function within regions that support
emotion processing. These effects are hypothesized to be developmentally specific, with adversity in early childhood sculpting subcortical
structures (e.g., amygdala) and adversity during adolescence impacting later-developing structures (e.g., prefrontal cortex; PFC). However,
little work has tested these theories directly in humans. Using prospectively collected longitudinal data from the Fragile Families and Child
Wellbeing Study (FFCWS) (N = 4,144) and neuroimaging data from a subsample of families recruited in adolescence (N = 162), the current
study investigated the trajectory of harsh parenting across childhood (i.e., ages 3 to 9) and how initial levels versus changes in harsh par-
enting across childhood were associated with corticolimbic activation and connectivity during socioemotional processing. Harsh parenting
in early childhood (indexed by the intercept term from a linear growth curve model) was associated with less amygdala, but not PFC, reac-
tivity to angry facial expressions. In contrast, change in harsh parenting across childhood (indexed by the slope term) was associated with
less PFC, but not amygdala, activation to angry faces. Increases in, but not initial levels of, harsh parenting were also associated with stronger
positive amygdala–PFC connectivity during angry face processing.
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Exposure to childhood adversity is associated with maladaptive
developmental outcomes, including the emergence and persis-
tence of psychopathology (Green et al., 2010; Lupien, McEwen,
Gunnar, & Heim, 2009). Research is beginning to show that
adversity may become biologically embedded by affecting brain
development via stress-related processes (McEwen, 2012), with
recent emphasis on the effects of adversity within the caregiving
context (Callaghan & Tottenham, 2016). However, much of this
work has focused on extreme features of caregiving (e.g., child-
hood maltreatment, early institutionalization), rather than how
more common forms of adversity within the parent–child rela-
tionship, such as harsh parenting, may be related to brain func-
tion. Moreover, although prominent theories (Lupien et al.,
2009; Tottenham, 2015) have emphasized that different brain
regions mature at different rates and, thus, may be more or less

sensitive to adversity during different developmental periods, little
work in humans has tested how the timing of adversity modulates
its effects on brain function. Thus, more research is needed to
examine how and when harsh parenting affects later brain func-
tion, particularly within neural regions key to stress responses
and socioemotional functioning.

Harsh parenting across childhood

Harsh parenting is characterized by high intrusion, coerciveness,
and physical or verbal aggression (Bugental & Grusec, 2006;
Darling & Steinberg, 1993; Tamis-LeMonda, Briggs, McClowry,
& Snow, 2008). Overly harsh behaviors create an environment
of inconsistency and unpredictability that results in pronounced
child behavioral problems and concomitant changes in biological
stress responses (Bugental & Grusec, 2006; Loman & Gunnar,
2010). Parenting behaviors during childhood are thought to be
particularly important for youth socioemotional development
(Ainsworth, 1979; Bowlby, 1982; Landry, Smith, Swank, &
Guttentag, 2008; Maccoby & Martin, 1983; Patterson, 1982; Shaw
& Bell, 1993). For example, hostile and rejecting parenting behaviors
during toddlerhood, when children become increasingly mobile and
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autonomous, facilitate coercive family processes that translate into
later youth conduct problems (Patterson, 1982; Shaw, Gilliom,
Ingoldsby, & Nagin, 2003; Shaw & Bell, 1993). Although harsh
parenting behaviors and parent–child conflict tend to be elevated
during toddlerhood and decrease thereafter (Collins, Madsen, &
Susman-Stillman, 2005; Dallaire & Weinraub, 2005; Trentacosta
et al., 2011), most developmental work on parenting has examined
parenting within shorter developmental periods, such as infancy
(Dallaire & Weinraub, 2005) or adolescence (Forehand & Jones,
2002). Given the substantial individual (e.g., development of self-
regulation) and social (e.g., entering school, forming peer relation-
ships) changes that occur as youth move from early to late child-
hood (Blair & Diamond, 2008; Morrison, Ponitz, & McClelland,
2010), more research is needed to describe how harsh parenting
behaviors change across childhood.

Neural structures within the corticolimbic system

Neural structures within the corticolimbic system, including
the amygdala and medial regions of the prefrontal cortex
(PFC/mPFC), have been the focus of much of the research linking
childhood adversity to brain development (Callaghan &
Tottenham, 2016; Gee, 2016; McLaughlin, Sheridan, & Lambert,
2014). Given its critical role in emotion processing, salience detec-
tion, and fear learning (LeDoux, 2000), the amygdala forms the
“hub” of the corticolimbic system (Benes, 2010; Hariri, 2015).
Neurons within the amygdala integrate information about the
external environment from sensory cortices with contextual infor-
mation from the hippocampus, sending efferent projections to
other subcortical (e.g., hypothalamus) and cortical (e.g., PFC)
regions to stimulate behavioral responses (e.g., activation of phys-
iological stress responses, attention allocation) (LeDoux, 2000;
Whalen & Phelps, 2009). Regions of the mPFC and anterior cin-
gulate cortex (ACC) support emotion regulation by integrating
affective valuations from the amygdala with inputs from other
neural regions (e.g., brainstem, thalamus) (Etkin, Egner, &
Kalisch, 2011; Fuster, 2001; Ochsner, Silvers, & Buhle, 2012;
Quirk, Garcia, & González-Lima, 2006). In functional magnetic
resonance imaging (fMRI) tasks that present emotional facial
expressions, the mPFC (e.g., middle and medial frontal gyri),
ACC, and amygdala are more active when participants view expres-
sions of interpersonal distress (i.e., fear) and threat (i.e., anger) than
neutral faces (Ekman & Friesen, 1976; Fusar-Poli, Placentino,
Carletti, Landi, & Abbamonte, 2009; Oatley & Johnson-Laird,
1987). Individual differences in amygdala, mPFC, and ACC reactiv-
ity to fearful and angry facial expressions have been associated with
dysregulated cortisol signaling (Henckens et al., 2016), internalizing
(Etkin et al., 2011; Groenewold, Opmeer, de Jonge, Aleman, &
Costafreda, 2013; Kim et al., 2011; Monk, 2008), and externalizing
behaviors (Coccaro, McCloskey, Fitzgerald, & Phan, 2007; Hyde,
Shaw, & Hariri, 2013; Marsh & Blair, 2008; Yang & Raine, 2009)
– all outcomes that have also been linked to adversity in childhood
(Green et al., 2010; Loman & Gunnar, 2010).

Dense structural (Bzdok, Laird, Zilles, Fox, & Eickhoff, 2013;
Goetschius et al., 2019) and functional (Motzkin, Philippi,
Wolf, Baskaya, & Koenigs, 2015; Roy et al., 2009) connections
between the amygdala, regions of the mPFC, and the ACC suggest
that an examination of activation within these regions can be
complemented by exploring their connectivity (Menon, 2011).
Indeed, amygdala–PFC connectivity has been associated with
multiple forms of psychopathology that are marked by deficits
in emotion processing, cross-sectionally (Hyde et al., 2013; Kim

et al., 2011; Price & Drevets, 2010) and longitudinally (Gard
et al., 2018; Waller et al., 2018).

Adversity effects on corticolimbic system function

A rich literature has linked greater childhood adversity with both
greater (Gianaros et al., 2008; Jedd et al., 2015; Maheu et al., 2010;
McCrory et al., 2011; Pozzi et al., 2019; Suzuki et al., 2014;
Tottenham et al., 2011) and less (Gard et al., 2017; Holz et al.,
2017; Javanbakht et al., 2015; Taylor, Eisenberger, Saxbe,
Lehman, & Lieberman, 2006) amygdala reactivity to fearful and
angry facial expressions. Emotional neglect and childhood trauma
have also been associated with greater lateral PFC activation dur-
ing emotion regulation (Colich et al., 2017; Marusak, Martin,
Etkin, & Thomason, 2015), and less mPFC reactivity to angry
and fearful facial expressions (van Harmelen et al., 2014). More
research is needed to address these directional inconsistencies,
which may emerge from different operationalizations of adversity
and/or that some studies combine angry and fearful facial expres-
sions into one “threat” condition or examine only one facial
expression (i.e., angry or fear). For example, most of the research
linking adversity to threat-related amygdala function (reviewed in
Hein & Monk, 2017) has focused on the neural effects of child-
hood maltreatment and reported positive associations (for exam-
ples of structural MRI studies that have examined normative
parenting behaviors, see Whittle et al., 2008, 2014, 2016, 2017).
Although far fewer task-based fMRI studies have examined
more common forms of adversity (e.g., harsh parenting), those
that have (Gard et al., 2017; Holz et al., 2017) reported negative
associations with threat-related amygdala reactivity (although
see Pozzi et al., 2019). For examinations of prefrontal function,
inconsistencies in previous work may also stem from region-
of-interest approaches that do not account for functional hetero-
geneity within the PFC (e.g., dorsal vs. ventral regions).

Comparatively few studies have examined the effects of adversity
on corticolimbic connectivity during socioemotional processing.
However, as in studies of amygdala activation, the pattern of results
appears to diverge depending on the operationalization of adversity.
Childhood maltreatment and previous institutionalization have
been associated with stronger amygdala–mPFC connectivity during
fear processing (Gee et al., 2013a), angry and fear processing as one
“threat condition” (Jedd et al., 2015), negative versus neutral images
(Peverill, Sheridan, Busso, & McLaughlin, 2019), and while viewing
several emotional facial expressions versus shapes (Miller et al.,
2020; Pozzi et al., 2019). In contrast, lower family income has
been associated with weaker amygdala–PFC connectivity during
emotion regulation (Kim et al., 2013), and during fearful face pro-
cessing (Javanbakht et al., 2015). Thus, more research is needed to
examine the associations between adversity and corticolimbic con-
nectivity, with greater attention to common forms of childhood
adversity (e.g., harsh parenting). Directional inconsistencies in
the literature may also stem from reliance on relatively small sam-
ples recruited by convenience or based on narrow inclusion criteria
(e.g., maltreated samples). More research is needed using larger
population-based samples with a clear sampling frame that include
families with dimensional exposure to adversity.

Environmental effects on corticolimbic function: Consideration
of developmental timing

The developmental trajectories of the amygdala and the PFC sug-
gest that there may be multiple windows of vulnerability during
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which these regions may be differentially sensitive to the effects of
adversity. Structurally, the rate of volumetric growth in the amyg-
dala is largest during the early postnatal years (Payne, Machado,
Bliwise, & Bachevalier, 2010), increasing in volume by more
than 100% during the first year of life (Gilmore et al., 2012).
The PFC, however, continues to develop throughout childhood
into adolescence and adulthood (Gogtay et al., 2004; Sowell
et al., 2003). Prefrontal gray matter density has been shown to
peak during the prepubertal stage (i.e., 10–12 years), followed
by synaptic pruning and dendritic arborization (Andersen &
Teicher, 2008; Casey, Jones, & Hare, 2008; Lenroot & Giedd,
2006). Functionally, children exhibit greater amygdala reactivity
to emotional facial expressions than adolescents and adults
(Monk, 2008), and this trajectory is thought to underlie normative
childhood fears (e.g., separation anxiety) that peak during child-
hood (Gee, 2016). During adolescence, as projections from pre-
frontal regions to other brain regions become more well defined
(Casey et al., 2008; Swartz, Carrasco, Wiggins, Thomason, &
Monk, 2014), mPFC activation to emotional facial expressions
increases (Blakemore, 2008). In a seminal paper by Gee et al.
(2013b), amygdala–mPFC connectivity during fear processing
was shown to shift from positive during childhood to negative
during adolescence. In this analysis, positive amygdala–mPFC
connectivity reflected positively correlated amygdala and mPFC
activation while children were looking at fearful facial stimuli;
in adolescents and adults, the association between activity in
these two regions became negative, thought to reflect less amyg-
dala and greater mPFC activation (Gee et al., 2013b; Wu et al.,
2016).

Although several recent reviews highlight the importance of
developmental timing for adversity effects on corticolimbic func-
tion (Lupien et al., 2009; Tottenham, 2015), few studies have
tested this hypothesis in humans (for reviews of the nonhuman
animal literature, see Callaghan & Tottenham, 2016; Debiec &
Sullivan, 2017). Using structural MRI, Pechtel, Lyons-Ruth,
Anderson, and Teicher (2014) found that the severity of exposure
to maltreatment at ages 10–11 was most strongly associated with
amygdala volume. Similarly, Andersen et al. (2008) found that
sexual abuse in early childhood was more strongly associated
with subcortical volumes, whereas sexual abuse that occurred in
late adolescence was more strongly associated with prefrontal
volume. Beyond these structural studies, there is little work exam-
ining developmental timing using task-based fMRI. In one excep-
tion, using prospectively collected repeated measures of adversity
across childhood, one study found that harsh parenting at age 2
was associated with less amygdala reactivity to fearful facial
expressions at age 20, even after accounting for harsh parenting
at age 12 (Gard et al., 2017); however, this paper did not examine
PFC function or amygdala–PFC connectivity. Moreover, by mea-
suring parenting behaviors at isolated time points, this strategy
assumes that parenting can be parsed into discrete moments in
time rather than the notion that parenting behaviors are a product
of continuous reciprocal interactions within the changing context
(Cicchetti & Toth, 2009). It may be that an examination of initial
levels (i.e., harsh parenting in early childhood) versus changes
thereafter (i.e., the trajectory of harsh parenting across childhood)
will reveal more complex effects of adversity on corticolimbic
function during socioemotional processing. This explicit focus
on evaluating the timing of harsh parenting effects on corticolim-
bic function builds on previous work in this sample that has
examined the cumulative (i.e., across childhood) effects of threat-
and deprivation-related experiences of adversity on amygdala–

prefrontal white matter connectivity (Goetschius, Hein, Mitchell
et al., 2020), amygdala reactivity during socioemotional process-
ing (Hein et al., 2020), and network-level resting-state functional
connectivity (Goetschius, Hein, McLanahan et al., 2020)

The present study

The current study sought to advance our understanding of how
trajectories of maternal harshness across childhood impact corti-
colimbic function in adolescence. First, in a large, national repre-
sentative sample of children born in large US cities in 1998–2000
with an oversample for nonmarital births (i.e., the Fragile Families
and Child Wellbeing Study), we examined how parental harsh-
ness changed across childhood (i.e., from ages 3 to 9 years old)
using linear growth curve modeling. Second, we evaluated the
effects of harsh parenting in early childhood versus changes in
harsh parenting across childhood on corticolimbic function dur-
ing adolescence. There were two components to our hypotheses:
(a) predictions about the timing of harsh parenting effects on sub-
cortical versus cortical regions, and (b) predictions about the
direction of effects. Consistent with animal models (Callaghan
& Tottenham, 2016; Debiec & Sullivan, 2017) and limited struc-
tural and functional longitudinal studies in human populations
(Andersen et al., 2008; Gard et al., 2017; Pechtel et al., 2014),
we hypothesized that harsh parenting in early childhood would
be associated with amygdala function, whereas changes in harsh
parenting across childhood would be associated with prefrontal
function (particularly in within medial regions). Additionally,
as amygdala–PFC connectivity is a function of activation in
both regions, we hypothesized that both initial levels and changes
in harsh parenting across childhood would be associated with cor-
ticolimbic connectivity. As the previous literature varies widely
with respect to the direction of effects (e.g., due to operationaliza-
tion of adversity, definition of PFC target regions), however, our
directional hypotheses were more exploratory in nature. That is,
we hypothesized that harsh parenting in early childhood would
be related to either greater (Hein & Monk, 2017) or less (Gard
et al., 2017; Holz et al., 2017) threat-related amygdala reactivity,
increases in harsh parenting across childhood would be related
to either greater (Colich et al., 2017) or less (van Harmelen
et al., 2014) threat-related PFC reactivity, and harsh parenting
during early childhood and increases in harsh parenting across
childhood would be associated with either weaker (Javanbakht
et al., 2015) or stronger (Gee et al., 2013a) amygdala–mPFC
connectivity during threat processing.

Methods

Sample

Participants were part of the Fragile Families and Child Wellbeing
Study (FFCWS), a longitudinal cohort of 4,898 children (52.4%
boys) children born in large US cities between 1998 and 2000.
The FFCWS oversampled for nonmarital births (∼3:1), which
resulted in substantial sociodemographic diversity in the sample
(Reichman, Teitler, Garfinkel, & McLanahan, 2001). At child-
birth, mothers identified as Black non-Hispanic (N = 2,326,
47.5%), White non-Hispanic (N = 1,030, 21.1%), Hispanic (N =
1,336, 27.3%), or other (N = 194, 4.0%). Nearly 40% of the moth-
ers reported less than a high school education at the birth inter-
view, 25.3% with a high school degree or equivalent, 24.3% some
college or technical training, and 10.7% who earned a college
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degree or higher. Parents in the FFCWS were interviewed at the
hospital shortly after the birth of the target child, and again
(by phone or in-person) at ages 1, 3, 5, 9, and 15 years old.
Retention of the baseline sample was generally high at each of
the assessment periods (77% to 90% for mother or primary
caregiver interviews, 62% to 72% for home visits) (for detailed
information about cohort retention across waves, see https://frag-
ilefamilies.princeton.edu).

At age 15, families from the Detroit, Toledo, and Chicago sub-
samples were asked to participate in the Study of Adolescent
Neurodevelopment (SAND), a follow-up study to investigate
the role of the environment on youth brain and behavioral
development. Two-hundred and thirty-seven adolescents aged
15 to 17 (52.3% female) and their primary caregiver agreed to par-
ticipate. Of the 237 families, teens self-identified as Black
non-Hispanic (N = 179, 75.5%), Black Hispanic (N = 2, 0.8%),
White non-Hispanic (N = 30, 12.7%), of Hispanic or Latino origin
(N = 10, 4.2%), biracial (N = 13, 5.5%), or other non-Hispanic
(N = 3, 1.3%). Primary caregivers were biological mothers (N =
216, 91.1%), biological fathers (N = 11, 4.6%), adoptive parents
(N = 4, 1.7%), or other family members (N = 6, 2.5%). Median
annual family income was between $25,000 to $29,999, with some
primary caregivers reporting annual incomes below $4,999 (13%)
and others reporting annual incomes above $90,000 (10.2%).
Thus, the SAND sample is socioeconomically diverse, though
primarily low-income, and comprising mostly Black American
children and their biological mothers.

Procedure

The current paper uses data from both the core FFCWS and the
SAND. We used measures of maternal harsh parenting from the
FFCWS telephone and in-person interviews at ages 3, 5, and 9
years old. As the primary aim of this paper was to investigate
whether initial levels and/or changes in parenting behaviors
across childhood impacted youth corticolimbic function in ado-
lescence, we limited our sample to families where the biological
mother was the primary caregiver at the 3-, 5-, and 9-year assess-
ments (i.e., to prevent artifacts introduced by changing infor-
mants across time); 216 out of 4,898 families were excluded.
Detailed descriptions of the study protocols for each of the core
FFCWS assessment periods can be found on the study website
(https://fragilefamilies.princeton.edu).

SAND subsample
At age 15, primary caregivers and adolescents in the SAND study
participated in a one-day protocol that included collection of self-
report, interviewer, observational, and biological data. Parents
provided written consent and adolescents provided verbal assent
for their participation in the SAND protocol. Families were reim-
bursed for their participation. All assessments and measures were
approved by the Institutional Review Board of the University of
Michigan (IRB protocol # HUM00074392).

Measures

Maternal harshness
Maternal harshness was measured as physical discipline using
a sum of five mother-reported items from the physical aggression
subscale of the Parent–Child Conflict Tactics Scale (Straus,
Hamby, Finkelhor, Moore, & Runyan, 1998) at the 3-year
(mean[SD] = 1.23[1.01], n = 3,284), 5-year (mean[SD] = 1.10

[.97], n = 2,935), and 9-year (mean[SD] = .73 [.85], n = 3,083)
assessments. Mothers were asked to rate how many times in the
past year each disciplinary practice was used (“pinched him/
her,” “slapped him/her on the hand, arm, or leg,” “spanked
him/her on the bottom with your bare hand,” “hit child on the
bottom with some hard object”), from 0 (never happened) to 6
(more than 20 items). The reliability of the harsh parenting
items was low, though potentially adequate given the small pool
of items (age 3: α = .61; age 5: α = .60; age 9: α = .70). This mea-
sure of harsh parenting has been used extensively in other publi-
cations from the FFCWS (e.g., Kim, Lee, Taylor, & Guterman,
2014; Lee, Brooks-Gunn, McLanahan, Notterman, & Garfinkel,
2013). Although we initially intended to include the psychological
aggressions subscale of the Parent–Child Conflict Tactics Scale,
the scale reliabilities were even lower than the physical aggressions
subscale (e.g., at age 3: α = .55 for psychological aggressions).
Thus, we focused our analyses on physical discipline components
of harsh parenting.

In sensitivity analyses, we evaluated whether our models were
robust to inclusion of harsh parenting at age 15 (i.e., the time of
neuroimaging assessment), which was measured by a mean of
three parent-reported corporeal punishment items (mean[SD] =
1.89 [.63], n = 159, α = .59) from the Alabama Parenting
Questionnaire (Frick, 1991). Harsh parenting at age 15, as mea-
sured by the physical aggression subscales of the Conflict
Tactics Scale (Straus et al., 1998), could not be included as a
time point in the linear growth curve models because only one
item was collected in the age 15 wave of the FFCWS protocol.

Covariates
Several covariates were included in the analyses, each of which
have been shown to impact corticolimbic function (Alarcón,
Cservenka, Rudolph, Fair, & Nagel, 2015; Kubota, Banaji, &
Phelps, 2012; Moore et al., 2012): (a) youth self-reported race
and ethnicity at age 15, (b) youth gender (girl = 1), and (c)
youth self-reported pubertal development. Race/ethnicity was
coded as one dummy code for the largest group in the SAND
sample (non-Hispanic Black [75.5%] = 1). Pubertal development
was measured at age 15 using youth report on the Pubertal
Development Scale (Petersen, Crockett, Richards, & Boxer,
1988), which includes two gender-specific items (e.g., for boys:
voice changes; for girls: breast development), and three items
for both genders (i.e., changes in height, skin, pubic hair). All
items were rated on a 4-point Likert scale (1 = process has not
started, 4 = seems completed), except for the menarche question
for girls, which was dichotomous (1 = not started, 4 = started).
Total pubertal development score was calculated as a mean of
the five items for each gender (girls: mean [SD] = 3.58 [.46];
boys: mean [SD] = 2.86 [.50]).

Neuroimaging data

fMRI task
Participants completed an implicit emotion face processing task
during continuous fMRI acquisition (see Figure 1). In this task,
participants were asked to identify the gender of the actor
by pressing their thumb for male or index finger for female
(Hein et al., 2018). Faces from the NimStim set (Tottenham
et al., 2009) were counterbalanced for gender and race
(European American and African American). There were 100
pseudo-randomized trials, 20 trials each of the following emo-
tions: fearful, happy, sad, neutral, and angry. Each trial consisted
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of a 500 ms fixation cross followed by a face presented for 250 ms.
A black screen then appeared for 1,500 ms, during which partici-
pants responded to the stimulus presentation, followed by a jittered
inter-trial interval (2,000, 4,000, or 6,000 ms). Total task time was
8.75 min. Accuracy and response times were collected using a non-
metallic fiber optic transducer linked to a response box.

Data acquisition and preprocessing
MRI images were acquired using a GE Discovery MR750 3T scan-
ner with an eight-channel head coil located at the UM Functional
MRI Laboratory. High-resolution T1-weighted gradient echo
(SPGR) images were collected (repetition time [TR] = 12 ms,
echo time [TE] = 5 ms, interval time [TI] = 500 ms, flip angle =
15°, field of view (FOV) = 26 cm; slice thickness = 1.4 mm;
256 × 192 matrix; 110 slices) and used for preprocessing.
Functional T2*-weighted BOLD images (TR = 2,000 ms, TE =
30 ms, flip angle = 90°, FOV = 22 cm; slice thickness = 3 mm;
64 × 64 matrix; 40 axial slices) were acquired using a reverse spiral
sequence, which has been shown to improve signal recovery in
frontal regions (Glover & Law, 2001). Slices were prescribed par-
allel to the AC–PC line (same locations as structural scans). Slices
were acquired contiguously, which optimized the effectiveness of
the movement postprocessing algorithms. Images were recon-
structed offline using processing steps to remove distortions
caused by magnetic field inhomogeneity and other sources of
misalignment to the structural data, which yields excellent cover-
age of subcortical areas of interest.

Anatomical images were homogeneity-corrected using SPM,
then skull-stripped using the Brain Extraction Tool in FSL (ver-
sion 5.0.7) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,
2012; Smith, 2002). Functional data were preprocessed in the fol-
lowing steps: removal of large temporal spikes in k-space data (>2
std dev), field map correction and image reconstruction using

custom code in MATLAB; and slice-timing correction using
SPM12 (Wellcome Department of Cognitive Neurology,
London, UK). To address head motion, functional images were
realigned to the anterior commissure–posterior commissure
(AC–PC) plane in the mean image. Using SPM12, anatomical
images were co-registered to the functional images. Functional
images were normalized to the MNI Image space using parame-
ters from the T1 images segmented into gray and white matter,
cerebrospinal fluid, bone, soft tissue, and air using a Tissue
Probability Map created in SPM12. Images were then smoothed
using an isotropic 8-mm full width at half maximum Gaussian
kernel. Following preprocessing, the Artifact Detection Tools
(ART) software package (http://www.nitrc.org/projects/artifact_
detect) identified motion outliers (>2 mm movement or 3.5°
rotation); outlier volumes were individually regressed out of
the participant’s individual model. Additionally, because of the
relatively extensive signal loss typically observed in the amyg-
dala, single-subject BOLD fMRI data were only included in sub-
sequent analyses if there was a minimum of 70% signal coverage
in the left and right amygdala, defined using the Automated
Anatomical Labeling (AAL) atlas in the Wake Forest University
(WFU) PickAtlas Tool, version 1.04 (Maldjian, Laurienti, Kraft, &
Burdette, 2003). As the current paper additionally examined cortico-
limbic function within the PFC, participants with less than 70%
coverage in the prefrontal lobe (defined using the AAL atlas) were
removed. Lastly, to ensure participants were engaged in the task,
participants were excluded if accuracy on the task was less than
70%. Of the 237 participants in the SAND neuroimaging study,
usable fMRI data were available for 167 (74%) participants
(Table 1). Participants without usable fMRI data did not differ
from participants with usable fMRI data with respect to concurrent
family monthly income, earlier measures of parental harshness, or
youth gender or race and ethnicity (all ps > .10).

Figure 1. Implicit emotional faces matching paradigm Note. This event-related task design included 100 trials, 20 each of the following facial expressions: angry,
fearful, sad, neutral, and happy. Total task time was 8.75 min.
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Activation analyses
The general linear model in SPM12 was used to estimate
condition-specific BOLD activation for each individual and scan.
Individual contrast images (i.e., weighted sum of the beta images)
were then used in second-level random effects models to determine
expression-specific reactivity using multiple regression. As the goal
of this study was to examine corticolimbic reactivity during threat
processing, we present results from the fearful facial expressions >
neutral faces and angry facial expressions > neutral faces contrasts.
We used two regions of interest (ROIs) to probe the effects of par-
enting of corticolimbic function: the amygdala and a large PFC
mask. We defined the bilateral amygdala using the AAL atlas
definition in the WFU PickAtlas Tool, version 1.04 (Maldjian
et al., 2003). The PFC mask was defined by Brodmann’s areas 9
(dorsolateral), 10 (dorsomedial), 11 and 47 (orbitofrontal), 24
and 32 (dorsal anterior cingulate), and 25 (subgenual cingulate),
using the WFU PickAtlas Tool, version 1.04 (Maldjian et al.,
2003). We used this broad PFC mask to: (a) compare our results
to existing studies that used different definitions of the mPFC
(Gee et al., 2014; van Harmelen et al., 2014) and to broaden the
PFC regions examined, and because (b) the seven Brodmann’s
areas we identified have each been shown in nonhuman primate
neural tract-tracer studies to be structurally connected to the amyg-
dala (Amaral & Price, 1984; Ghashghaei, Hilgetag, & Barbas, 2007)
and have been linked structurally to the amygdala in the current
sample (Goetschius et al., 2019). We corrected for multiple

comparisons using 3dClustSim (Cox, Chen, Glen, Reynolds, &
Taylor, 2017; Forman et al., 1995) in AFNI version 16.1.14 (Cox,
1996). Consistent with recommendations by Cox et al. (2017),
we implemented the spatial autocorrelation function (i.e., the –
acf option) to model the spatial smoothness of noise volumes.
Group-level smoothing values (x = 0.55, y = 6.41, z = 13.37) were
estimated from a random 10% of participants’ individual-model
residuals using the program 3dFWHMX, and then averaged across
subjects. 3dClustSim uses a Monte Carlo simulation to provide a
threshold that will achieve a family-wise error (FWE) correction
for multiple comparisons of p < .05 within each ROI. We used a
voxel-wise threshold of p < .001, which resulted in a threshold of
3 voxels for amygdala activation analyses and 29 voxels for PFC
activation analyses. Our cluster thresholds were based on two-sided
tests and used the nearest neighbor definition of “face and edge”
(i.e., 3dClustSim command: NN= 2).

Functional connectivity analysis
Psychological×Physiological Interaction (PPI) analyses in the gener-
alized PPI (gPPI) toolbox (McLaren, Ries, Xu, & Johnson, 2012) in
SPM12 were used to measure amygdala connectivity with regions of
the PFC. In a PPI analysis, a design matrix is constructed at the level
of the individual with the following columns of variables: (a) a phys-
iological variable that represents the time course of the seed region
(i.e., left or right amygdala) across the task, (b) a psychological var-
iable indicating the experimental variable (e.g., onset times for fear-
ful face stimuli), and (c) a product term of the interaction between
the physiological and psychological variables. The gPPI toolbox
developed by McLaren et al. (2012) allows for the simultaneous
specification of all task conditions and interactions with the seed
region time series in the same individual-level model (Friston
et al., 1997). This is advantageous because it reduces the number
of specified models and the overall Type I error rate.

As we were interested in examining changes in amygdala con-
nectivity while participants viewed fearful and angry facial expres-
sions versus neutral faces, we defined the left and right amygdala
as seed regions using the AAL definition within the WFU
PickAtlas Tool (Maldjian et al., 2003). Two general linear models
at the individual level were constructed (i.e., one for each seed
region). Using the gPPI toolbox, the time series of the left or
right seed region was entered as the physiological variable in
the design matrix, the explanatory variables for each of the five
conditions in our task (i.e., facial expressions of fear, anger,
happy, sad, and neutral faces) were entered as psychological var-
iables, and the five product terms between the amygdala seed and
conditions were entered as the interaction terms. We specified two
primary contrasts at the individual level: fearful facial expressions
interaction term > neutral faces interaction term, and angry facial
expressions interaction term > neutral faces interaction term.
Practically, this can be interpreted as a difference in slopes: is
slope A (i.e., the interaction between amygdala reactivity and
the fear/angry condition) greater or less than slope B (i.e., the
interaction between amygdala reactivity and the neutral condi-
tion). Individual-level slopes (i.e., the betas corresponding to
the interaction terms, e.g., fearful facial expressions × time series
of amygdala activation) can then be extracted to determine the
direction and strength of connectivity during the two conditions
(e.g., fear, neutral). Contrasts from the individual level models
were then used in random effects, group-level models to evaluate
the impact of harsh parenting in early childhood and changes in
harsh parenting across childhood on amygdala–PFC functional
connectivity to fearful and angry facial expressions versus neutral

Table 1. Sources of functional magnetic resonance imaging (fMRI) data loss

Number
lost

Participants
with data

Original sample 237

Sample with imaging data

Refused MRI 16

Exceeded MRI table weight limit 3

Medical restriction 1

Braces or other metal in body 7

Risk of pregnancy 1

Excluded for diagnosis of Autism
spectrum disorder

2

Incomplete fMRI data 4

Total lost 34 203

Sample with usable imaging data

Alternate version of faces task 2

Low amygdala coverage (<70%
left or right amygdala)

4

Low prefrontal cortex coverage
(<90%)

4

Functional image distortion 7

Low accuracy (<70%) 18

Activation outlier 1

Total lost 36 167

Note: Low amygdala coverage was defined using the Automated Anatomical Labeling (AAL)
definition of the bilateral amygdala from the WFU PickAtlas Tool (Maldjian et al., 2003). Low
prefrontal cortex coverage was defined using a mask of the prefrontal lobe from the WFU
PickAtlas Tool (Maldjian et al., 2003).
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faces. These models assess whether harsh parenting is associated
with the difference in connectivity between conditions (or the dif-
ference in slopes). The contrasts of angry facial expressions >
baseline, fearful facial expressions > baseline, and neutral faces >
baseline were additionally used to confirm that our results were
driven by connectivity during the emotion conditions (i.e., fear
or anger) rather than the neutral face condition. Only ipsilateral
connections between the amygdala and PFC were examined
(e.g., left amygdala–left PFC), because neural tracer studies in
nonhuman primates suggests that first-order amygdala connec-
tions are primarily ipsilateral (Ghashghaei et al., 2007). Thus,
we divided the same PFC mask from our activation analyses
into left and right PFC masks for use as target regions in connec-
tivity analyses. The same procedure using 3dClustSim (Cox et al.,
2017; Forman et al., 1995) in AFNI version 16.1.14 (Cox, 1996) as
in the activation analyses was used to correct for multiple com-
parisons in the functional connectivity analyses. Group level aver-
age smoothing values for the left amygdala seed models (x = 0.55,
y = 6.46, z = 13.48) and right amygdala seed models (x = 0.56, y =
6.44, z = 13.48) were used to estimate minimum cluster thresholds
in the left and right PFC masks (k = 22) that would achieve a
family-wise error (FWE) correction for multiple comparisons of
p < .05 within each ROI, using a voxel-wise threshold of p < .001.

Analytic plan

First, linear growth curve modeling within Mplus version 7.2
(Muthén & Muthén, 2006) was used to estimate the intercept and
slope of maternal harshness. Though our neuroimaging sample
was composed of 167 participants, we used all available cases from
the core FFCWS (N = 4,682 families, where the mother was the pri-
mary caregiver at the 3-, 5-, and 9-year assessments) to estimate pat-
terns of harsh parenting across childhood. Thus, the estimates of
initial levels and changes in parenting behaviors across childhood
are derived from a larger nationwide sample with greater power
for estimation of these complex models. Cases with at least one
data point were used in each analysis with the full maximum likeli-
hood (FIML) estimator with robust standard errors, resulting in a
sample size of N = 4,144 (N = 162 with valid neuroimaging data in
the SAND). FIML estimation uses the covariance matrix of all avail-
able data to produce unbiased estimates and standard errors in the
context of missing data (Enders & Bandalos, 2001; McCartney,
Burchinal, & Bub, 2006). Model fit was considered adequate if the
root mean square error of approximation (RMSEA) < 0.06 and
the comparative fit index (CFI) > 0.95 (Hu & Bentler, 1999).

To evaluate the effects of harsh parenting in early childhood
and changes in harsh parenting behaviors across childhood on cor-
ticolimbic function, estimates of the intercept and slope of maternal
harshness were extracted from Mplus for use in second-level ran-
dom effects models within SPM12. First, the intercept or slope of
maternal harshness was entered as the primary predictor in a linear
regression model, with pubertal status, gender, and race and ethnic-
ity as covariates. To evaluate the unique effects of the intercept/
slope, a second set of models was estimated that additionally con-
trolled for the slope/intercept of maternal harshness.

Results

Estimation of harsh parenting across childhood

The linear growth curve model of harsh parenting at ages 3, 5,
and 9 in the FFCWS (N = 4,144; Figure 2) demonstrated good

model fit (X2[1] = 5.62, p = .02; RMSEA = .03, 90% confidence
interval [CI] [.01, .06]; CFI = 1.00, Tucker–Lewis index [TLI]
= .99) and indicated that, on average, initial levels (i.e., the inter-
cept) of harsh parenting were positive and significantly different
from zero (estimated intercept mean [SD] = 1.23[.02], p < .001).
On average, levels of harsh parenting decreased from ages 3 to 9
(estimated slope mean [SD] = −.09[.003], p < .001). Although
our primary goal was to examine individual variability from
the mean trajectory of the overall group, we tested whether
there was heterogeneity in growth trajectories using growth mix-
ture modeling (Nagin & Odgers, 2010). A three-group solution
fit the data better than a two-group solution, based on fit indices
and classification quality (Akaike information criterion [AIC] =
22,964.49, Bayesian information criteria [BIC] = 22,999.16,
entropy = .79; posterior probabilities ranged from .84 to .93;
Lo–Mendell–Rubin adjusted likelihood ratio test = 544.74, p <
.001). The solution included “low-decreasing” (n = 2,041
[73%]; intercept B[SE] = .92[.03], slope B[SE] = −.11[.01]),
“moderate-decreasing” (n = 950 [23%]; intercept B[SE] = 1.92
[.07], slope B[SE] = −.07[.01]), and “high-increasing” (intercept
B[SE] = 2.37[.17], slope B[SE] = .12[.03]) groups. However, the
“high-increasing” group was quite small (n = 153 [4%]) and
even smaller in the neuroimaging subsample (n = 13). Thus,
we focused our analyses on examining individual variability
from the group mean in a single group growth curve.

To inform future research, we examined whether youth in the
three trajectory groups differed on non-neural characteristics.
One-way analyses of variance (ANOVAs) revealed significant
group differences in pubertal development (F (2,161) = 4.31, p <
.05) and parent-reported corporal punishment at age 15
(F (2,158) = 20.83, p < .001), but not household income at age 15.
Post hoc Tukey tests showed that youth in the high-increasing
group (N = 13) were less pubertally-advanced and exposed to
more corporal punishment at age 15 than youth in the low-
decreasing (N = 93) and moderate-decreasing (N = 56) groups.
Chi-square difference tests revealed no group differences in
youth gender, youth race/ethnicity, and parent education or
marital status (all ps > .10).

Harsh parenting effects on corticolimbic activation

We next used the estimated intercept and slope terms for each
participant to evaluate whether harsh parenting in early child-
hood (i.e., the intercept, set at age 3) was most strongly associ-
ated with amygdala function and whether changes in harsh
parenting across childhood (i.e., the slope) were most predictive
of PFC function during emotional face processing at age 15.
Across all models, the associations between harsh parenting
and corticolimbic activation were specific to angry (i.e., anger
vs. neutral contrast), rather than fearful facial expressions
(i.e., fear vs. neutral contrast). First, greater harsh parenting
in early childhood was associated with less left amygdala (but
not PFC) reactivity to angry facial expressions versus neutral
faces (see Table 2 and Figure 3), controlling for changes in
harsh parenting across childhood (i.e., the slope term) and
harsh parenting at age 15 (i.e., the same age as the neuroimag-
ing data collection). In contrast, increases in harsh parenting
from ages 3 to 9, controlling for harsh parenting in early child-
hood (i.e., the intercept) and harsh parenting at age 15, were
associated with less right dorsal ACC (dACC) but not amyg-
dala, reactivity to angry facial expressions versus neutral faces
(Table 2 and Figure 3).
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Harsh parenting effects on corticolimbic connectivity

Consistent with the corticolimbic activation results, all models
linking harsh parenting to amygdala–PFC connectivity during
emotional face processing were specific to the angry versus

neutral face contrast. In line with our hypotheses, both greater
harsh parenting in early childhood and increases in harsh parent-
ing from ages 3 to 9 years were uniquely (i.e., accounting for their
overlap) associated with greater amygdala–PFC connectivity

Figure 2. Individual observed values of harsh parenting across childhood. Note. N = 4,144. Spaghetti plot of individual observed values of harsh parenting at ages
3, 5, and 9 years. Group average trajectory depicted in bolded orange. Model fit: X2 (1) = 5.62, p = .02; root mean square error of approximation (RMSEA) = .03, 90%
CI (.01, .06); comparative fit index (CFI) = 1.00, Tucker–Lewis index (TLI) = .99, standardized root mean square residual (SRMR) = .01. Loadings for the latent slope
factor were specified as 0 (age 3), 2 (age 5), and 6 (age 9), and all loadings for the latent intercept factor were set equal to 1.

Table 2. Harsh parenting in early childhood and changes in harsh parenting across childhood predict corticolimbic activation and connectivity during angry face
processing

Activation Results

Predictor Direction of Effect
Bilateral Amygdala (x, y, z),
t and voxel extent (k)

Prefrontal Cortex (x, y, z),
t and voxel extent (k)

Intercept of Harsh Parenting Negative Left: (−26,−4,−22), t = 3.67, k = 14a no suprathreshold clusters

Slope of Harsh Parenting Negative no suprathreshold clusters Right dorsal ACC (BA32): (6,32,22),
t = 3.66, k = 50a

Connectivity Results

Predictor Direction of Effect Left Amygdala Seed Region – Left PFC Right Amygdala Seed Region – Right PFC

Intercept of Harsh Parenting Positive Left IFG/Insula (BA47): (−30,20,−6),
t = 3.98, k = 29

no suprathreshold clusters

Slope of Harsh Parenting Positive Left OFC (BA10): (−8,46,16), t = 3.47, k = 16a
Left mPFC (BA9): (−12,58,32), t = 4.26, k = 27a

Right MCC (BA 24): (6,0,32),
t = 3.62, k = 28

Note: N = 162. All models controlled for youth gender, race, pubertal status, and the intercept/slope term. For activation, the results of the intercept and slope models of harsh parenting on
corticolimbic reactivity were driven by less activation to angry facial expressions versus baseline (intercept model: pvoxel < .05, [−24,−2,−22], t = 2.29, k = 59; slope model: pvoxel < .05,
[14,34,22], t = 3.21, k = 126), rather than greater activation to neutral facial expressions versus baseline (no clusters at pvoxel < .05). For connectivity, the results of the intercept and slope
models of harsh parenting on corticolimbic connectivity were driven by greater amygdala–PFC connectivity during angry face versus baseline processing (left amygdala seed slope model:
pvoxel < .05, [−8,46,16], t = 2.68, k = 232; left amygdala intercept model: pvoxel < .01, [−2,53,4], t = 3.13, k = 85), rather than less amygdala–PFC connectivity during neutral face processing
versus baseline (no clusters at pvoxel < .05). Note that zero-order correlations between the intercept and slope of harsh parenting and harsh parenting at age 15 ranged from .25 < | r | < .29.
ACC = anterior cingulate cortex; IFG = inferior frontal gyrus ; MCC = middle cingulate cortex; mPFC = medial prefrontal cortex; PFC = prefontal cortex
aSignificant after accounting for harsh parenting at age 15 (concurrent to the neuroimaging assessment).

A. M. Gard et al.988

https://doi.org/10.1017/S0954579420001583 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579420001583


during angry face processing than neutral face processing
(Table 2). After accounting for harsh parenting at age 15, how-
ever, only changes in harsh parenting across childhood (i.e., the
slope term) were associated with amygdala–PFC connectivity
during angry face processing. To determine the direction of
amygdala–PFC connectivity (i.e., whether activation in the seed
and target region was positively or negatively coupled), we
extracted the connectivity estimates during each condition sepa-
rately. As shown in Figure 4, increases in harsh parenting across
childhood were associated with more positive left amygdala–left
orbitofrontal cortex (OFC) and left amygdala–left mPFC connec-
tivity during angry face processing but not neutral face processing
(Table 2 and Figure 4).

Post-hoc exploratory analyses

Cumulative exposure to harsh parenting
Although our results suggest that the timing of exposure to harsh
parenting is important for corticolimbic function in adolescence,
our results could also reflect cumulative risk effects (Sameroff,
Seifer, Barocas, Zax, & Greenspan, 1987). That is, it may be
that youth with the highest levels of harsh parenting in early
childhood were also exposed to the highest levels of harsh parent-
ing at subsequent ages and, thus, our results could be accounted
for by a cumulative effect of harsh parenting across childhood.
Using methods traditional to cumulative risk research (Evans,
Li, & Whipple, 2013), we calculated the number of waves (i.e.,
3-, 5-, and 9-year waves; possible cumulative risk score 0–3) dur-
ing which an individual scored in the top quartile of harsh parent-
ing. Of the 162 families with valid harsh parenting data at all three
waves, most families (62.3%) were low risk across all three waves.
Twenty-eight (17.3%) and 21 (13%) families were at-risk in one or
two waves, respectively, and 12 (7.4%) families scored in the top
quartile of harsh parenting at all three waves. Controlling for par-
ticipant demographics at age 15, we examined whether cumulative
risk scores were associated with (a) amygdala activation, (b) PFC
activation, and (c) amygdala–PFC connectivity during angry ver-
sus neutral face processing at age 15 years. Consistent with the
notion that timing of exposure to harsh parenting is important

for corticolimbic development, the cumulative harsh parenting
risk score was not associated with amygdala or PFC activation
or connectivity (no clusters above threshold).

Gender differences
Based on previous research (Everaerd et al., 2016; Tottenham &
Sheridan, 2009; Whittle et al., 2017), we examined possible gender
differences in the effects of harsh parenting on corticolimbic activa-
tion and connectivity during angry versus neutral face processing
via exploratory analyses. First, we constructed interaction terms
between the intercept/slope of harsh parenting and gender. Two
linear regression models were used to estimate the effects of each
interaction term on corticolimbic activation and connectivity,
accounting for the main effects of the harsh parenting intercept
and slope (both mean-centered), gender, pubertal development,
and race/ethnicity. There were no statistically significant associa-
tions between the interaction terms and amygdala or prefrontal
reactivity to angry versus neutral faces, or condition-specific amyg-
dala–prefrontal connectivity. To stimulate future work in this area,
we re-analyzed our data stratified by gender. Although there were
no associations between harsh parenting and amygdala or prefron-
tal reactivity in boys (n = 75) or girls (n = 87; likely due to the
reduced sample size/power), the effects of harsh parenting on left
amygdala–left prefrontal connectivity were observed in girls only.
Consistent with the pattern of findings in the total sample,
increases in harsh parenting across childhood (accounting for ini-
tial levels of harsh parenting and parenting at age 15 years ) were
associated with stronger positive left amygdala–left OFC ([x, y, z] =
[−18, 56, 24], t = 4.94, k = 400) and left amygdala–left
mPFC ([x, y, z] = [−22, 56, −8], t = 3.88, k = 23) connectivity dur-
ing angry but not neutral face processing. Although these findings
suggest that future work should explore gender differences in par-
enting effects on brain development, we caution readers that these
results are likely underpowered and were exploratory in nature.

Discussion

The current study examined how harsh parenting behaviors
change across childhood in a large, population-based sample of

Figure 3. Harsh parenting in early childhood and increases in harsh parenting across childhood are associated with less corticolimbic activation during angry face
processing. Note. N = 159. Results are from the most stringent models that control for youth gender, race, pubertal status, the intercept/slope term, and harsh
parenting at age 15. (a) Greater harsh parenting in early childhood (i.e., the intercept from a linear growth curve model, set at age 3) associated with less left
amygdala reactivity to angry versus neutral faces; (x, y, z) = (−26,−4,−22), t = 3.91, k = 16. (b). Increases in harsh parenting from ages 3 to 9 associated with less
right dorsal anterior cingulate reactivity to angry versus neutral faces; (x, y, z) = (6,32,22), t = 3.66, k = 50.
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sociodemographically-diverse families, and explored how harsh
parenting in early childhood and changes in harsh parenting
across childhood were associated with subsequent corticolimbic
function during adolescence. One of the study’s strengths was
the integration of data from an existing nationwide study of nearly
5,000 families followed prospectively from birth with neuroimag-
ing data from a subsample recruited during adolescence.
Consistent with prior research on trajectories of parenting behav-
iors during shorter developmental windows (Dallaire &
Weinraub, 2005; Kim, Pears, Fisher, Connelly, & Landsverk,
2010), harsh parenting was initially high at age 3 and decreased
thereafter through age 9 years. Moreover, consistent with animal
models and theory (Debiec & Sullivan, 2017; Lupien et al., 2009;
Tottenham, 2015), we found that harsh parenting in early child-
hood was associated with less amygdala activation during socioe-
motional processing at age 15, whereas increases in harsh
parenting from ages 3 to 9 years were associated with less activa-
tion in the dACC at age 15. In stringent models that accounted for
harsh parenting age 15 (i.e., concurrent to the neuroimaging
assessment), only increases in harsh parenting across childhood
were associated with stronger positive amygdala–PFC connectiv-
ity during angry versus neutral face processing.

The trajectory of harsh parenting across childhood

In a population-based sample of families followed prospectively
across childhood (Reichman et al., 2001), maternal harshness
changed from ages 3 to 9 in ways that mirror the developmental
competencies of each developmental stage. On average, maternal
harshness was greatest at age 3, when children are increasingly
mobile and normatively evince greater emotionality (Shaw &
Bell, 1993). Thereafter, from ages 3 to 9, maternal harshness
decreased. During middle childhood (5 to 12 years), affective
expression within the parent–child dyad has been shown to
decrease, where both children and parents show less overt nega-
tive behaviors (e.g., coercion, emotional outbursts) (Collins
et al., 2005; Forehand & Jones, 2002; Shanahan, McHale,
Osgood, & Crouter, 2007). Our results in the nationwide
FFCWS build upon previous work that tracked changes in parent-
ing behaviors during shorter developmental windows, such as
during infancy and early childhood (Dallaire & Weinraub, 2005;
Lipscomb et al., 2011). Critically, reliance on a population-based
sample of families over-sampled for sociodemographic risk sug-
gests that these patterns of maternal harshness across childhood
are reflective of the broader population of US families of living

Figure 4. Increases in harsh parenting across childhood are associated with more positive left amygdala–left prefrontal cortex connectivity during angry face pro-
cessing. Note. N = 159. BA = Brodmann’s area. Results are from the most stringent models that control for youth gender, race, pubertal status, the intercept/slope
term, and harsh parenting at age 15. (a) Increases in harsh parenting from ages three to nine (i.e., the slope) associated with more positive left amygdala–left
orbitofrontal (BA10) connectivity during angry face processing in adolescence; (x, y, z) = (−8,46,16), t = 3.75, k = 40; (b) Increases in harsh parenting from ages
three to nine (i.e., the slope) associated with more positive left amygdala–left medial prefrontal cortex (mPFC) (BA9) connectivity during angry face processing
in adolescence; (x, y, z) = (−12,58,32), t = 4.26,k = 27; (c) Image of identified clusters in (a, in red) and (b, in blue).
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in urban and impoverished contexts, who are exposed to substan-
tial environmental adversity (McLoyd, 1998).

Developmental timing modulates adversity effects on
corticolimbic function

Although several recent reviews have posited that exposure to harsh
contexts impacts corticolimbic function in a timing-specific man-
ner (Lupien et al., 2009; Tottenham, 2015), our study is one of
the first to empirically test this hypothesis in humans using
repeated measures of harsh parenting across childhood in a
population-based sample of low-income adolescents. We found
that harsh parenting in early childhood was associated with less
amygdala, but not PFC or ACC, activation, and that increases in
harsh parenting thereafter were associated with less dACC, but
not amygdala, activation during angry face processing. That we
found no effects of cumulative exposure to harsh parenting across
childhood on corticolimbic function reiterates the importance of
timing of exposure for subsequent amygdala and prefrontal func-
tion. Much of the theoretical rationale for the notion of “sensitive
periods” emerged from foundational work in humans documenting
the developmental trajectories of subcortical and cortical brain
development (Gilmore et al., 2012), and from animal studies
wherein environmental exposure can be manipulated. For example,
rhesus monkeys separated from their mother at 1-week versus
1-month of age or control animals (no separation), showed a sig-
nificant decrease in gene expression in lateral and basal amygdala
nuclei, more so than in prefrontal regions (Sabatini et al., 2007).
In contrast to subcortical regions such as the amygdala, regions
of the PFC develop into adulthood (Lenroot & Giedd, 2006;
Sowell et al., 2003). Structural MRI studies have shown that gray
matter volume in the PFC increases during the preadolescent
period, followed by postadolescent decrease (Giedd et al., 1999);
such volumetric changes correspond with increasing activation in
the ACC and mPFC, and parallel behavioral improvements in exec-
utive functioning and emotion regulation (Casey et al., 2008).
Consistent with the notion that windows of vulnerability occur dur-
ing developmental stages marked by rapid change (Andersen &
Teicher, 2008), it may be that prepubertal youth experience neural
reorganization following environmental adversity. Our results are
consistent with the existing structural MRI studies in this area
that have reported similar timing-specific results for the effects of
sexual abuse on subcortical and prefrontal volumes: abuse that
occurred between ages 3 and 5 was associated with hippocampal,
but not PFC volume, whereas abuse that occurred between ages
14 and 16 was associated with PFC volume, but not hippocampal
volume (Andersen et al., 2008; Pechtel et al., 2014). Our study
extends this research to corticolimbic function and a measure of
a more common form of childhood adversity – harsh parenting.
In a recent paper (Gard, McLoyd, Mitchell, & Hyde, 2020), we rep-
licated the timing effects presented here, using another unfortu-
nately common experience faced by children in the United
States: neighborhood disadvantage. However, the effects persisted
above-and-beyond harsh parenting (see Gard et al., 2017, for a sim-
ilar conclusion in a different sample), suggesting that both harsh
parenting and living in a disadvantage neighborhood sculpt corti-
colimbic function in a timing-specific manner.

Inconsistencies in adversity – amygdala function associations

That harsh parenting in early childhood was associated with less
threat-related amygdala reactivity was in the opposite direction

to most, but not all, previous research. A meta-analysis found
that individuals exposed to childhood maltreatment exhibited
greater amygdala activation to threatening emotional facial
expressions (Hein & Monk, 2017). In contrast, three studies
that operationalized childhood adversity as family income, family
conflict, or harsh parenting reported that greater adversity was
associated with less amygdala reactivity to threatening facial
expressions (Gard et al., 2017; Holz et al., 2017; Javanbakht
et al., 2015), consistent the results reported here. Moreover, a
recent study found that individuals who were physically abused
or neglected evinced greater threat-related amygdala reactivity,
whereas individuals who experienced both types of maltreatment
showed less threat-related amygdala reactivity compared to con-
trols (Puetz, Viding, Gerin, & Pingault, 2019). Collectively, this
research suggests that the severity, frequency, and type of adver-
sity may modulate the effects on neural function, particularly
with regards to the direction of associations with amygdala activa-
tion. A wealth of literature indicates that chronic exposure to early
life adversity leads to hypoactivation of physiological stress
responses (Loman & Gunnar, 2010). Similarly, although amyg-
dala sensitivity to environmental signals of threat or danger is
adaptive in the short term, particularly for youth living in adverse
contexts, persistent hyperactivation of physiological response sys-
tems (e.g., the hypothalamic–pituitary−adrenocortical [HPA]
axis) can lead to a wide array of diseases (McEwen & McEwen,
2017). Thus, tentatively, blunted amygdala reactivity to threaten-
ing facial expressions following exposure to chronic, daily adver-
sities (e.g., low family income, harsh parenting) may be an
adaptive response that facilitates allostasis and minimizes expo-
sure to neurotoxic physiological hormones (e.g., cortisol).

Associations between harsh parenting and prefrontal function

We also found that increases in harsh parenting across child-
hood were associated with less mPFC reactivity (centered in
the dACC) during socioemotional processing, consistent with
a study by van Harmelen et al. (2014). Dorsal regions of the
PFC/ACC are thought to support the cognitive components of
emotion processing, including appraisal during passive atten-
dance to emotional facial expressions (Etkin et al., 2011). One
interpretation of our results is that youth exposed to recurrent
harsh parenting behaviors across childhood fail to recruit the
dACC while viewing threatening facial expressions.
Transcranial magnetic stimulation applied over the dACC
(BAs 24 and 32) has been shown to impair discrimination of
angry faces (Harmer, Thilo, Rothwell, & Goodwin, 2001), lend-
ing support for the idea that failed recruitment of the dACC gen-
erates inappropriate responses to threatening stimuli. Indeed,
multiple forms of psychopathology have been associated with
less dACC reactivity during angry face processing, including
antisocial behavior (Hyde et al., 2013; Yang & Raine, 2009)
and generalized anxiety disorder (Mochcovitch, da Rocha
Freire, Garcia, & Nardi, 2014). Although our results suggest
that the neural effects of harsh parenting were centered in the
mPFC/dACC, several other studies have reported negative asso-
ciations between childhood adversity and neural activation in
the dorsolateral prefrontal cortex (dlPFC)/inferior frontal
gyrus (Fonzo et al., 2016; Liberzon et al., 2015), highlighting
potentially diffuse effects of adversity on PFC function.
Identification of dorsal rather than ventral regions of the
mPFC in the current study could reflect the fact that our emo-
tional faces matching task captured cognitive (i.e., perceptual
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processing) rather than regulatory components of emotion pro-
cessing (Etkin et al., 2011; Fuster, 2001).

Associations between harsh parenting and
amygdala-prefrontal connectivity

We also found that increases in harsh parenting across childhood
were associated with stronger positive, rather than weaker negative,
amygdala–prefrontal connectivity (centered on Brodmann’s areas
10 [OFC] and 9 [mPFC]) during angry compared to neutral face
processing. Several studies using task-based or resting-state fMRI
have found that children exhibit positive amygdala–mPFC connec-
tivity during threat processing (Gee et al., 2013b). Positive amyg-
dala–mPFC connectivity has been associated with anxiety in
children (Demenescu et al., 2013; Gee et al., 2013b) and internaliz-
ing and externalizing behaviors in adults (Gard et al., 2018; Waller
et al., 2018). Adolescents and adults, in contrast, evince stronger
negative amygdala–mPFC connectivity (Gee et al., 2013b).
Previous research has shown that youth exposed to maltreatment
or previous institutionalization show stronger negative amygdala–
mPFC connectivity during threat processing, supporting a
“stress-acceleration” hypothesis (Gee et al., 2013a; Jedd et al.,
2015; Peverill et al., 2019). However, our results suggest that the
youth in our sample exposed to harsh parenting are not maturing
earlier but, rather, show a potentially “immature” pattern of amyg-
dala–prefrontal connectivity reflective of younger children.

Specificity of angry facial expressions

That the effects of harsh parenting on corticolimbic function were
specific to the angry facial expressions versus neutral faces contrast
suggests that more research is needed to determine the affective
specificity of adversity effects on corticolimbic function. Maheu
et al. (2010) also found that the effects of childhood maltreatment
on amygdala function were specific to angry facial expressions,
whereas Gard et al. (2017) and van Harmelen et al. 2014) did
not report stronger effects for angry face processing. Previous
reports indicate that physically abused children may process
angry facial expressions differently than nonmaltreated controls
(Pollak & Sinha, 2002; Pollak & Tolley-Schell, 2003). Compared
to nonmaltreated children, physically abused children may require
less perceptual information to correctly identify facial expressions
of anger (Pollak & Sinha, 2002), and respond more quickly to tar-
gets cued by angry faces versus happy faces (Pollak & Tolley-Schell,
2003). More research is needed to determine whether certain fea-
tures of adversity or the environmental context shape the associa-
tions with (and potential specificity for) different facial expressions.
This is particularly important as several meta-analyses highlight the
modulating role of emotional valence in fMRI studies of psychopa-
thology (e.g., Groenewold et al., 2013)

Limitations and future directions

Despite the use of a large population-based sample of sociodemo-
graphical diverse families followed from birth through adoles-
cence, integration of repeated measures of harsh parenting
across childhood with linear growth curve modeling, and exami-
nation of corticolimbic activation and connectivity within the
same analyses, several limitations warrant consideration. First,
although our results suggest that the timing of exposure to
harsh parenting is important for subsequent corticolimbic func-
tion, interpretations of our results as evidence for “sensitive

periods” should be tempered. Such a claim would require repeated
measures of neural function in addition to repeated measures of
harsh parenting (Andersen & Teicher, 2008). Procuring measures
of task-based corticolimbic function in early childhood is chal-
lenging; studies rarely collect such data in children younger
than 5 years due to motion and attention constraints (Graham
et al., 2015). In recent years, other imaging modalities such as
resting-state or sleeping fMRI, have been successfully translated
into younger populations including infants (Graham et al.,
2015); such approaches are promising for evaluating sensitive
periods of environmental effects on brain development.
Nevertheless, our results should be interpreted within the context
of robust animal experiments documenting sensitive periods of
adversity effects on corticolimbic development (reviewed by
Callaghan & Tottenham, 2016) and longitudinal structural MRI
studies (reviewed by Teicher & Samson, 2016). Relatedly,
although theories of corticolimbic development highlight early
childhood and adolescence as two potential windows of vulnera-
bility, we were unable to include harsh parenting during adoles-
cence in our linear growth curve models. Although the FFCWS
collected data at age 15, there was only one harsh parenting
item that overlapped with the data collected at ages 3, 5, and
9. We included a different but comparable measure of maternal
physical aggression at age 15 from the FFCWS-SAND cohort,
and found that this measure of harsh parenting was not associated
with concurrent corticolimbic function. Nevertheless, replications
of our results would benefit from more intensive data collection
across both childhood and adolescence.

Third, harsh parenting is only one type of environmental
exposure thought to impact functional brain development;
neighborhood- and family-level socioeconomic disadvantage,
maternal psychopathology, and inter-parental conflict are just
some examples of other adversities that often co-occur with
harsh parenting (Green et al., 2010). Nevertheless, there is good
reason to believe that parenting behaviors are relevant targets
for understanding how environmental stress becomes biologically
embedded to predict maladaptive youth socioemotional out-
comes. The Family Stress Model posits that parenting behaviors
(i.e., low warmth/nurturance, high harshness) mediate the nega-
tive effects of socioeconomic disadvantage on youth outcomes
(Conger, Ge, Elder, Lorenz, & Simons, 1994); this model has
been supported across a range of contexts – within urban and
rural samples, cross-culturally, in racial and ethnical diverse sam-
ples, in two-parent and single-parent families, and using cross-
sectional and longitudinal data (reviewed by Masarik & Conger,
2017; see Gard et al., 2020 for a recent application in the
FFCWS). Several structural MRI studies have shown that parent-
ing behaviors can mediate (Luby et al., 2013) and moderate
(Whittle et al., 2017) the effects of socioeconomic status (SES)
on youth brain development. For example, using repeated mea-
sures of amygdala volume, Whittle et al. (2017) showed that,
among adolescents from low socioeconomic status backgrounds,
positive parenting attenuated the age-related increase in amygdala
volume. Although some research has shown that the impact of
parenting behaviors on youth corticolimbic function is indepen-
dent of other correlated adversities such as low family income
and maternal depression (Gard et al., 2017), more research is
needed to evaluate this claim. This literature would also benefit
from exploration of different types of parenting behaviors beyond
physical harshness (e.g., psychological coercion, warmth).

The present study extends previous research by documenting
how maternal harsh parenting changes across childhood in a
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population-based sample of sociodemographically-diverse fami-
lies, and highlights that the effects of harsh parenting on cortico-
limbic function depend on timing of exposure and the neural
region examined. We present one pathway through which envi-
ronmental adversity may become biologically embedded to pre-
dict maladaptive youth socioemotional behaviors (McEwen &
McEwen, 2017). Future research will benefit from study designs
that boast repeated measures of neural function, examinations
of how severity and chronicity of adversity impacts corticolimbic
function, and the efficacy of parenting interventions on changes
in brain development within emotion-processing-related regions.
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