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Introduction

A vertex of a planar curve γ of class %2 is a point which attains a local max-

imum or minimum of its curvature function. By the definition, the number of ver-

tices are even whenever it is finite. As a generalization of famous four vertex

theorem, Pinkall [P] showed that a closed curve γ has at least 4 vertices if it

bounds an immersed surface, and he conjectured that γ has at least Ag + 2 ver-

tices when the surface has genus g.

As a counter example of the conjecture, recently, Cairns, Ozdemir and Tjaden

[COT] pointed out that for each genus g > 1, there is a closed planar curve with 6

vertices that bounds an immersed surface of genus g. In addition, they conjectured

that the lowest number of the vertices of a closed planer curve is 6 if it bounds an

immersed surface other than the disc. In this note, we show their conjecture is

true:

THEOREM. Let γ be α closed planar curve of class % which bounds an immersed

surface. Suppose that J has exactly 4 vertices. Then it bounds only the disc.

The author is very grateful to Osamu Kobayashi for his valuable suggestions.

1. Preliminaries

In this section, we review the properties of vertices. Let j — γ(s) : R —* R

be a /-periodic curve of class *β , parametrized by arc length. We mean such an

periodic curve with the parameter by the terminology "closed planar curve'. We
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7 6 MASAAKI UMEHARA

take the normal vector field n = n(s) of 7 such that the frame {7, n} is positively

oriented. The curvature function k — k(s) is defined by the Frenet-Serret

equation 7 = kn.

The curve 7 is said to have a maximal (resp. minimal) vertex at s = s0, if

i?(s0) is local maximum (resp. minimum) of the curvature function. Since the num-

ber of the maximal and the minimal vertices are the same, the number of vertices

are even unless it is infinite.

A geometric meaning of vertex is the following: (cf. [J]) The curve 7 has a

maximal (resp. minimal) vertex at s — s0 if and only if there exists a positive

number ε > 0 such that the image 7 I [So_ε,So+ε] is contained in the right (resp. left)

hand side of the osculating circle at 5 = s0. An orientation preserving Mόbius

transformation T is written in the form

T(z)=~^ (ad-bc=l,a,b,c,d€=C),

where we identify the plane (R x, y) with C and set z = x + iy. Since T maps

an oriented circle to a circle with the same orientation, the following lemma is ob-

vious:

LEMMA 1.1. Let 7 be a planar curve. Then any orientation preserving Mobius

transformation maps maximal (resp. minimal) vertices of 7 to the same one of T°γ.

Next we consider self-intersections of the curve 7.

DEFINITION 1.2. The planar curve 7 is said to have a shell on the open inter-

val / = {a, b), if γ{a) = γ(b) (0 < a < b < ΐ) and 7 has no self-intersection on

the interval /.

If 7 has shells on intervals Iv I2,.. .,In respectively, then these shells are cal-

led independent if

,) Π π(Ij) = φ ( l < i < j < n )

holds, where ττ:R—>R//Z is the canonical projection. The following lemma is

obtained from the fact: If γ(a) = γ(b) (0 < a < b < /), then there exists an open

subinterval /of (a, b) such that the restriction 7 | 7 has no self-intersection.

LEMMA 1.3. Let 7 be a closed planar curve which has a self-intersection. Then 7

has at least two independent shells.
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The each shell j | 7 of y bounds a domain D which is called the interior of the

shell. The internal angle μ to D at the intersection point is called the internal angle

of the shell γ |7. (Fig. 1) We remark that each shell admits two possible orienta-

tions: If the bounded domain D lies in left-hand (resp. right-hand) side of 7, the

shell is said to have positive (resp. negative) orientation. (Fig. 2)

>π

Fig. 1. (Shell)

negative

Fig. 2. (Orientations of shell)

The following proposition holds:

LEMMA 1.4 (Jackson [J; Lemma 4.3]). Let γ : [a, b] —*R2 be a planar curve

such that it has a shell with internal angle μ ( ^ TΓ) on the interval (a, b). If the

orientation of the shell is positive {resp. negative), there is a maximal (resp. minimal)

vertex on (a, b).

By Lemma 1.1, one can reverse a shell by a suitable Mόbious transformation.

So we rewrite Lemma 1.4 as follows:

LEMMA 1.4' ([J; Lemma 4.3]). Let γ : [a, b] ~• R be a planar curve such that it

has a shell with internal angle μ (> π) on the interval (a, b). If the orientation of the

shell is positive (resp. negative), there is a minimal (resp. maximal) vertex on (a, b).

COROLLARY 1.5 ([J; Cor. 4.3.1]). Let γ : [a, b] —* R 2 be a planar curve such that

it has a shell with internal angle TΓ on the interval (a, b). Then there are at least a

pair of maximal and minimal vertices on (a, b).

2. Positive shell

We identify R U {°°} with the unit sphere S by the stereographic projec-
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tion at the north pole. According to Pinkall [P], we say that a closed planar curve

y bounds an immersed surface of genus g, if there is a compact orientable surface

M of genus g with connected boundary dM = S and an immersion x : M —•* R

U {00} such that y = x\m. In this paper, we assume that the local image of the

surface x(M ) lies on the left hand side on the curve y.

Now we show the following topological property of such closed curves:

THEOREM 2.1. Let y : R—* R be a closed planar curve of period I, which bounds

an immersed surface. Suppose that y has a positive shell of internal angle ( ^ it) on an

interval {a, b) (0 ^ a < b ^ /). Then there exists a negative shell of internal angle

( < π) on some interval (c, d) (0 < c < d < t) such that the image of γ\[Cιd] is con-

tained in the interior D of the shell on {a, b). In particular, two intervals (a, b) and

(c, d) are disjoint.

Remark 2.2. This means the non-existence of solitaty positive shells with in-

ternal angle ( < π). The following figure (Fig. 3) demonstrates the theorem.

Fig. 3.

To prove the theorem, we prepare three lemmas:

LEMMA 2.3. Let y be a closed planar curve of class % which bounds an

immersed surface. Suppose that y has a positive shell of internal angle μ ( < π) on a

interval (a, b) (0 ^ a < b ^ /). Then there exists an interval (c, d) (0 ^ c < d ^ /)

such that the image of y \[c>d] are contained in the interior D of the shell on (a, b).

Proof We suppose that the interior D does not contain any point on the

curve y. Let x : M —»R be an associated immersion such that y — x \dM. By our

convention, the local image of the surface x(M ) lies on the left hand side on the

curve y and hence the inverse image x (D) is not empty. Let U be a connected
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component of the inverse image x~ (D) whose closure meets dM. Then the

assumption yields that x(U) = D and it can be easily checked that the restriction

x\u: U—+ D induces a topological finite covering structure. Since D is simply con-

nected, x \v is a diffeomorphism.

On the other hand, we set

(2.1) γε(s) = γ(s) + ε-n(s) (s e R),

where n(s) is the oriented normal vector field on γ. Since the statement is purely

topological, by a suitable differentiable small perturbation on the shell, we may

assume that the internal angle μ is less than π. Then for a suitably small ε > 0

γε has a self-intersection point in D. (See Fig. 4.) Since the inverse image of γε in

U is contained in the boundary of ε-collar of the surface M , this contradicts the

fact that x\u is a diffeomorphism. •

Fig. 4.

LEMMA 2.4. Let y be a closed planar curve of class % which bounds an im-

mersed surface. Suppose that γ has a positive shell of internal angle μ ( ^ TΓ) on a in-

terval (α, b) (0 < a < & < / ) . Then there exists a shell on some interval (c, d)

(0 < c < d < /) such that the image of y \ [Ctd] is contained in the interior D of the

shell on (a, b).

Proof We suppose that the interior D does not contain any shell on the

curve γ. By Lemma 2.3, we may suppose that there exists an interval / such that

the image of γ | 7 are contained in D. Since the statement is purely topological, by a

suitable differentiable small perturbation on the shell, we may assume that the in-

ternal angle μ is less than π. Since μ < π, for a suitably small ε0 > 0, γ£(0 < ε

< ε0) defined by (2.1) makes a positive shell of internal angle ( < π) on some sub-

interval (a\ bθ of (a, b) such that the image of γε \[artbΊ are contained in D. (See

Fig. 4.) We denote by Dε the interior of the new shell yε \{a

ry)

Let {Iλ}χeΛ be the splitting of the inverse image y (D) as a family of disjoint

open subsets of (0, /). Since the length of the closed curve γ is finite, only finite
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components, say

meet the closure of Dε/2, where {Ij)j=Un is a finite subset of U)λ^Λ. Then for

each 7 |7., one can patch a simply connected domain smoothly, to avoid the domain

D. (See Fig. 5.) After these n-times surgeries, one can easily see that Dε does not

contain any point on γε. Though the curve γε is in the class % , the modified argu-

ment in the proof of Lemma 2.3 can be applied as follows: We may suppose ε <

ε o/2. Let x : Mε —»R be an associated immersion such that y — x \dMε. Let Uε be

a connected component of the inverse image x (Dε) whose boundary contained in

dMε. Then we can conclude that x(Uε) = Dε and it can be easily checked that the

restriction x\Ue: Uε—*D£ induces a topological finite covering structure. Since Dε

is simply connected, x\Ug is a diffeomorphism. Since γ2ε has a self-intersection in

Zλ, this makes a contradiction. CH

Fig. 5.

LEMMA 2.5. Let y be a closed planar curve which has a shell of internal angle

μ ( > π) on an interval (a, b) (0 < a < b < I) and D the interior of its shell. Sup-

pose that there exists a number s0 such that y (s0) ^ D, where D is the closure of D.

Then there exists another shell of internal angle μ ( ^ TΓ) on some interval (c, d)

(0 <i c < d < ΐ) which is contained in D.

Proof Since γ is periodic, we may assume that s0 > b. Then the only two

possibilities occur:

(1) There exists an interval (c, d) (a < c < b < d < s0) such that y \{Ctd) is a

shell of internal angle ( ^ re) in D. (See Fig. 6.)

(2) There exists an interval (c, d) (b < c < d < s0) such that ϊ\(Cfd) is a

shell of internal angle ( ^ TΓ) in D. (See Fig. 7.)
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This proves the lemma. •

Fig. 6. Fig. 7.

Proof of Theorem 2.1. By Lemma 2.4 and Lemma 2.5, 7 has a shell of internal

angle ( < π) on some interval (c, d) which is contained in the original shell. If the

new shell is positive, we can apply this argument again. Since 7 is a immersion

with compact image, the number of independent shells is finite. So we find a nega-

tive shell of internal angle ( ^ π) contained in D by repeating the argument O

As an application of Theorem 2.1, we get the followings:

PROPOSITION 2.6. Let y :Y&—*R be a closed planar curve of period I, which

bounds an immersed surface. Suppose that 7 has at most 4 vertices. Then for any shell

on 7 associated with an interval (a, b) (0 < a < b < /), there exists c ^

(a, b) which attains a minimal vertex.

Proof. When 7 is a simple closed curve, the proposition is obvious because it

has a unique shell (0, ΐ).

So we may assume that 7 has a self-intersection. By a suitable Mόbius trans-

formation, we may also assume that the shell j\^a,b) n a s internal angle (μ, < TΓ). If

the shell has negative orientation, then it has a minimal vertex by Lemma 1.4. So

we assume that the shell γ\{a>b) has positive orientation. Moreover, by Lemma 1.5,

we may also assume that the internal angle μ is less than π. By Lemma 1.4, there

exists a number s0 (a < s0 < b) such that γ(s0) attains maximal vertex. By

Theorem 2.1, there is a negative shell 7Ί(c>rf) of internal angle ( ^ TΓ) contained in

the interior D of the original shell τ\(a,b)- By Lemma 1.4, there exists a number

sx (c < sx < d) such that γ(s^) ^ D attains a minimal vertex. Since γ is periodic,

we may assume that sλ > b. Since 7 has at most 4 vertices, either 7l(5o,5l) or

τ\(s,s+n n a s n o vertices. Without loss of generality, we may assume that ϊ\(S>S)
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has no vertices. Since any shell has at least one vertex, 7*1 ( S S ) has no

self-intersection. Since τ(sΰ e D a n d by the assumption μ < TΓ, there exist t0 ^

(a, b) and tx G (s0, sx) such that γ(t0) = 7(^) and 7 | ( M ) lies in the complement

of D. Then 7 has a positive shell of internal angle ( > TΓ) on (f0, ^ ) . By Lemma

1.4', there is a minimal vertex on (£0, tλ). Since 7 has no vertex on (s0, 5L), the

minimal vertex lies in a subinterval (t0, s0) of (α, b). (See Fig. 8.) D

Fig. 8.

COROLLARY 2.7 (Pinkall [P]). Let γ be a closed planar curve which bounds an im-

mersed surface. Then the curve j has at least 4 vertices.

Proof. When 7 is a simple closed curve, the corollary reduces to the classical

4-vertex theorem. So we may assume that 7 has a self-intersection. By Lemma

1.3, 7 has at least two shells. By Proposition 2.6, the number of minimal vertices

of 7 is greater than or equal to two. This proves the corollary, because the num-

ber of maximal vertices is the same as that of the minimal one. •

DEFINITION 2.8. A closed planar curve 7 : R—>R of period /, is called semi-

simple if there exist numbers s0 and s1 (s0 < sx) such that the restrictions 7l[5o>5l]

and 7"l[Sl,50+/] are embeddings. (See Fig. 9.)

Obviously, a simple closed curve is semisimple.
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Fig. 9. (Examples of semisimple closed curves)

We get the following:

THEOREM 2.9. Let γ : R —* R be a smooth closed planar curve of period I, which

bounds an immersed surface. Suppose that γ has exactly 4 vertices. Then it is semisim-

ple.

Proof. Let 7(s0) and yCs^ be the minimal vertices of j . Then by Proposition
2 6> ϊ\[s0>Sl]

 a n d ϊ \[sltsQ+n a r e embeddings. D

3. Cancellation of intersections

In this section, we prove the following purely topological assertion:

THEOREM 3.1. Let j : R—•* R be a closed planar curve of period I, which bounds

an immersed surface. Suppose that j is semisimple. Then it bounds only the disc.

The 6-vertex theorem stated in Introduction immediately follows from

Theorem 2.9 and Theorem 3.1.

Remark 3.2. In the contrast with the semisimple case, for each genus g, there

is a closed curve which bounds an immersed surface of genus g such that it can

be divided by three embedding parts. It is realized by the examples in [COT].

When the curve y is a simple closed curve, the theorem is obvious. So we

assume that γ is semi-simple, but has a self-intersection. First we observe the

fundamental properties of semisimple closed curve: Let γ : R —* R be a closed

planar curve of period /. We assume that γ is semisimple. Then by the definition,
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there exist numbers s0 and s1 (s0 < sx) such that 7l[So,Sl] and 7*|[Sl>So+/] are embed-

dings. This division of the closed curve may not be unique. We fix this division

and call γ(s0) and γis^ connecting points of semisimple closed curve 7. For the

sake of simplicity, we denote γ1 = 7l[So,Sl] and γ1 = τ\[Slts0+i)- The following prop-

erties are elementary conclusions of the definition of semisimple closed curve:

(A) After performing a small perturbation, we may assume that all self-intersections of

7 are transversal, (cf. [W])

Hereafter, we assume that any semisimple closed curve has the property (A).

(B) The number of self-intersections is finite and every self-intersection is a double

point.

Proof. Suppose that there is a triple point. Then the third image of 7 does not

belong to j ι nor γ2, which yields a contradiction.

(C) The number of independent shells is exactly two.

Proof Since γι and γ2 do not have self-intersection, 7 has at most two inde-

pendent shells. Thus Lemma 1.3 yields the conclusion.

(D) If 7 bounds an immersed surface, 7 has even self-intersections. Moreover, 7 can be

assumed that it has negative shell of internal angle ( < TΓ).

Proof. By Lemma 5.3 in [KB], 7 has even self-intersections. By a suitable Mόbius

transformation, we may assume that 7 has a shell of internal angle ( < TΓ). If this

shell is positive, we find a negative shell of internal angle ( < TΓ) by Theorem 2.1

and the property (A).

The following is the key to prove Theorem 3.1.

LEMMA 3.3. Let 7 be a semisimple closed curve, which bounds an immersed sur-

face. Suppose that there are two disjoint closed intervals [a, b] and [c, d\ contained in

[0, /] such that

(1) γ(a) = r(d)(= P), rib) = r(c)(= Q).

(2) 7 \(a,b) and T \(c,d) have no intersection on itself and each other.

(3) The two internal angles of the domain D bounded by τ\[a>b] and τ\[Ctd] are

both less than it. (Fig . 10)

https://doi.org/10.1017/S0027763000004864 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004864


6-VERTEX THEOREM FOR PLANAR CURVE 85

Then by an image homotopic deformation of the immersed surface, certain two intersec-

tion points of 7 can be canceled.

[c,d]

7 I kb]

Fig. 10. (a leaf)

Proof. We call such a domain D a leaf. If the leaf D contains no points on 7,

then two intersection γ\{aM and γ\[Ctd] can be canceled, obviously.

Now we assume that D contains points on γm By the property (B), the inverse

image 7 CD) is expressed by a finite union of disjoint closed subintervals in

[0,/];

(3.1) γ~\D) = / x U / 2 U . . . U In.

Step 1: First we consider the case that D contains points on 7 which are not

the connecting points. Then each interval / ; = [ajf /3; ] (j — 1,. . . yn) is a subin-

terval of [s0, s j or [sl9 sQ + /]. When 7; c [s0, s j(resp. / ; c [s1? 50 + /]), the

restriction of the curve 7 |7. belongs γx (resp. 72) and hence 7 |7. meets 7l[C,d] (resp.

ϊ\[a,b]) at s = αy and s = β ;.

So we find a new leaf 2X bounded by the curves 7 |7. and the restriction of

ϊ\[c,d) (resp. γ\[aιb}), because internal angles are both less than π. (See Fig. 11.)

Replacing D by D\ we can apply this process. Since the intersection points are fi-

nite, repeating this process, we find two disjoint intervals [a\ b'] and

[c'f df] such that

(i) 7 \{ary) and 7 |(c/trf/) have no intersection on itself and each other,

(ii) The interior D" bounded by γ\[a^bΊ and γ\[crtdΊ contains no points on 7.

Thus two intersection γ\[^y] and γ\[C^d^ can be canceled.

Step 2: Next we consider the case that D contains connecting points on 7. It

suffices to show the existence of other two disjoint leaves. Since there are only

two connecting points, at least one leaf does not contain them and the discussion

https://doi.org/10.1017/S0027763000004864 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004864


86 MASAAKI UMEHARA

reduces to Step 1.

Without loss of generality, we may assume that the connecting point γ(s0) is

contained in D. Then there exist numbers a and β (s0 < a < a, d < β < s0 + /)

such that r\ia,ai ( r e s P ϊ\[d,β]) m e e t s ϊ\[c,d] ( r e s P r\ia.bύ o n l y a t t n e points γ(ά) and

γ(ά) (resp. γ(d) and γ(β)). Obviously, the interior Dλ (resp. D2) bounded by

r\ia,a] ( r e s P r\[d.βύ a n d a restriction of γ\[Ctd] (resp. γ\[a>b]), has internal angles

( < π) and so it is a leaf. Moreover, D and Z^ (resp. D2) are disjoint. (See Fig. 12.)

If Z^ and D2 are also disjoint, we find three disjoint leaves D, Z)j_ and Z)2 Next we

suppose that Dι Π D2 is not empty. Then there exists a number £ (d < ξ

< /3) such that τ\[d>ξ] meets 7 [ α α ] only at the points γ(d) and j(ξ). Since the do-

main D3 bounded by τ\[d>ζ) and a restriction of τΊ [ α , α ], n a s internal angles ( < π),

it is also a leaf. Obviously, these three leaves D, Dι and D3 are mutually disjoint.

(See Fig. 13.) This proves the lemma. •

Fig. 11.

Zλ*

Fig. 12. Fig. 13.

LEMMA 3.4. Let γ be a semisimple closed curve with period I. Suppose that

j(a) — ϊ(b) (a < b < a + I) such that y\{aM is not a shell. Then there exist two

numbers a' and V {a < af < V < b) satisfying the following properties:

(1) y(a') = y(br).

(2) 7 \[a,aΊ and T \[b,bΊ a r e embeddings.

(3) There is no intersection between y | ( β f l Ί and y
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Proof. Without loss of generality, we may assume that the connecting points

satisfy the inequality a < s0 < b < sx < a + /. Since γ \(a>b) is not a shell, there is

a subinterval (a, β) of (#, b) such that j\{as) is a shell. Obviously, sQ ^ (α, β).
S o ϊ\[a,a] ( r e s P ϊ\w,b]) i s a restriction of γ2 (resp. ft). Hence r\ia,ai a n d H ω i a r e

embeddings. Now we consider the point γ(a') = γ(b') (a < af < a, b < V

< β) at which τ\[a>a] meets τ\[β,r] first time. Then the numbers a' and V are the

desired ones. D

LEMMA 3.5. Let γ be a semisimple closed curve with period I. Suppose that there

are two disjoint closed intervals [a, b] and [c, d] (0 < a < b < c, d ^ /) such that

(1) γ(a) = r ( d ) ( = P), γ{b) = γ(c)(= Q).

(2) ϊ \[a,b] anά ϊ \[c,d] have no intersection on itself and each other.

(3) The internal angles of the domain D bounded by J \[a>b] and j \[Ctd] are greater

than π at the point P and less than π at the point Q.

(4) There exists a subinterval (α, /3) of (b, c) such that y has a shell on

(α, β) and γ(a) = γ(β) <έ D. (Fig. 14)

Then there exists a leaf Dr as in Fig. 10 contained in D.

7 \[a,β]

Fig. 14.

Proof

Case 1: First we consider the case τ\(d,a+n ι s n °t contained in D. Then there

exists a number df (d < dr < a + I) such that y(df) ^ dD and τ\{d,df) n a s no

self-intersection and contained in D. By the property (B), we have γ(d') Φ P , Q.

If γ(df) lies on the curve y\{Ctd), then we can take the point c < cf < d such that

7WO — γ(c') and find a positive shell of internal angle ( < TΓ) on the interval

(c\ d'). By Theorem 2.1 and the property (B), there exists a negative shell γ\f on

some interval / whose image is contained in the interior of the shell τ\^fdr). By

the assumption (4) of the lemma, three shells on (α, /5), (c\ dr) and / are inde-
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pendent. But this contradicts the property (C).

So we may assume that γ(d') lies on the curve τ\(a,b) Then we can take the

point a < a! < b such that γ(a') = 7 WO and find a leaf as in Fig. 10 on the in-

terval (α, a') between (d, d')

Case 2: Next we consider the case ϊ\(dιa+l) contained in D. If τ\(d,a+n * s a

shell, by the property (B) it must be a positive shell of internal angle ( < TΓ). By

Theorem 2.1 and the property (B), there exists a negative shell γ\I on some inter-

val / whose image is contained in the interior of the shell 7*1 («*,«+/)• By the assump-

tion (4) of the lemma, three shells on (α, β), W, a + ΐ) and / are independent.

But this contradicts the property (C). Hence γ \(d>a+n is not a shell. Then by Lemma

3.4, there exist numbers dr and af (af < a < d < d') such that

( i ) γ(a') = rW0(= P'), r(a) = γ(d)(= Q')

(ii) τ\(a',a) a n c ^ H <«*,<*') have no intersection on itself and each other,

(iii) The internal angle at the point Qf of the domain Df bounded by τ\[a',a)

τ\[d,dΊ a r e

If the internal angle at the point P' is also less than TΓ, then we find a leaf as in

Fig. 10 on the interval (a', a) between (d, dr)

Finally, we consider the case the internal angle at the point Pr is greater than

it. Then it is easily seen that two closed intervals [a\ a] and [d, d'\ also satisfy

the assumptions of Lemma 3.5. Thus we can apply this argument again for the in-

tervals [a', a] and id, d']. Since the number of self-intersections of γ is finite, we

find a leaf as in Fig. 10 by repeating the argument. •

Proof of Theorem 3.1. Suppose that there exists a semisimple closed curve

which bounds an immersed surface of genus g > 0. Let d be the minimum number

of intersection points of such curves. Since g Φ 0, the integer d is positive and we

can assume that y represents the one of absolutely minimum self-intersections d.

By the property (D), we can take an interval (α, β) on which 7 has a negative

shell of internal angle ( < π). If τ\(βιa+ι) is also a shell, γ has only one

self-intersection. But this contradicts the fact that the closed curve which bounds

immersed surface has even intersections. (See (D).) Hence τ\φ,a+i) ^s n ° t a shell

and by Lemma 3.4, there exist numbers a and b (a < a < β < b) such that

(1) γ(a) = γ(b)(= P), r(a) = γ(β)(= Q).

(ii) τ\(a,a) a n d ϊ\(β,b) n a ve no self-intersection on itself and each other,

(iii) The intermal angle at the point Q of the domain D bounded by τ\(a,a)

7 \(βfb) are less than TΓ. (See Fig. 15.)
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If the internal angle at the point P is also less than π, then certain two intersec-

tions can be canceled by Lemma 3.3. This contradicts the fact that γ has absolute-

ly minimum intersection. Thus the internal angle at the point P is greater than it.

Then it is easily seen that two closed intervals [a, a] and [β, b] satisfy all the

assumptions of Lemma 3.5. Thus we can find a leaf as in Fig. 10 and cancel two

intersections by Lemma 3.3. So this makes also a contradiction. Now we can con-

clude that there is no semisimple closed curve which bounds immersed surface of

genus g > 0. This proves the theorem. D

Fig. 15.

Added in proof. G. Cairns, M. Mclntyre and M. Ozdemir (Bull. London Math.

Soc, 25 (1993)) also gave a proof of the 6-vertex theorem in Introduction under

the additional assumption that the planer curve γ is normal (i.e. all their intersec-

tions are at most double points and transversal). Their approach is quite different

from ours.
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