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Abstract

Markov and semi-Markov processes with block tridiagonal transition matrices for their
embedded discrete-time Markov chains are underlying stochastic models in many applied
probability problems. In particular, identity-by-descent (IBD) problems for uncle-type
and cousin-type relationships fall into this class. More specifically, the exact distributions
of relevant IBD statistics for two individuals in either an uncle-type or cousin-type
relationship are of interest. Such statistics are the amount of genome shared IBD
by the two related individuals on a chromosomal segment and the number of IBD
pieces on such a segment. These lead to special reward distributions associated with
block tridiagonal transition matrices for continuous-time Markov chains. A method
is provided for calculating explicit, closed-form expressions for Laplace transforms
of general reward functions for such Markov chains. Some calculation results on the
cumulative probabilities of relevant IBD statistics via a numerical inversion of the Laplace
transforms are also provided for uncle/nephew and first-cousin relationships.
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1. Introduction

Markov and semi-Markov processes with block tridiagonal transition matrices for their
embedded discrete-time Markov chains are underlying stochastic models in many applied
probability problems. In particular, identity-by-descent (IBD) problems for uncle-type and
cousin-type relationships fall into that class of problem. Although the motivation for this paper
stems from such IBD problems, our results on block tridiagonal matrices might also be useful
in other applied areas. The IBD of genetic material amongst individuals in a pedigree is a
fundamental concept in genetics. Evaluations of the distributions of relevant IBD statistics are
of interest in the framework of the genomic continuum model. Such statistics are the amount of
genome shared IBD by two related individuals in a pedigree on a chromosomal segment and the
number of corresponding IBD pieces on such a segment. There are few exact results in this area
and they concern only grandparent-type, sib, and half-sib relationships; see Stefanov (2000a),
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(2002), (2004), Ball and Stefanov (2005), and Walters and Cannings (2005). Previously, only
approximations to such distributions have been investigated, such as Poisson approximations
(cf. Bickeboller and Thompson (1996a), (1996b)). Some simulation methods have also been
suggested for such evaluations by Browning (2000), and a combination of analytical results with
relevant simulations have been introduced in Cannings (2003). The uncle-type and cousin-type
relationships are basic and important nonunilineal relationships. Note that two individuals are
said to be in a unilineal relationship if one is a descendant of the other.

In this paper a method is provided for calculating explicit, closed-form expressions for
Laplace transforms of general reward functions associated with some block tridiagonal tran-
sition matrices for continuous-time Markov chains. In particular, these cover relevant IBD
distributions for uncle-type and cousin-type relationships. Successful numerical inversion of
these transforms yields the corresponding cumulative probabilities. Some calculation results
of cumulative probabilities are also provided for uncle/nephew and first-cousin relationships.
More powerful PCs than those currently available should be able to handle the computational
problems arising with numerical inversion of the Laplace transforms for high-order uncle-type
and cousin-type relationships.

Our models are special cases of inhomogeneous quasi-birth-and-death (QBD) processes and
there is a huge literature on these. There are many results on QBD processes that are somewhat
related to ours (see Gaver et al. (1984), Lucantoni et al. (1994), Latouche and Ramaswami
(1999), and Asmussen and Pihlsgård (2004)), including distributions for special rewards within
first passage times (cf. Li and Cao (2004)). On the other hand, our explicit expressions for the
Laplace transforms (Theorem 3 in Section 4) do not involve infinite sums or inverse matrices
and, therefore, their evaluation does not create any computational problems.

Our methodology is different from that used in the literature on QBD processes and it treats
them with semi-Markov tools. More details on the methodology follow. The mathematical
model of the problem leads to evaluation of distributions of special reward functions associated
with continuous-time Markov chains observed on fixed time intervals. Recent results of
Stefanov (2006) provide closed-form solutions for two-dimensional Laplace transforms of
the cumulative distribution functions of reward functions, on finite-time horizons, for Markov
chains and semi-Markov processes. These solutions are practicable if the number of states
of the embedded discrete-time Markov chain is small. More specifically, these solutions are
expressed in terms of two-dimensional Laplace transforms for joint distributions associated
with the first passage times between states, where the latter Laplace transforms are derivable
explicitly as explained in Stefanov (2006). For the simple uncle/nephew and first-cousin
relationships, the number of states is 4 and 7, respectively, and for great-uncle/great-nephew
and second-cousin relationships these are 8 and 21, respectively. The evaluations of the
Laplace transforms of relevant joint distributions associated with the first passage times for
such low-order relationships are implementable. For higher-order uncle-type and cousin-type
relationships, we need to find a more practicable formula. We provide a method that leads to
such a formula, which allows calculation of explicit, closed-form expressions for the Laplace
transforms of the aforementioned IBD statistics. In particular, for any uncle-type relationship,
the computations are associated with only 8- and 9-state embedded Markov chains and, for any
cousin-type relationship, with 14- and 15-state Markov chains.

The paper is organized as follows. The motivation, as well as the underlying mathematical
models for the uncle-type and cousin-type relationships, are discussed in the next section. Some
preliminary results required in the sequel are found in Section 3. The main results are presented
in Section 4. Applications to IBD distributions for uncle-type and cousin-type relationships
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are described in Section 5. A relevant extension of the result in Stefanov (2006) for rewards on
semi-Markov processes, required in Section 4, is provided in Appendix A.

Throughout the paper, I is the identity matrix and 1 is a column vector of 1s, the dimensions
of these being apparent from the context. Any sum is 0 if vacuous.

2. Motivation

2.1. Identity by descent

The genome of diploid organisms (such as humans) resides on a set of pairs of chromosomes.
For example, humans have 23 pairs of chromosomes, 22 autosomal pairs and one pair of sex
chromosomes (XX for females and XY for males). Any small segment of the DNA sequence
on a chromosome is called a locus. In particular, genes are also called loci. A locus that exhibits
observable variation in the DNA sequence is called a marker locus. The number of marker loci
on each chromosome is huge and, therefore, the genome can be viewed as a continuum. That
is, a chromosome is viewed as a finite interval and a locus simply indicates a particular position
on that interval. For each pair of chromosomes of an individual, one chromosome is inherited
from his father and the other from his mother. The chromosome inherited from a parent is
either (i) the entire one from the grandfather (that is, the one the parent derived from his father),
(ii) the entire one from the grandmother, or (iii) a combination of the two. In case (iii), the
inherited chromosome consists of alternating pieces of the two grandparental chromosomes.
The occurrences of switches (from a grandpaternal to a grandmaternal and vice versa) along a
chromosome are usually modelled by a homogeneous Poisson process. The distances between
loci are measured by the expected number of switches between them. The units of that distance
are called morgans. Typical lengths of the human chromosome are between 0.5 and 3 morgans.

In the context of a grandparent/grandchild relationship, the DNA sequence at a locus from a
chromosome of the grandchild is called identical by descent (IBD) with the DNA sequence at the
same locus of the corresponding chromosome of the grandparent if the former DNA is inherited
by the grandchild from the latter of the grandparent. Assume now that two individuals are in
a half-sib relationship. Then the DNA sequence at a particular locus from the corresponding
chromosomes of the two half-sibs is called IBD if that DNA sequence is inherited from the same
grandparent. More generally, the DNA sequence at a locus for two related individuals is called
IBD if the DNA sequence at that locus of one of these individuals is a physical copy of the DNA
sequence at the same locus of the other individual (as in the grandparent/grandchild relationship
above) or both are physical copies of the DNA sequence at the same locus of the corresponding
chromosome in a common ancestor of the two individuals (as in the half-sib relationship above).
For a given relationship, for example uncle/nephew, there are a finite number of parent/child
relationships that affect IBD. The occurrences of switches along the inherited chromosomes
for each such parent/child relationship are assumed to follow independent unit-rate Poisson
processes. Thus, for each such parent/child relationship, we can derive a two-state continuous-
time Markov chain, with states 0 and 1, corresponding to whether the DNA sequence at a
particular location on the chromosome is inherited from the child’s grandmother or grandfather,
respectively. It follows that, if m parent/child relationships impact on a given relationship
then IBD for the given relationship is modelled via a continuous-time Markov chain, Xt say,
having state space {0, 1}m, given by the cartesian product of the m independent parent/child
Markov chains. However, there are symmetries present in Xt which enable its state space to be
substantially reduced. A detailed treatment of the concept of IBD and the relevant mathematical
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models for various relationships are discussed in Donnelly (1983). The relevant models for
uncle-type and cousin-type relationships are introduced in the next subsection.

The motivation of this paper stems from the need to evaluate p-values in relevant tests
associated with resemblance of individuals suspected to be in a particular relationship and
p-values for tests associated with identifying chromosomal segments responsible for complex
diseases. Stefanov (2000a), (2002) discussed such tests for the simple grandparent/grandchild
and sib relationships based on continuous genome data. IBD distributional results are widely
used on discrete genome data (few loci or, more recently, multiple loci) (see Thompson (2000)
and Lange (2002)). However, owing to a lack of exact distributional results on the continuous
genome beyond those for the simple grandparent/grandchild and sib relationships, such tests
have not been devised. The aim of this paper is to provide such distributional results on the
continuous genome for a large set of relationships (uncle-type and cousin-type). Then the
p-values mentioned above are obtained from cumulative probabilities of the aforementioned
IBD statistics, that is, the amount of genome shared IBD on chromosomal segments and the
number of IBD pieces on such segments. In particular, our results yield p-values of relevant
significance tests for resemblance of two individuals as being in a particular uncle-type (or
cousin-type) relationship. Such tests are devised in the same way as is done in Stefanov
(2000a), (2002) for the simple grandparent/grandchild and sib relationships.

2.2. Uncle-type and cousin-type relationships

First we describe the processes of interest in this paper. Let (X̂t , Ŷt ) be an inhomogeneous
QBD chain with discrete-time parameter and state space {(i, j) : i = 0, 1, . . . , n − 1, j =
1, 2, . . . , k}. Conventionally, X̂t is called the level and Ŷt the phase at time t . The number of
phases k is the same for all levels. The one-step transition probability matrices of such chains
have a block tridiagonal structure and we consider the following special case of such matrices:

Bn =

⎡
⎢⎢⎢⎢⎢⎣

A (n − 1)diag[d]
diag[d] A (n − 2)diag[d]

. . .
. . .

. . .

(n − 2)diag[d] A diag[d]
(n − 1)diag[d] A

⎤
⎥⎥⎥⎥⎥⎦ , (1)

where A is a matrix of order k, d = (d1, d2, . . . , dk)
� is a k-dimensional vector, and diag[d]

is the diagonal k × k matrix with di on the diagonal, that is,

diag[d](i, j) =
{

di if i = j ,

0 otherwise.

The notation (X̂t , Ŷt ) | Bn is also used for this QBD chain.
Throughout the paper, the models of interest, denoted by (Xt , Yt ) | Bn, are semi-Markov

processes whose embedded discrete-time Markov chains are the QBD chains (X̂t , Ŷt ) | Bn.
Whenever such a semi-Markov process is considered, the relevant holding time distributions
are also described. In particular, recall that continuous-time Markov chains are semi-Markov
processes with exponentially distributed holding times.

The motivation for considering these models stems from genetics problems associated with
evaluation of relevant distributions concerning the amount of genetic material shared in common
by related individuals. More specifically, we are interested in uncle-type and cousin-type
relationships. The underlying mathematical model (see Donnelly (1983)) for uncle-type and
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cousin-type relationships is (Xt , Yt ) | Bn, with the following assumptions on the number of
phases k, the matrix Bn, and the holding time distributions.

Uncle-type relationships: k = 4; d1 = d3 = 1/(n + 4), d2 = d4 = 1/(n + 3); and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2

n + 3
0

2

n + 3

2

n + 4
0

2

n + 4

1

n + 4

0
2

n + 3
0

2

n + 3

2

n + 4

1

n + 4

2

n + 4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The holding times are exponentially distributed with parameters (λ1, λ2, λ3, λ4) for the four
phases at each level, where λ1 = λ3 = n + 3 and λ2 = λ4 = n + 4. For example, n = 1
corresponds to the uncle/nephew relationship, n = 2 corresponds to the great-uncle/great-
nephew relationship, etc. That is, the number of levels n indicates the generation gap.

Cousin-type relationships: k = 7; di = 1/(n + 5) for each i = 1, 2, . . . , 7; and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2

n + 5

2

n + 5
0

2

n + 5
0 0

2

n + 5
0 0

2

n + 5
0

2

n + 5
0

2

n + 5
0 0

2

n + 5
0

2

n + 5
0

0
2

n + 5

2

n + 5
0 0 0

2

n + 5

2

n + 5
0 0 0 0

4

n + 5
0

0
1

n + 5

1

n + 5
0

2

n + 5
0

2

n + 5

0 0 0
2

n + 5
0

4

n + 5
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The holding times are exponentially distributed with parameters λi = n + 5, i = 1, 2, . . . , 7,
for the seven phases at each level. For example, n = 1 corresponds to first cousins, n = 2
corresponds to first cousins once removed, and n = 3 corresponds to second cousins.

The initial probability vector for both types of relationship has the form

1

2n−1

((
n − 1

0

)
u,

(
n − 1

1

)
u, . . . ,

(
n − 1

n − 1

)
u

)�
,

where the vector u is equal to ( 1
4 , 1

4 , 1
4 , 1

4 )� and ( 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

4 , 1
8 )� for the uncle-type and

cousin-type relationships, respectively.
The lengths of chromosomes can be viewed as time intervals, [0, T ] say for a chromosome

of length T morgans, where a locus on a chromosome corresponds to a time epoch. When a
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chromosome from one individual is aligned with the corresponding one of another individual,
related to him, at each location (time epoch) we have two states: either the DNA sequence is
IBD or it is not. Therefore, the IBD status along a chromosome can be viewed as a two-state
process. Donnelly (1983) explained that for uncle-type and cousin-type relationships this two-
state process can be embedded in the aforementioned (Xt , Yt ) | Bn processes as follows. The
first two states of (Xt , Yt ) | Bn correspond to IBD status and the remaining states correspond to
non-IBD status. Therefore, the following two reward functions for (Xt , Yt ) | Bn are of practical
importance here: the time spent in the first two states within a time interval of length T and the
number of visits to the first two states within such a time interval. The genetic interpretation of
these is as follows. The first reward function represents the amount of genome shared IBD by
the two related individuals along a chromosomal segment of length T morgans and the second
reward function gives the number of IBD pieces within such a chromosomal segment.

3. Preliminary results

In this section we list a few relevant results on absorbing Markov chains and we derive a result
(Lemma 1) on the state space restriction of semi-Markov processes. Lemma 1 is frequently
used in the next section. Throughout the paper, the entries of a matrix A are written as ai,j or
as A(i, j). The Laplace transform of a random variable X is denoted by L[X](s) = E(e−sX).
Consider the following QBD transition probability matrix with k phases and two levels:

B =
[

Q diag[x]
diag[y] R

]
, (2)

where Q and R are k × k matrices, and x = (x1, . . . , xk)
� and y = (y1, . . . , yk)

� are
k-dimensional vectors. Some notation concerning relevant probability generating functions
associated with absorbing finite-state Markov chains follows. Denote by R | y the 2k × 2k

matrix

R | y =
[
R diag[y]
0 I

]
,

where 0 is a k × k matrix of 0s. Assume that R | y is the one-step transition probability matrix
of a discrete-time Markov chain with 2k states. Let τr be the time until absorption in the last
k states, given that the initial state is r, 1 ≤ r ≤ k, and let Tr (i, j) be the number of one-step
transitions from state i to state j , where 1 ≤ i ≤ k (the transient states) and 1 ≤ j ≤ 2k,
by time τr . Likewise, let T

(n)
r (i, j) be the count of Tr (i, j) given that absorption occurs in

state n + k. Denote by gR | y,r (S, s) the joint probability generating function of the Tr (i, j)

until absorption, given that the initial state is r, 1 ≤ r ≤ k, that is,

gR | y,r (S, s) = E

( k∏
i,j=1

s
Tr (i,j)
i,j

k∏
i=1

s
Tr (i,i+k)
i

)
,

where the si,j are the entries of the matrix S and s = (s1, s2, . . . , sk)
�. Of course,

k∑
i=1

Tr (i, i + k) = 1,

and if Tr (i, i + k) = 1 then absorption occurs through a one-step transition from state i to
state i + k. Denote by gR | y,r,j (S, s) the conditional joint probability generating function of
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the Tr (i, j) until absorption at state j + k, that is,

gR | y,r,j (S, sj ) = E

(
sj

k∏
n,m=1

sTr (n,m)
n,m

∣∣∣∣ Tr (j, j + k) = 1

)
= E

(
sj

k∏
n,m=1

sT
(j)
r (n,m)

n,m

)
.

Let βi,j (R | y) be the probability that the Markov chain is absorbed at state j + k, 1 ≤ j ≤ k,
given that the initial state is i, 1 ≤ i ≤ k. We denote by B(R | y) the matrix whose entries are
βi,j (R | y). For the matrix of absorption probabilities, B(R | y), and the probability gener-
ating functions, gR | y,r (S, s) and gR | y,r,j (S, sj ), we have (here ej = (0, . . . , 0, 1, 0, . . . , 0)�
is the k × 1 unit vector with 1 in the j th position and 11� is a k × k matrix of 1s)

B(R | y) = (I − R)−1diag[y],
gR | y(S, s) = (I − R(S))−1diag[y]s,

gR | y,r,j (S, sj ) = gR | y,r (S, sjej )

gR | y,r (11�, ej )
, r, j = 1, 2, . . . , k, (3)

where gR | y(S, s) = (gR | y,1(S, s), gR | y,2(S, s), . . . , gR | y,k(S, s))� and the (i, j)th entry of
the k × k matrix R(S) is given by R(i, j)S(i, j) (= R(i, j)si,j ). The first two identities in (3)
follow from Iosifescu (1980, p. 103) (cf. also Karlin and Taylor (1981, p. 29)) and the third
identity is an easy exercise. Note that the denominator in the third identity above is equal to the
absorption probability, given that the initial state is r and absorption occurs through a transition
from state j to state j + k, that is,

βr,j (R | y) = gR | y,r (11�, ej ).

Consider the semi-Markov process (Xt , Yt ) | B, where B (see (2)) is the one-step transition
probability matrix of the embedded discrete-time Markov chain and the Laplace transforms
(LTs) of the holding (sojourn) times are described below. Also, recall that we denoted the
embedded discrete-time Markov chain of (Xt , Yt ) | B by (X̂t , Ŷt ) | B. The LT of the holding
time associated with a one-step transition from phase i to phase j within level m (m = 1, 2)
is denoted by ρ

(m)
i,j (s), from phase i in level 1 to phase i in level 2 is denoted by ρ

(1,2)
i (s),

and likewise from phase i in level 2 to phase i in level 1 is denoted by ρ
(2,1)
i (s). Recall from

the matrix B that one-step transitions are not possible between states whose phases and levels
are both different. Denote by (X̃t , Ỹt ) | B the semi-Markov process derived from the semi-
Markov process (Xt , Yt ) | B through restricting the state space to the states from level 1. More
precisely, assuming that X0 = 1, for t > 0, if Xt = 1 then (X̃t , Ỹt ) | B = (Xt , Yt ) | B, whilst
if Xt = 2 then (X̃t , Ỹt ) | B = (Xu−, Yu−) | B, where u = sup{v < t : Xv = 1} and, for
example, Xu− = limv↑u X(v). Since X̃t is fixed (equal to 1), we may ignore it and say that
Ỹt | B is a semi-Markov process with k states. Denote by νi,j the holding time in state i, given
that the next state to be visited is state j , of the semi-Markov process Ỹt | B.

Lemma 1. The Laplace transform of νi,j , i, j = 1, . . . , k, is given by

L[νi,j ](s) = qi,j ρ
(1)
i,j (s) + xiβi,j (R | y)ρ

(1,2)
i (s)gR | y,i,j (R(s), ρ

(2,1)
j (s))

qi,j + xiβi,j (R | y)
, (4)

where the entries of the k × k matrix R(s) are ρ
(2)
n,m(s). The one-step transition probabilities

of the embedded discrete-time Markov chain of the semi-Markov process Ỹt | B are denoted

https://doi.org/10.1239/aap/1246886622 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886622


530 V. T. STEFANOV AND F. BALL

by p̃i,j for the transition from state i to state j and given by

p̃i,j = qi,j + xiβi,j (R | y), i, j = 1, 2, . . . , k, (5)

where recall that the qi,j are the entries of the matrix Q and βi,j (R | y) is the absorption
probability in state j + k of a discrete-time Markov chain with transition probability matrix
R | y and initial state i.

Proof. A one-step transition from state i to state j in the embedded discrete-time Markov
chain of the semi-Markov process Ỹt | B may occur in two ways: either (i) through a direct
transition from (1, i) to (1, j) in (X̂t , Ŷt ) | B (with probability qi,j /(qi,j + xiβi,j (R | y))), or
(ii) after a transition to level 2 and a subsequent excursion there before entering level 1 through
state (2, j) (with probability xiβi,j (R | y)/(qi,j + xiβi,j (R | y))). Therefore, in view of the
basic properties of semi-Markov processes, the distribution of the holding time νi,j , denoted
by Dνi,j

, is a mixture of two distributions, say D1 and D2, that is,

Dνi,j
= qi,j

qi,j + xiβi,j (R | y)
D1 + xiβi,j (R | y)

qi,j + xiβi,j (R | y)
D2. (6)

Here the LT of the distribution D1 is ρ
(1)
i,j (s). The distribution D2 is equal to that of a sum of two

independent random variables, of which the LT of the first one is ρ
(1,2)
i (s) and the second one

has the distribution of the excursion of the semi-Markov process (Xt , Yt ) | B in level 2 given
that the initial phase is i, and given that the phase before leaving level 2 is j . This excursion

equals the following sum of random sums:
∑k

n,m=1
∑T

(j)
i (m,n)

r=1 Zn,m,r , where the Zn,m,r are

independent and, for each pair (n, m) and r = 1, 2, . . ., the LT of Zn,m,r is ρ
(2)
n,m(s); recall that,

for 1 ≤ i, j ≤ k, T
(j)
i (n, m) denotes the number of one-step transitions from state n to state m

until absorption in a discrete-time Markov chain whose one-step transition matrix is given by
R | y, given that the initial state is i and absorption occurs in state j + k. Therefore, in view
of Lemma 2, below, the LT of this excursion is given by

gR | y,r,j (R(s), ρ
(2,1)
j (s)), (7)

where the conditional joint probability generating function gR | y,r,j (S, sj ) has been introduced
earlier. Thus, (4) follows from (6) and (7). It is easy to see that (5) holds. This completes the
proof.

Lemma 2. Let � = (γ1, γ2, . . . , γr )
� be a vector of nonnegative integer-valued random vari-

ables with joint probability generating function g�(s1, s2, . . . , sr ). Let Z(i)
n , i = 1, 2, . . . , r , be

r independent sequences of independent and identically distributed random variables that are
independent of �. For each n, it is assumed that the distribution of Z

(i)
n follows the distribution

of a random variable, Z(i) say, for i = 1, 2, . . . , r . Let

Si =
γi∑

j=1

Z
(i)
j , i = 1, 2, . . . , r.

Then the Laplace transform of the r-dimensional vector S = (S1, . . . , Sr )
� is equal to

L[S](t1, t2, . . . , tr ) = g�(L[Z(1)](t1), L[Z(2)](t2), . . . , L[Z(r)](tr )),
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and, more generally, the Laplace transform of the 2r-dimensional vector (S, �) is equal to

L[S, �](t1, t2, . . . , t2r )

= g�(exp{−tr+1}L[Z(1)](t1), exp{−tr+2}L[Z(2)](t2) . . . , exp{−t2r}L[Z(r)](tr )).

Proof. The proof follows from Lemma 2.1 of Stefanov (2000b).

4. Main results

4.1. State space restriction

In this subsection we provide an effective route, via relevant recurrence relations, for the
evaluation of explicit, closed-form expressions of the holding time distributions and transition
probabilities of a state space restricted semi-Markov process. The latter is the semi-Markov
process derived from (Xt , Yt ) | Bn (introduced in Section 2) via a state space restriction to the
states in level 0. To understand how the recurrence relations are derived, we consider first the
special cases n = 2 and n = 3. The general case is stated in Theorem 1, below.

The n=2 case. Consider the process (Xt , Yt ) | B2. The holding times are exponentially
distributed (that is, the process is a continuous-time Markov chain) and their parameters are
given by λ1, λ2, . . . , λk for the k phases at each of the two levels (recall that the levels are 0
and 1). Denote by (X̃t , Ỹt ) | B2 the semi-Markov process derived from the continuous-time
Markov chain (Xt , Yt ) | B2 through state space restriction of the latter to the states in level 0.
Since X̃t | B2 is fixed (equal to 0), we may ignore it and say that Ỹt | B2 is a semi-Markov
process with k states. Denote by ν

(1)
i,j the holding time in state i, given that the next state to be

visited is j , of the semi-Markov process Ỹt | B2.

Lemma 3. The Laplace transform of ν
(1)
i,j , i, j = 1, 2, . . . , k, is given by

L[ν(1)
i,j ](s) = λi

λi + s

(
ai,j + diβi,j (A | d)gA | d,i,j (�(s), λj /(λj + s))

ai,j + diβi,j (A | d)

)
,

where the (n, m)th entry of the k × k matrix �(s) is given by λn/(λn + s). The one-step
transition probabilities of the embedded discrete-time Markov chain of Ỹt | B2 are denoted by
p̃

(1)
i,j and given by

p̃
(1)
i,j = ai,j + diβi,j (A | d), i, j = 1, 2, . . . , k;

recall that βi,j (A | d) is the absorption probability in state j + k of a discrete-time Markov
chain with transition probability matrix A | d and initial state i.

Proof. The result follows from Lemma 1, replacing B by B2 and, for i, j = 1, 2, . . . , k,
replacing ρ

(1)
i,j (s), ρ

(2)
i,j (s), ρ

(1,2)
i (s), and ρ

(2,1)
i (s) by the LT of an exponentially distributed

random variable whose parameter is λi .

If we denote by P (1) the matrix whose entries are p̃
(1)
i,j then the second identity in Lemma 3

can be written in matrix form as

P (1) = A + diag[d]B(A | d).
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The n = 3 case. Now consider the process (Xt , Yt ) | B3. The holding times are exponen-
tially distributed and their parameters are given by λ1, λ2, . . . , λk for the k phases at each of
the three (0,1,2) levels. Introduce the 2k × 2k matrix

B
(1)
3 =

[
A(1) diag[d(1)]

2diag[d] A

]
,

where the entries of the matrix A(1) and the vector d(1) are given by

a
(1)
i,j = ai,j

1 − di

and d
(1)
i = di

1 − di

.

Of course, B
(1)
3 is the one-step transition probability matrix of the discrete-time Markov

chain (X̂t , Ŷt ) | B
(1)
3 , derived from (X̂t , Ŷt ) | B3 through conditioning on staying in levels 1

and 2. The corresponding continuous-time Markov chain is denoted by (Xt , Yt ) | B
(1)
3 . Anal-

ogously to the preceding case, denote by (X̃t , Ỹt ) | B
(1)
3 the semi-Markov process derived

from (Xt , Yt ) | B
(1)
3 through state space restriction of the latter to level 1 (the first k states of

(Xt , Yt ) | B
(1)
3 ). In view of Lemma 1 we obtain the following expressions for the LT of the

holding time ν
(1)
i,j (the reader should not get confused with the same notation for an analogous

holding time in the preceding case) and transition probabilities of this semi-Markov process:

L[ν(1)
i,j ](s) = λi

λi + s

(
a

(1)
i,j + d

(1)
i βi,j (A | 2d)gA | 2d,i,j (�(s), λj /(λj + s))

a
(1)
i,j + d

(1)
i βi,j (A | 2d)

)
,

p̃
(1)
i,j = a

(1)
i,j + d

(1)
i βi,j (A | 2d), i, j = 1, 2, . . . , k,

where the matrix �(s) has been introduced in Lemma 3. The second identity can be written in
matrix form as follows:

P (1) = A(1) + diag[d(1)]B(A | 2d).

Introduce a k × k matrix P (2), whose (i, j)th entry is given by (1 − di)p̃
(1)
i,j , that is,

P (2) = diag[1 − d]P (1).

Let

B
(2)
3 =

[
A 2diag[d]

diag[d] P (2)

]
.

It follows from the above construction that B
(2)
3 is the one-step transition probability matrix of

the embedded discrete-time Markov chain of the semi-Markov process derived through state
space restriction of the continuous-time Markov chain (Xt , Yt ) | B3 to the first two (0 and 1)
levels. Denote this semi-Markov process by (Xt , Yt ) | B

(2)
3 . Of course, the LTs of the holding

times for this semi-Markov process are given by (i) λi/(λi + s) for a transition from phase i

in level 0 to any other phase in that level as well as for a transition from phase i in level 0 or 1
to phase i in level 1 or, respectively, level 0, and (ii) ν

(1)
i,j (given in Lemma 2) for a transition

from phase i in level 1 to phase j in level 1. Furthermore, if we restrict the state space to the
states in level 0 (the first k states of (Xt , Yt ) | B

(2)
3 ), we obtain another semi-Markov process,

Ỹt | B
(2)
3 say (here X̃t can be ignored because it equals 0), whose embedded discrete-time

Markov chain has k states and the corresponding one-step transition probabilities and holding
time distributions are found in the following lemma, which is again a paraphrase of Lemma 1.
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Lemma 4. For the holding times ν
(2)
i,j , i, j = 1, . . . , k, of the semi-Markov process Ỹt | B

(2)
3

and the corresponding one-step transition probabilities, we have

L[ν(2)
i,j ](s) = λi

λi + s

(ai,j + 2diβi,j (P
(2) | d)gP (2) | d,i,j

(N (1)(s), λj /(λj + s))

ai,j + 2diβi,j (P
(2) | d)

)
,

p̃
(2)
i,j = ai,j + 2diβi,j (P

(2) | d), i, j = 1, 2, . . . , k,

where the (n, m)th entry of the k×k matrix N (1)(s) is L[ν(1)
n,m](s), which is given by Lemma 3.

If we denote by P (2) the matrix whose entries are p̃
(2)
i,j then the second identity in Lemma 4

can be expressed in matrix form as

P (2) = A + diag[2d]B(P (2) | d).

Remark 1. Note that from the construction above the semi-Markov process Ỹt | B
(2)
3 is equal

to the semi-Markov process which is derived through state space restriction of the continuous-
time Markov chain (Xt , Yt ) | B3 to the states in level 0.

The general case. Suppose that n ≥ 2 is fixed and consider the matrix Bn introduced in (1).
For r = 1, 2, . . . , n − 1, let A(r) and d(r) be the matrix and column vector with elements

a
(r)
i,j = ai,j

1 − (n − 1 − r)di

and d
(r)
i = rdi

1 − (n − 1 − r)di

.

In matrix notation we have

A(r) = (I − (n − 1 − r)diag[d])−1A,

d(r) = r(I − (n − 1 − r)diag[d])−1d.

Note that A(n−1) = A and d(n−1) = (n − 1)d. Introduce the k × k matrices P (r), P (r), and
B(r), and, for i, j = 1, 2, . . . , k, the LTs µ

(r)
i,j (s) and g

(r)
i,j (s) through the following recurrences:

P (1) = A, (8)

B(1) = B(P (1) | (n − 1)d), (9)

P (1) = A(1) + diag[d(1)]B(1), (10)

µ
(0)
i,j (s) = λi

λi + s
, (11)

g
(1)
i,j (s) = g

P (1) | (n−1)d,i,j

(
M(0)(s),

λj

λj + s

)
, (12)

where the (i, j)th entry of the matrix M(0)(s) is µ
(0)
i,j (s); and, for r = 2, 3, . . . , n − 1,

P (r) = (I − (n − r)diag[d])P (r−1), (13)

B(r) = B(P (r) | (n − r)d), (14)

P (r) = A(r) + diag[d(r)]B(r), (15)
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µ
(r−1)
i,j (s) = µ

(0)
i,j (s)(ai,j + d

(r−1)
i B(r−1)(i, j)g

(r−1)
i,j (s))

P (r−1)(i, j)
, (16)

g
(r)
i,j (s) = g

P (r) | (n−r)d,i,j

(
M(r−1)(s),

λj

λj + s

)
, (17)

µ
(n−1)
i,j (s) = µ

(0)
i,j (s)(ai,j + d

(n−1)
i B(n−1)(i, j)g

(n−1)
i,j (s))

P (n−1)(i, j)
, (18)

where the (i, j)th entry of the matrix M(r)(s) is µ
(r)
i,j (s) and recalling that the k × k matrix

B(P (j) | (n − j)d) is the matrix of absorption probabilities to the last k states of a discrete-time
Markov chain whose one-step transition probability matrix is the 2k×2k matrix P (j) | (n−j)d.

Theorem 1. Consider the continuous-time Markov chain (Xt , Yt ) | Bn introduced in Section 2.
The parameters of the exponentially distributed holding times are given by λi for phase i

at each level. Denote by ˜̃
Yt the semi-Markov process derived from (Xt , Yt ) | Bn by state

space restriction to the states in level 0. Then the one-step transition probability matrix of the

embedded discrete-time Markov chain (with k states) of ˜̃
Yt is given by P (n−1) and the Laplace

transform of the corresponding holding time distribution at state i, given that the next state
to be visited is j , is given by µ

(n−1)
i,j , where P (n−1) and µ

(n−1)
i,j are found using recurrences

(13)–(18), with initialisation given by (8)–(12).

Proof. The cases in which n = 2 and n = 3 follow from Lemmas 3 and 4, respectively. For
a general n, we make step-by-step state space restrictions, reducing the state space by one level
at a time starting from the last level. The derivation of the relevant holding time distributions
follows the idea used in the preceding special cases. Therefore, we confine ourselves to a brief
statement of the necessary steps and leave the technical details to the reader. In the first step
we restrict the state space of (Xt , Yt ) | Bn to the first n − 1 levels and obtain a semi-Markov
process, (X

(1)
1 , Y

(1)
t ) | Bn say, with (n − 1)k states. The one-step transition probability matrix

of its embedded discrete-time Markov chain is found to be equal to the matrix derived from Bn

by deleting its last row and last column and then replacing the bottom-right matrix A by P (2).
Also, the holding time distributions of (X

(1)
t , Y

(1)
t ) | Bn are the same as those for the same states

of the continuous-time Markov chain (Xt , Yt ) | Bn, except for those associated with transitions
between the phases in the last level (level n−2) whose LTs are found to be equal to the µ

(1)
i,j (s).

In the next step we restrict the state space of (X
(1)
1 , Y

(1)
t ) | Bn to the first n−2 levels and obtain

a semi-Markov process, (X
(2)
1 , Y

(2)
t ) | Bn say, with (n − 2)k states. The one-step transition

probability matrix of its embedded discrete-time Markov chain is found to be equal to the
matrix derived from Bn by deleting its last two rows and last two columns and then replacing
the bottom-right matrix A by P (3). Also, the holding time distributions of (X

(2)
t , Y

(2)
t ) | Bn

are the same as those for the same states of the continuous-time Markov chain (Xt , Yt ) | Bn,
except for those associated with transitions between the phases in the last level (level n − 3)
whose LTs are found to be equal to µ

(2)
i,j (s). By induction we obtain a semi-Markov process

(X
(n−1)
t , Y

(n−1)
t ) | Bn with k states, whose holding times have LTs given by µ

(n−1)
i,j and whose

corresponding one-step transition probability matrix is given by P (n−1). From the construction
of the semi-Markov processes (X

(r)
t , Y

(r)
t ) | Bn, it is clear that (X

(n−1)
t , Y

(n−1)
t ) | Bn is equal

to the semi-Markov process ˜̃
Yt | Bn. Thus, the statement of Theorem 1 holds.

Consider again the continuous-time Markov chain (Xt , Yt ) | Bn. Denote by δ
(r)
i,j (s), r =

1, 2, . . . , n − 1, the LT of the waiting time to move from phase i in level r to the set of states
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in level 0, given that the reached phase in level 0 is j , and denote by q
(r)
i,j the corresponding

probability that level 0 is reached at phase j . For r = 1, 2, . . . , n− 1, let Q(r) denote the k × k

matrix whose (i, j)th entry is q
(r)
i,j . The following theorem is a by-product of the method used

to derive Theorem 1.

Theorem 2. The following recurrences hold for δ
(r)
i,j (s) and Q(r), i, j = 1, 2, . . . , k:

δ
(1)
i,j (s) = g

(n−1)
i,j (s), (19)

Q(1) = B(n−1), (20)

δ
(r)
i,j (s) =

k∑
m=1

g
(n−r)
i,m (s)B(n−r)(i, m)δ

(r−1)
m,j (s), (21)

Q(r) = B(n−r)Q(r−1), r = 2, 3, . . . , n − 1, (22)

where B(r) and g
(r)
i,j (s) are given above.

Proof. Note the meaning of g
(r)
i,j (s), r = 1, 2, . . . , n − 1. Actually, g

(r)
i,j (s) is the LT of the

excursion from phase i in level n− r before entering level n− r − 1, given that level is entered
via phase j . The probability that, after that excursion, the level n− r −1 is reached via phase j

is given by the (i, j)th entry of matrix B(r). In other words, if r = n − 1, we have

δ
(1)
i,j (s) = g

(n−1)
i,j (s).

Also, the probability that level 0 has been reached via phase j is given by the (i, j)th entry
of matrix B(n−1). Furthermore, note that the LT of the waiting time to move from phase i in
level 2 to level 1, given that the latter is reached via phase j , is given by

δ
(2)
i,j (s) =

k∑
m=1

g
(n−2)
i,m (s)B(n−2)(i, m)δ

(1)
m,j (s);

recall that B(n−2)(i, m) is the (i, m)th entry of the matrix B(n−2). Also, the probability that
level 1 has been reached via phase j is equal to

k∑
m=1

B(n−2)(i, m)q
(1)
m,j .

By induction we obtain recurrences (19)–(22).

4.2. Reward processes

In this subsection we derive explicit, closed-form expressions for reward functions associated
with visits to, and sojourns in, the states in level 0 of the two-dimensional process (Xt , Yt ) | Bn,
which has been introduced above. In order to keep the expressions neater and consistent
with related expressions on reward functions for semi-Markov processes, we convert our two-
dimensional processes to one-dimesional processes. More specifically, define a semi-Markov
process Vt by Vt = Yt + kXt , where Xt and Yt are the components of the two-dimensional
process (Xt , Yt ) | Bn. Then Vt has kn states. Denote the initial probabilities by pi,j , i =
0, 1, . . . , n − 1, j = 1, 2, . . . , k, where pi,j is the initial probability for state j + ik. The
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quantity of interest is a reward function associated with the sojourns in the first k states and
visits to them. More specifically, introduce the reward function

H(t) =
2k∑
i=1

k∑
j=1

hi,jNi,j (t) +
k∑

i=1

hiSi(t) +
k∑

i=1

h�
i 1{V0=i}, (23)

where 1{·} is an indicator function which is equal to 1 if the event {·} occurs and 0 otherwise,
Si(t) is the time spent in state i by Vt , and Ni,j (t) is the number of transitions from state i to
state j of Vt within the time interval [0, t].

Now consider the semi-Markov process (X
(n−2)
t , Y

(n−2)
t ) | Bn introduced in the proof of

Theorem 1. Convert it into a one-dimensional process via V
(n−2)
t = Y

(n−2)
t + kX

(n−2)
t . Then

V
(n−2)
t has 2k states and the one-step transition probability matrix of its embedded discrete-time

Markov chain is

PV (n−2) =
[

A (n − 1)diag[d]
diag[d] P (n−2)

]
.

Recall that, for i, j = 1, 2, . . . , k, the LTs of the holding time distributions are given by the
λi/(s + λi) for pairs of states (i, j) or (i, i + k) or (i + k, i) and by µ

(n−2)
i,j for pairs of states

(i + k, j + k).
Introduce the following reward function associated with the process V

(n−2)
t :

H̃ (t) =
2k∑
i=1

k∑
j=1

hi,j Ñi,j (t) +
k∑

i=1

hiS̃i(t) +
k∑

i=1

h�
i 1{V (n−2)

0 =i},

where S̃i (t) is the time spent in state i by the semi-Markov process V
(n−2)
t , Ñi,j (t) is the number

of transitions from state i to state j of V
(n−2)
t within the time interval [0, t], and hi,j , hi , and

h�
i are the quantities associated with the reward function H(t) introduced in (23). It is clear

that, for each i, i = 1, 2, . . . , k (the first k states of the process V
(n−2)
t ),

P(H(t) ≤ x | V0 = i) = P(H̃ (t) ≤ x | V
(n−2)
0 = i). (24)

Denote by τ(i1,j1),(i2,j2) the waiting time to move from state i1 to state i2, given that the next
state visited after i1 is state j1 and that the next state visited after state i2 is state j2, in the
semi-Markov process V

(n−2)
t . Note that there is a random number of visits to state i2 before

τ(i1,j1),(i2,j2); these are visits to i2 which are succeeded by jumps to states different than state j2.
The waiting times τ(i,i),(i,i) and τ(i,j),(i,j) (which are strictly positive) are the first return times
to state i, under the relevant conditions. Denote by D(i1,j1),(i2,j2) the joint (two-dimensional)
distribution of τ(i1,j1),(i2,j2) and H̃ (τ(i1,j1),(i2,j2)), that is, the joint distribution of that waiting
time with the associated reward H̃ accumulated within that waiting time. Denote the Laplace
transform ∫ ∞

0

∫ ∞

0
exp{−s1t − s2x} P(H̃ (t) ≤ x | V

(n−2)
0 = i) dt dx

by L[P(H̃ (t) ≤ x | V
(n−2)
0 = i)](s1, s2). Then from Theorem 4 in Appendix A we obtain,
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for r1 = 1, 2, . . . , k (the factor exp{−s2h
�
r1

} is due to the reward associated with the initial
state r1),

L[P(H̃ (t) ≤ x | V
(n−2)
0 = r1)](s1, s2)

= exp{−s2h
�
r1

}
( 2k∑

r2,i,j=1

(1 − µi,j (s1 + s2hi))L[D(r1,r2),(i,j)](s1, s2)

s2(s1 + s2hi)(1 − L[D(i,j),(i,j)](s1, s2))

× PV (n−2) (r1, r2)PV (n−2) (i, j)

+
2k∑

r2=1

(1 − µr1,r2(s1 + s2hr1))

s2(s1 + s2hr1)
PV (n−2) (r1, r2)

)
, (25)

where the µi,j are the LTs of the holding time distributions of the semi-Markov process V
(n−2)
t .

Now consider

P(H(t) ≤ x | V0 = u + rk), u = 1, 2, . . . , k, r = 1, 2, . . . , n − 1.

Fix u and r , and augment the state space of the semi-Markov process V
(n−2)
t by one state, 0

say, which will play the role of the initial state. The nonzero one-step transition probabilities
from state 0 are only to states 1 through k and they are equal to q

(r)
u,j for j = 1, 2, . . . , k. Also,

the associated holding times with such transitions are given by δ
(r)
u,j . Recall that the quantities

q
(r)
u,j and δ

(r)
u,j are introduced in Theorem 2. Denote this new semi-Markov process with 2k + 1

states by V
(u,r)
t and consider the reward function

˜̃
H(t) =

2k∑
i=1

k∑
j=1

hi,j
˜̃
Ni,j (t) +

k∑
i=1

hi
˜̃
Si(t) +

k∑
i=1

h�
i

˜̃
N0,i (t),

where ˜̃
Si(t) and ˜̃

Ni,j (t) are the relevant quantities associated with the augmented process V
(u,r)
t .

From the construction of V
(u,r)
t , it is clear that

P(H(t) ≤ x | V0 = u + rk) = P(
˜̃

H(t) ≤ x | V
(u,r)
0 = 0).

Therefore, again from Theorem 4 we obtain (recall that there is no reward associated with
sojourns in state 0, so h0 = 0)

L[P(
˜̃

H(t) ≤ x | Y
(u,r)
0 = 0)](s1, s2)

=
k∑

r2=1

2k∑
i,j=1

(1 − µi,j (s1 + s2hi))L[D(u,r)
(0,r2),(i,j)](s1, s2)

s2(s1 + s2hi)(1 − L[D(i,j),(i,j)](s1, s2))
q(r)
u,r2

PV (n−2) (i, j)

+
k∑

r2=1

(1 − δ
(r)
u,r2(s1))

s2s1
q(r)
u,r2

, (26)

where the µi,j are the LTs of the holding time distributions of the semi-Markov process V
(n−2)
t

and D
(u,r)
(0,r2),(i,j) is the joint distribution of the waiting time τ(0,r2),(i,j) (for the semi-Markov

process V
(u,r)
t ) together with the associated reward accumulated during that waiting time.

In view of (24), (25), and (26), we arrive at the following theorem.
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Theorem 3. For the Laplace transform
∫ ∞

0

∫ ∞
0 exp{−s1t − s2x} P(H(t) ≤ x) dt dx of the

cumulative distribution function of the reward function H(t) given in (23), we have the following
expression:

k∑
r1=1

p0,r1 e−s2h
�
r1

( 2k∑
i,j,r2=1

(1 − µi,j (s1 + s2hi))L[D(r1,r2),(i,j)](s1, s2)

s2(s1 + s2hi)(1 − L[D(i,j),(i,j)](s1, s2))

× PV (n−2) (r1, r2)PV (n−2) (i, j)

+
2k∑

r2=1

1 − µr1,r2(s1 + s2hr1)

s2(s1 + s2hr1)
PV (n−2) (r1, r2)

)

+
n−1∑
r=1

k∑
u=1

pu,r

( k∑
r2=1

2k∑
i,j=1

(1 − µi,j (s1 + s2hi))L[D(u,r)
(0,r2),(i,j)](s1, s2)

s2(s1 + s2hi)(1 − L[D(i,j),(i,j)](s1, s2))
q(r)
u,r2

PV (n−2) (i, j)

+
k∑

r2=1

(1 − δ
(r)
u,r2(s1))

s2s1
q(r)
u,r2

)
,

where the µi,j are the LTs of the holding time distributions of the semi-Markov process V
(n−2)
t ,

and the pi,j are the initial probabilities of Vt , as introduced at the beginning of this subsection.

Explicit, closed-form expressions for the Laplace transforms

L[D(i1,j1),(i2,j2)] and L[D(u,r)
(0,j1),(i2,j2)

]
can be derived as explained in Appendix A. Recall that the number of states, 2k + 1, of
the embedded Markov chains is small, for example, 9 and 15 for uncle-type and cousin-type
relationships, respectively.

4.3. Implementation

We summarise below the algorithm for calculating an explicit closed-form expression for
the Laplace transform of the cumulative distribution function of the reward H(t) given in (23).
All steps are implementable using a computer algebra package such as MAPLE® or MATHE-
MATICA®.

• Using the identities given in (3), evaluate the initial quantities given in (8)–(12), that is,
B(P (1) | (n − 1)d), P (1), and

g
(1)
i,j (s) = gA | (n−1)d,i,j

(
�(s),

λj

λj + s

)
,

where the matrix �(s) has been introduced in Lemma 3 and recall from the line after
(12) that M(0)(s) = �(s). Using the recurrences given in (8)–(18), and (19)–(22)
(cf. Theorems 1 and 2), evaluate the Laplace transforms µ

(n−2)
i,j and δ

(r)
i,j , and the matrices

P (n−2) and Q(r).

• Derive explicit closed-form expressions for the Laplace transforms L[D(i1,j1),(i2,j2)] and
L[D(u,r)

(0,j1),(i2,j2)
], that is, the Laplace transforms of the joint distributions of relevant first

passage times together with the associated accumulated rewards.

https://doi.org/10.1239/aap/1246886622 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886622


Reward distributions associated with some block tridiagonal transition matrices 539

• From the quantities evaluated above, calculate an explicit closed-form expression for the
Laplace transform of the cumulative distribution function of any relevant reward function
H(t) using the result in Theorem 3.

A successful numerical inversion of the Laplace transform yields cumulative probabilities
of the reward function H(t). Abate and Whitt (2006) provided several algorithms for such
inversions (cf. also Abate et al. (1998) and Choudhury et al. (1994)).

5. Applications to IBD

The relevant reward functions for uncle-type and cousin-type relationships are

H1(t) = S1(t) + S2(t), H2(t) =
2k∑
i=1

(Ni,1(t) + Ni,2(t)) + 1{V0=1} + 1{V0=2},

that is, the accumulated sojourn in the first two states and the number of entries to the first
two states. Their interpretation in terms of IBD has been explained in Section 2. The explicit
expressions for the reward LTs are relatively lengthy and we confine ourselves to listing the
ones for the uncle/nephew relationship which can be written on one line. More specifically,
for the Laplace transform L[P(H1(t) ≤ x)](s1, s2) of the cumulative distribution function of
the reward function H1(t) corresponding to the amount of IBD genome shared by an uncle and
his nephew on a chromosomal segment of length t morgans, we obtain the following explicit
expression:

4s3
1 + 6s2

1s2 + 2s1s
2
2 + 72s2

1 + 72s1s2 + 13s2
2 + 416s1 + 208s2 + 768

4s2(s
4
1 + 2s3

1s2 + s2
1s2

2 + 18s3
1 + 27s2

1s2 + 9s1s
2
2 + 104s2

1 + 104s1s2 + 16s2
2 + 192s1 + 96s2)

.

For discrete reward functions, such as H2(t), it is more convenient to use the mixed (generating
function - Laplace) transform

∞∑
x=0

∫ ∞

0
xs2 exp{−s1t} P(H(t) ≤ x) dt.

For the mixed transform of the cumulative distribution function of the reward function H2(t)

corresponding to the number of IBD pieces on a chromosomal segment of length t morgans,
we obtain the following explicit expression:

4s2
1 + 9s1s2 + 2s2

2 + 47s1 + 54s2 + 136

−4 ln(s2)(s
3
1 − 4s1s

2
2 + 14s2

1 − 9s1s2 − 28s2
2 + 61s1 − 52s2 + 80)

.

We also list some calculation results for the uncle/nephew and first-cousin relationships in
Tables 1 and 2. These have been calculated using the Gaver–Stehfest algorithm (cf. Abate and
Whitt (2006)). From Table 1 we also note that the distribution of the proportion of shared
genome for the uncle/nephew relationship is symmetric.

Remark 2. There is a matrix exponential representation for the one-dimensional Laplace trans-
form of the reward function H1(t) (cf. Ball et al. (1994, p. 929)). Effective numerical evaluations
of such matrix exponentials are possible if the matrix in the exponential is diagonalizable. Since
the transition matrices for uncle-type and cousin-type relationships are diagonalizable, then such
a numerical approach for H1(t) is feasible and will be investigated by the authors elsewhere.
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Table 1: Cumulative probabilities F(x) for the proportion of the genome shared IBD on a chromosomal
segment of length d morgans.

x
d

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00

Uncle/nephew relationship

2 0.970 0.911 0.808 0.666 0.500 0.334 0.192 0.090 0.030 0.003
3 0.990 0.952 0.859 0.702 0.500 0.298 0.141 0.048 0.010 0.0003

First-cousin relationship

2 0.999 0.995 0.982 0.953 0.895 0.784 0.645 0.451 0.242 0.064
3 0.9999 0.999 0.994 0.978 0.932 0.832 0.657 0.417 0.174 0.019

Table 2: Cumulative probabilities F(k) for the number of shared IBD pieces, k, on a chromosomal
segment of length d morgans.

k
d

0 1 2 3 4 5 6 7 8 9 10 11

Uncle/nephew relationship

2 0.080 0.030 0.107 0.250 0.429 0.626 0.775 0.875 0.943 0.978 0.991 0.997
3 0.001 0.004 0.018 0.058 0.131 0.261 0.411 0.558 0.702 0.821 0.898 0.946

First-cousin relationship

2 0.080 0.161 0.343 0.545 0.714 0.844 0.920 0.961 0.985 0.995 0.998 0.999
3 0.024 0.059 0.153 0.295 0.451 0.617 0.747 0.841 0.913 0.958 0.979 0.991

Appendix A

In this appendix we extend a result of Stefanov (2006) on reward functions for semi-Markov
processes to the case where the holding time in a given state depends on both the current state
and the next state visited. The notation in this appendix is self-contained and local to it. Let
Yt be a semi-Markov process with m states, and let the one-step transition probability matrix
for the embedded discrete-time Markov chain and its (i, j)th entry be denoted by P and pi,j ,
respectively. The LT of the holding time distribution at state i, given that the next state to be
visited is state j , is denoted by µ(i,j). Introduce the following reward function:

H̃ (t) =
m∑

i,j=1

hi,j Ñi,j (t) +
m∑

i=1

hiS̃i(t),

where S̃i (t) is the time spent in state i by the semi-Markov process Yt and Ñi,j (t) is the number
of transitions from state i to state j of Yt within the time interval [0, t].

Denote by τ(i1,j1),(i2,j2) the waiting time to move from state i1 to state i2, given that the
next state visited after i1 is state j1 and that the next state visited after state i2 is state j2, in
the semi-Markov process Yt . Note that there is a random number of visits to state i2 before
τ(i1,j1),(i2,j2); these are visits to i2 which are succeeded by jumps to states different than state j2.
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The waiting times τ(i,i),(i,i) and τ(i,j),(i,j) (which are strictly positive) are the first return times
to state i, under the relevant conditions. Denote by D(i1,j1),(i2,j2) the joint (two-dimensional)
distribution of τ(i1,j1),(i2,j2) and H̃ (τ(i1,j1),(i2,j2)), that is, the joint distribution of that waiting
time with the associated reward H̃ accumulated within that waiting time.

Theorem 4. For the LT of P(H̃ (t) ≤ x | Y0 = r1) with respect to t and x, we have

L[P(H̃ (t) ≤ x | Y0 = r1)](s1, s2)

=
m∑

r2,i,j=1

(1 − µ(i,j)(s1 + s2hi))L[D(r1,r2),(i,j)](s1, s2)

s2(s1 + s2hi)(1 − L[D(i,j),(i,j)](s1, s2))
pr1,r2pi,j

+
m∑

r2=1

(1 − µ(r1,r2)(s1 + s2hi))

s2(s1 + s2hi)
pr1,r2 .

Proof. Denote by wt the waiting time starting from time epoch t and ending when a jump
in the semi-Markov process Yt occurs. That is, if the process is in state i at time t then at t +wt

the process enters the next state visited after state i. Also, let

τ
(k)
(i,j) = inf{u > τ

(k−1)
(i,j) : Yu = i, Yu+wu = j, and Yt jumps in (τ

(k−1)
(i,j) , u]}, k = 1, 2, . . . ,

where τ
(0)
(i,j) = 0; recall that a semi-Markov process may jump without changing state. Of

course,

P(H̃ (t) ≤ x | Y0 = r1) =
m∑

r2,i,j=1

P(H̃ (t) ≤ x, Yw0 = r2, Yt = i, Yt+wt = j | Y0 = r1).

Case 1: (i, j) �= (r1, r2). First note that

P(H̃ (t) ≤ x, Yw0 = r2, Yt = i, Yt+wt = j | Y0 = r1)

= P(H̃ (t) ≤ x, Yt = i | Y0 = r1, Yw0 = r2, Yt+wt = j)pr1,r2pi,j . (27)

Furthermore,

P(H̃ (t) ≤ x, Yt = i | Y0 = r1, Yw0 = r2, Yt+wt = j)

=
∞∑

k=1

P(H̃ (t) ≤ x, Yt = i, τ
(k)
(i,j) ≤ t < τ

(k+1)
(i,j) | Y0 = r1, Yw0 = r2, Yt+wt = j).

(28)

From the basic properties of semi-Markov processes, it follows that, for a given pair of states
(i, j), the process regenerates at each τ

(k)
(i,j). Therefore, using the same arguments as those

applied in the proof of Theorem 2.1 of Stefanov (2006) for deriving the LT of a similar
conditional probability, for the LT of

P(H̃ (t) ≤ x, Yt = i, τ
(k)
(i,j) ≤ t < τ

(k+1)
(i,j) | Y0 = r1, Yw0 = r2, Yt+wt = j),

we obtain the expression

(1 − µ(i,j)(s1 + s2hi))L[D(r1,r2),(i,j)](s1, s2)(L[D(i,j),(i,j)](s1, s2)))
k−1

s2(s1 + s2hi)
. (29)
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In view of (27), (28), and (29), for the LT of

P(H̃ (t) ≤ x, Yw0 = r2, Yt = i, Yt+wt = j | Y0 = r1),

we obtain the expression

(1 − µ(i,j)(s1 + s2hi))L[D(r1,r2),(i,j)](s1, s2)

s2(s1 + s2hi)(1 − L[D(i,j),(i,j)](s1, s2))
pr1,r2pi,j .

Case 2. (i, j) = (r1, r2). We have

P(H̃ (t) ≤ x, Yw0 = r2, Yt = r1, Yt+wt = r2 | Y0 = r1)

=
∞∑

k=0

P(H̃ (t) ≤ x, Yw0 = r2, Yt = r1, Yt+wt = r2, τ
(k)
(r1,r2)

≤ t < τ
(k+1)
(r1,r2)

| Y0 = r1)

= P(H̃ (t) ≤ x, Yt = r1, w0 ≥ t, Yt+wt = r2 | Y0 = r1)

+
∞∑

k=1

P(H̃ (t) ≤ x, Yw0 = r2, Yt = r1, Yt+wt = r2, τ
(k)
(r1,r2)

≤ t < τ
(k+1)
(r1,r2)

| Y0 = r1).

Similarly to the arguments used in deriving (2.6) of Stefanov (2006), for the LT of

P(H̃ (t) ≤ x, Yt = r1, w0 ≥ t, Yt+wt = r2 | Y0 = r1),

we obtain the expression
(1 − µ(r1,r2)(s1 + s2hr1))

s2(s1 + s2hr1)
pr1,r2 .

Therefore, the LT of

P(H̃ (t) ≤ x, Yw0 = r2, Yt = r1, Yt+wt = r2 | Y0 = r1)

is equal to
(1 − µ(r1,r2)(s1 + s2hr1))

s2(s1 + s2hr1)
pr1,r2

+ (1 − µ(r1,r2)(s1 + s2hr1))L[D(r1,r2),(r1,r2)](s1, s2)

s2(s1 + s2hr1)(1 − L[D(r1,r2),(r1,r2)](s1, s2))
pr1,r2pr1,r2 .

In other words, this case leads to an expression that equals the sum of two components—one
is the same as that in case 1 and the other corresponds to the situation when the process does
not leave state r1 before time t .

Putting together the expressions derived above, we obtain the statement of Theorem 4.

A.1. Evaluation of the Laplace transforms L[D(i1,j1),(i2,j2)](s1, s2)

Suppose that we have an explicit, closed-form expression for the joint probability generating
function, gÑ (S) say, of Ñi,j (τ(i1,j1),(i2,j2)), i, j = 1, 2, . . . , m; here S is an m × m matrix.
Then, applying Lemma 2, we obtain the joint LT of S̃i,j (τ(i1,j1),(i2,j2)) and Ñi,j (τ(i1,j1),(i2,j2)),
where

S̃i,j (τ(i1,j1),(i2,j2)) =
Ñi,j (τ(i1,j1),(i2,j2))∑

k=1

Z
(k)
(i,j),
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and, for each (i, j), the Z
(k)
(i,j) are independent and identically distributed random variables with

LT µ(i,j). Therefore, since the reward function is a linear function of the S̃i,j (τ(i1,j1),(i2,j2)) and
Ñi,j (τ(i1,j1),(i2,j2)) (recall here that S̃i (t) = ∑m

j=1 S̃i,j (t)), we obtain L[D(i1,j1),(i2,j2)](s1, s2).
We now explain how to derive the joint probability generating function, gÑ (S). Let Ŷn

be the embedded discrete-time Markov chain of the semi-Markov process Yt . Recall that the
number of states is m. Denote by τ(r1,r2),r3 the waiting time in the Markov chain Ŷn to move
from state r1 to state r3, given that the next state visited after r1 is state r2. Let Ni,j (τ(r1,r2),r3)

denote the number of one-step transitions from state i to state j in the interval [0, τ(r1,r2),r3 ]. Let
g(r1,r2),r3(S) be the joint probability generating function of Ni,j (τ(r1,r2),r3), i, j = 1, 2, . . . , m.
Then, using the second identity in (3), we obtain an explicit expression for this joint probability
generating function. For given i1, j1, i2, j2, consider the following time-homogeneous multi-
variate Markov renewal process, (Cn, Tn), whose embedded discrete-time Markov chain, Cn,
has m + 1 states, labelled 0, 1, . . . , m, and one-step transition probability matrix given by⎡

⎢⎢⎢⎢⎢⎣

0 pi2,1 pi2,2 . . . pi2,m

0 pi2,1 pi2,2 . . . pi2,m

0 pi2,1 pi2,2 . . . pi2,m

...
...

...
...

...

0 pi2,1 pi2,2 . . . pi2,m

⎤
⎥⎥⎥⎥⎥⎦ .

The additive component, Tn (=Tn(i, j), i, j, = 1, 2, . . . , m), is m2-dimensional and the distri-
bution of Tn − Tn−1 is introduced below. For k, r = 0, 1, . . . , m, let Gk,r be the conditional
distribution of Tn+1 − Tn, given that Cn = k and Cn+1 = r . For k = 0 and each r, r =
1, 2, . . . , m, the joint (m2-dimensional) probability generating function of Gk,r is equal to
g(i1,j1),i2(S), and, for k ≥ 1 and each r, r = 1, 2, . . . , m, it is equal to g(i2,k),i2(S). Let τ0,j2

be the waiting time to move from state 0 to state j2 in the discrete-time Markov chain Cn.
Again, by Nk,r (τ0,j2) we denote the number of one-step transitions of Cn from state k to
state r in the interval [0, τ0,j2 ]; here k, r = 0, 1, . . . , m. We can easily note the following
interpretation of the Nk,r (τ0,j2). For k ≥ 1,

∑m
r=1 Nk,r (τ0,j2) counts how many times, in the

time interval [0, τ(i1,j1),(i2,j2))], the semi-Markov process Yt enters state i2 with k being the
next state visited. The joint probability generating function, say gC(s, S), of the Nk,r (τ0,j2)

(here the (m + 1)-dimensional vector s corresponds to N0,j (τ0,j2) and the m × m matrix S

corresponds to Nk,r (τ0,j2), k, r = 1, 2, . . . , m) is derived using the second identity in (3).
Finally, in view of Lemma 5, below, we obtain the following identity for the joint probability

generating function gÑ (S):

gÑ (S) = gC(s̃(S), S̃(S)),

where the (m + 1)-dimensional vector s̃(S) and the m × m-matrix S̃(S) are given by

s̃(S) = (1, g(i1,j1),i2(S), g(i1,j1),i2(S), . . . , g(i1,j1),i2(S)),

S̃(S)(k, r) = g(i2,k),i2(S), k, r = 1, 2, . . . , m,

and g(r1,r2),r3(S) is introduced above.

Lemma 5. Let � = (γ1, γ2, . . . , γr )
� be a vector of nonnegative integer-valued random vari-

ables with joint probability generating function g�(s1, s2, . . . , sr ). Let Z(i)
n , i = 1, 2, . . . , r , be

r independent sequences of independent and identically distributed random vectors (with the
same dimension, u say) that are independent of �. For each n, it is assumed that the distribution
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of Z
(i)
n follows the distribution of a random vector, Z(i) say, for i = 1, 2, . . . , r . Also, it is

assumed that, for each i, the components of Z(i) are nonnegative integers and the joint proba-
bility generating function of Z(i) is denoted by gZ(i) (t (i)), where t (i) = (t

(i)
1 , t

(i)
2 , . . . , t

(i)
u )� is

a u-dimensional vector. Let

Ui =
γi∑

j=1

Z
(i)
j , i = 1, 2, . . . , r.

Then the joint probability generating function of the ru-dimensional vector

U = (U1, U2, . . . ,Ur )
�

is equal to

gU (t (1), t (2), . . . , t (r)) = g�(gZ(1) (t
(1)), gZ(2) (t

(2)), . . . , gZ(r) (t
(r))).

Proof. The proof is an easy extension of Lemma 2.1 of Stefanov (2000b) and Lemma 2 to
the case of multidimensional summands.
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