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Abstract. The extension E of degree n over the Galois field F ¼ GFðqÞ is called
regular over F, if ordrðqÞ and n have greatest common divisor 1 for all prime divisors
r of n which are different from the characteristic p of F (here, ordrðqÞ denotes the
multiplicative order of q modulo r). Under the assumption that E is regular over F
and that q � 1 is divisible by 4 if q is odd and n is even, we prove the existence of a
primitive element w 2 E which is also completely normal over F (the latter means
that w simultaneously generates a normal basis for E over every intermediate field K
of E=F). Our result achieves, for the class of extensions under consideration, a
common generalization of the theorem of Lenstra and Schoof on the existence of
primitive normal bases [12] and the theorem of Blessenohl and Johnsen on the exis-
tence of complete normal bases [1].
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1. The main result. The famous normal basis theorem states that for every
(finite dimensional) Galois extension E=F there exists an element w in E whose set of
conjugates under the Galois group G constitutes a basis of E as F-vector space.
Equivalently, the additive group ðE;þÞ of E is free on one generator when con-
sidered as a module over the group algebra FG. Each generator is called a normal or
a free element of E over F.1 For arbitrary finite fields E and F the normal basis the-
orem was first proved by Hensel [10] in 1888; for infinite fields the result is due to
Noether [16].

In the present paper we are concerned with finite fields. So, let F ¼ GFðqÞ be the
Galois field with q elements and let E be the extension of degree n over F. Then the
Galois group G is cyclic and admits the Frobenius automorphism �F (mapping u 2 E
to uq) as a canonical generator. Consequently, the FG-action on ðE;þÞ can be
described in terms of the (univariate) polynomial ring F ½x� over F by defining the
scalar multiplication

f 	F w :¼ f ð�FÞðwÞ; f 2 F ½x�; w 2 E; ð1:1Þ

i.e., by evaluating the polynomial f at the Frobenius automorphism and by applying
the resulting F-endomorphism f ð�FÞ of E to w. We call E an F ½x�-module. The F-
order (or q-order) of w 2 E is defined to be the monic polynomial � 2 F ½x� of least
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1Unfortunately, the terminology is not consistent. We have used the term free in [7] and several other
papers. This time, as in [14], we shall use the term normal.
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degree such that � 	F w ¼ 0; it is denoted by OrdFðwÞ (or also by OrdqðwÞ). It is well
known (see e.g. [7, Section 1]) that w 2 E is normal over F if and only if
OrdFðwÞ ¼ xn � 1, i.e., if and only if OrdFðwÞ is equal to the minimal polynomial of
E when considered as F ½x�-module.

For every divisor k of n there exists exactly one subfield K of E which has degree
k over F. If H is the Galois group of E over K, then ðE;þÞ likewise is free on one
generator as KH-module, and using the Frobenius automorphism �K ¼ �k

F of E=K,
the KH-action is described via the polynomial ring K ½x� by

g 	K w :¼ gð�KÞðwÞ; g 2 K ½x�; w 2 E: ð1:2Þ

Analogously, we define the K-order (or qk-order) of w 2 E to be the monic poly-
nomial � 2 K ½x� of least degree such that � 	K w ¼ 0. Since the degree of E over K is
equal to n=k, w is normal in E over K if and only if OrdKðwÞ ¼ xn=k � 1, the latter is
the minimal polynomial of E when considered as a K ½x�-module.

Now, it might happen that, for some intermediate field K, a normal element for
E over F is not normal over K. For example, if � 2 GFð64Þ is a primitive 9th root of
unity, then �þ �3 is normal in GFð64Þ over GFð2Þ but not over GFð4Þ, as

Ord4ð�þ �
3Þ ¼ x2 þ �6x þ �3 6¼ x3 � 1:

The strengthening of the normal basis theorem, however, which is due to Blessenohl
and Johnsen [1], states that for every finite extension E over any finite field F there
exists an element w which simultaneously is normal over K for every intermediate
field K of E=F. Such an element is called completely normal or completely free in E
over F. (As was first proved by Faith [6] in 1957, see also [1], this complete normal
basis theorem also holds for (finite dimensional) Galois extensions over infinite fields.)

For finite fields there is another ‘strengthening of the normal basis theorem’,
namely the primitive normal basis theorem of Lenstra and Schoof, which simulta-
neously concerns the multiplicative and the additive group of the extension field E.
Recall that the multiplicative group E� of E is cyclic, i.e., free on one generator as a
module over the ring of integers; an element w of E is called primitive, if w is a gen-
erator of E�. Now the theorem of Lenstra and Schoof states that for every finite
extension E over a finite field F there exists a primitive element in E which addi-
tionally is normal over F. The following example shall indicate that the existence of
such an element is non-trivial. Consider E ¼ GFð64Þ over F ¼ GFð2Þ: the roots of
x6 þ x5 þ x4 þ x2 þ 1 are normal for E over F, but not primitive; the roots of
x6 þ x þ 1 are primitive but not normal; the roots of x6 þ x5 þ 1 are primitive and
normal for E over F.

The two stronger versions of the normal basis theorem immediately lead to the
following problem, which concerns a common generalization of the theorem of
Lenstra and Schoof and the theorem of Blessenohl and Johnsen.

Problem 1.1. Let E be a finite extension over a finite field F. Does there exist a
primitive element in E which is completely normal over F?

Consider again E ¼ GFð64Þ over F ¼ GFð2Þ: the roots of x6 þ x5 þ 1 are prim-
itive but not completely normal for E over F. If v is a root of x6 þ x5 þ x4 þ x2 þ 1
then v is completely normal for E over F, but v is not primitive. However, there are
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exactly six elements in E which are primitive and completely normal over F, and
these are precisely the roots of the polynomial x6 þ x5 þ x4 þ x þ 1.

The following conjecture is due to Morgan and Mullen [14] (see also [15, Con-
jecture 9]).

Conjecture 1.2. For every prime power q > 1 and every integer n � 1 there
exists a primitive element w 2 E ¼ GFðqnÞ which is completely normal over
F ¼ GFðqÞ.

By means of a computer search, Morgan and Mullen [14] have supported their
conjecture by calculating for every pair ðq; nÞ, with q  97 a prime and qn < 1050, a
monic irreducible polynomial �q;n of degree n over GFðqÞ whose roots are primitive
and completely normal for GFðqnÞ over GFðqÞ. Besides an extensive table with 1061
polynomials they have also determined the exact number of primitive completely
normal elements for the 56 pairs ðq; nÞ, where q ¼ 2; 3; 4; 5; 7; 8; 9 and
n  18; 12; 9; 8; 6; 5; 5, respectively.

In the present paper we shall confirm Conjecture 1.2 by proving the primitive
complete normal basis theorem for a considerably large class of extensions (see The-
orem 1.4). We require a definition.

Definition 1.3. The field E ¼ GFðqnÞ is called regular over F ¼ GFðqÞ if for
every prime divisor r of n which is different from the characteristic of F, ordrðqÞ and
n are relatively prime, where ordrðqÞ denotes the smallest integer k � 1 such that
qk � 1 is divisible by r (i.e., the multiplicative order of q modulo r). The pair ðq; nÞ is
likewise called regular.

Let p be the characteristic of GFðqÞ and write n ¼ m
, where 
 is a power of p
and m is prime to p. It is easy to see that ðq; nÞ is regular if and only if n and
ord�ðmÞðqÞ are relatively prime, where �ðmÞ denotes the square-free part of m. (Of
course, ðq; nÞ is regular if and only if ðq; kÞ is regular for every divisor k of n.)

Our main result is the following theorem.

Theorem 1.4. Let E be the field extension of degree n over a finite field
F ¼ GFðqÞ. Assume that E is regular over F. Assume further that q � 1 is divisible by 4
if q is odd and n is even. Then there exists a primitive element w 2 E which is com-
pletely normal over F.

We close this section with some examples for regularity which also indicate that
the class of extensions satisfying the assertion of Theorem 1.4 is in fact considerably
large.

1. If n is the power of a prime r, then ðn; qÞ is regular for each prime power q > 1.
2. If q is given and n ¼ m
 is as above, then ðn; qÞ is regular if �ðmÞ divides q � 1.
3. A Carmichael number is an odd composite integer N � 1 such that r � 1

divides N � 1 for every prime divisor r of N (see [11, p. 128]; there exist infinitely
many Carmichael numbers). E.g., 561, 1105, 1729 and 2465 are Carmichael num-
bers. Now, if N is any Carmichael number, then ðNs; qÞ is regular for each prime
power q > 1 and each integer s � 1.

4. If q � 2 is any prime power and if all primes in n lie in the set L :¼ f7, 11,
13, 17, 19, 31, 41, 47, 59, 61, 73, 97, 101, 107, 109, 139, 151, 163, 167, 173, 179, 181,
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193 g (no matter in which multiplicity the primes occur in n), then GFðqnÞ is regular
over GFðqÞ. (The set L above has been determined as follows: we have started with
L ¼ f7g and considered all primes r with 8  r  B ¼ 200 in increasing order; if s is
not a divisor of r � 1 for every s in the current set L, then r is added to L. When
taking B ¼ 1000, one obtains a list of 70 primes (the total number of primes r with
7  r  1000 is equal to 165); when taking B ¼ 100000 one obtains a list with 3181
primes the largest of which is 99907 (the total number of primes in the interval
½7; 100000� is equal to 9585).)

2. Outline. The notion of regularity was introduced in [7] while studying the
structure of completely normal elements for finite fields. So, [7] is the standard
reference for the theory of (complete) normal bases for finite fields. For the general
background on the theory and applications of finite fields, the reader may consult
Lidl and Niederreiter [13].

In Section 3 and Section 4 we summarize some facts from [7] on the nature of
completely normal elements for the class of completely basic and the class of regular
extensions, respectively. The main result in this respect is Theorem 4.3, which gives a
characterization of the complete generators for regular cyclotomic modules.

In order to combine primitivity and (complete) normality we use the theory of
Gauss and character sums. The idea of applying these methods to study primitivity
in combination with normality has its origins in papers of Carlitz [3] and Davenport
[5], who first investigated the existence of primitive normal bases. In Section 5, for
extensions as considered in Theorem 1.4, we derive a sufficient criterion for the existence
of a primitive element which additionally is completely normal, and finally, through
analysing this criterion, the proof of Theorem 1.4 is completed in Section 6. In Section
7 we shall conclude with some remarks concerning Problem 1.1 in its full generality.

The reader will have observed that, in Theorem 1.4, besides regularity, we have
assumed that q � 1 is divisible by 4 if q is odd and n is even. This assumption is
necessary to exclude, among the regular extensions, the subclass of exceptional
extensions (see also Definition 20.2 in [7]). These do not allow the characterization of
completely normal elements which is based on Theorem 4.3.

Definition 2.1. Let q > 1 be a prime power and n � 1 an integer. Assume that
ðq; nÞ is regular. Let n2 be the largest power of 2 dividing n. Then the pair ðq; nÞ as
well as the extension GFðqnÞ over GFðqÞ are called exceptional provided the follow-
ing conditions are satisfied: q is odd, n2 � 8, ordn2

ðqÞ ¼ 2, and q � 1 � 1
2 n2 is not

divisible by n2.

3. Completely basic extensions. The study of normality under variations of the
ground field goes back to the work of Faith [6]. He has defined a Galois extension
E=F to be completely basic if each normal element of E over F already is completely
normal. Hence, in the context of finite fields, a trivial application of the theorem of
Lenstra and Schoof shows that primitive completely normal elements do exist for
completely basic extensions. In the present section we will therefore compare the
classes of completely basic and regular extensions. The outcome is that every com-
pletely basic extension is regular although the regular class is much larger than the
complete basic one.
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One of the main results in [6] is that Kummer extensions are completely basic.
Motivated by the work of Faith, Blessenohl and Johnsen [2] have characterized the
completely basic extensions among the abelian extensions. For the case of finite
fields, an elementary proof of that characterization is given in [7, Theorem 15.7]. It is
as follows, where now, for an integer k, k0 denotes the largest divisor of k which is
prime to the characteristic p of the underlying fields.

Theorem 3.1. Let E be the field extension of degree n over F ¼ GFðqÞ. Then the
following statements are equivalent.

1. E is completely basic over F.
2. If w is any normal element for E over F and if r is any prime divisor of n, then

w is normal for E over GFðqrÞ.
3. For every prime divisor r of n, the multiplicative order of q modulo ðnrÞ

0 is not
divisible by r.

For example, if n is a power of the characteristic p of F ¼ GFðqÞ, then ðq; nÞ is
completely basic (which means that GFðqnÞ is completely basic over GFðqÞ). Or, if
n ¼ r2 is the square of a prime r, then ðq; nÞ is completely basic (see [7, Corollary
15.6]). Also, if n divides q � 1, then ðq; nÞ is completely basic.

The following result relies on Definition 1.3 and Theorem 3.1.

Proposition 3.2. Assume that ðq; nÞ is completely basic. Then ðq; nÞ is also
regular.

Proof. Let n ¼ m
, where m ¼ n0 and 
 is a power of the characteristic p. If p
does not divide ordmðqÞ then it does not divide ord�ðmÞðqÞ.

Next, let r be a prime divisor of m and write m ¼ �k, where � is a power of r and
k is prime to r. The multiplicative order of q modulo m=r is equal to the least com-
mon multiple a of ord�=rðqÞ and ordkðqÞ. The least common multiple b of ordrðqÞ and
ord�ðkÞðqÞ is equal to ord�ðmÞðqÞ. By assumption, r does not divide a. If r2 divides �,
then b divides a, whence r is prime to b. If r ¼ �, then a ¼ ordkðqÞ which is divisible
by ord�ðkÞðqÞ. Since ordrðqÞ divides r � 1, we have again that r is prime to b. Hence, a
completely basic pair is also regular. &

We shall see soon that the class of regular extensions is much larger than the
class of completely basic extensions. For this purpose, with m being as in the proof
of Proposition 3.2, observe first that the multiplicative order of q modulo m has the
form

ordmðqÞ ¼ ord�ðmÞðqÞ �
Y

r

r�ðrÞ; ð3:1Þ

where the product runs over all prime divisors r of m and where �ðrÞ � 0. Moreover,
if for a prime divisor r of m, mr is the maximal power of r dividing m, then

ordmr
ðqÞ ¼ ordrðqÞ � r�ðrÞ; ð3:2Þ

and therefore r�ðrÞ divides mr=r. Now, if �ðrÞ � 2, then

ordmr=rðqÞ ¼
ordmr

ðrÞ

r
ð3:3Þ

PRIMITIVE COMPLETE NORMAL BASES 387

https://doi.org/10.1017/S0017089501030026 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501030026


is divisible by r. Consequently, if ðq; nÞ is completely basic, then �ðrÞ  1 for all
prime divisors r of m. Moreover, by [7, Lemma 20.4], the following is true.

Proposition 3.3. Assume that ðq; nÞ is a regular pair. Then the following asser-
tions are equivalent.

1. ðq; nÞ is not exceptional and �ðrÞ  1 for each prime divisor r of m.
2. ðq; nÞ is completely basic.

Now, if � is a finite set of prime numbers, then let �ð�Þ be the product of all
s 2 � . Moreover, let Nð�Þ be the set of integers k � 1 such that �ðkÞ divides �ð�Þ.
Assuming that ðq; �ð�ÞÞ is completely basic, we have that ðq; �ð�ÞÞ is regular by
Proposition 3.2. However, by Proposition 3.3 and (3.1), the set of integers n 2 Nð�Þ
such that ðq; nÞ is completely basic is finite, whereas ðq; nÞ is regular for all n 2 Nð�Þ.
This is because the �-values (see (3.1) and (3.2)) can become arbitrarily large without
effecting the regularity: regularity is a local condition in the sense that it involves
only the square-free part of an integer.

We finally mention that, by Proposition 3.3, ðq; nÞ is completely basic if ðq; nÞ is
regular and m=�ðmÞ is square-free (where again m ¼ n0). Moreover, we have the fol-
lowing lemma, which will be used in Section 6.

Lemma 3.4. Assume that ðq; nÞ is regular but not completely basic. Then m ¼ n0 is
divisible by the cube r3 of a prime r. Moreover, if m is even, if q � 1 is divisible by 4 and
if m is not divisible by the cube of an odd prime, then 16 divides m.

4. Complete normality for regular extensions. In the present section, we sum-
marize the essential properties of completely normal elements for regular extensions.
For the proofs, we refer to [7].

Throughout, let again p be the characteristic of F ¼ GFðqÞ and write n ¼ m

where m is not divisible by p and 
 is a power of p. Let E ¼ GFðqnÞ and let �F, as in
Section 1, denote the Frobenius automorphism over F. Moreover, for a divisor k of
m, let �k be the kth cyclotomic polynomial over F.

The subset

Uk :¼ UF;�
k
¼ fw 2 E j�


k 	F w ¼ 0g ð4:1Þ

of E is a �F-invariant F-subspace, whence we call Uk a cyclotomic module over F.
Next, we define Fk to be the subfield of all l 2 E such that lUk � Uk, i.e., Fk is the
largest subfield of E such that Uk is an Fk-vector space. Then the degree ½Fk : F � of
Fk over F is equal to

ðkÞ :¼
k


�ðkÞ
: ð4:2Þ

(The latter is proved in Section 18 of [7] for a more general class of �F-invariant F-
subspaces of an algebraic closure of F.) The value ðkÞ is called the module character
of Uk. The motivation for this name is as follows: for each intermediate field
L ¼ GFðqlÞ of Fk over F, Uk carries the structure as an L½x�-module with respect to
�L ¼ �l

F (see (1.2)), and conversely, if M is a subfield of E such that Uk is an M½x�-
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module with respect to �M ¼ �½M:F �

F , then, from the definition of Fk, M is a subfield
of Fk, whence ½M : F � divides ðkÞ.

Now, in analogy to the normal basis theorem, it holds that, for every inter-
mediate field L of Fk over F, Uk is free on one generator as an L½x�-module (with
respect to �L). Moreover, if l ¼ ½L : F � ¼ l 0�, � a power of p and l 0 prime to p, then
the minimal polynomial of Uk as L½x�-module is equal to

�
=�
k=l 0 : ð4:3Þ

By [7, Theorem 18.8], similar to the strengthening of the normal theorem of
Blessenohl and Johnsen [2], it even holds that Uk is completely cyclic in the following
sense.

Proposition 4.1. Let E, F and k, 
 be as above. Then there exists an element
v 2 Uk such that v simultaneously generates Uk as an L½x�-module for all intermediate
fields L of Fk ¼ GFðqðkÞÞ over F. Such an element is called a complete generator for
Uk over F. Moreover, the complete generators v of Uk are characterized by the fol-
lowing condition:

ordqd�v ¼ �k=dðx

=�Þ ð4:4Þ

for all d dividing k
�ðkÞ and all � dividing 
.

We will now give a characterization of the completely normal elements for a
class of extensions which comprises the class of regular extensions. In fact, Theorem
4.2 includes a characterization of regularity for the case where n is not divisible by
the characteristic p. A proof of Theorem 4.2 is given in [7, Section 19].

Observe first that the canonical decomposition

xn � 1 ¼
Y
kjm

�

k ð4:5Þ

(where k runs over all positive divisors of m) corresponds to a decomposition of E
into a direct sum of cyclotomic modules, i.e.,

E ¼
M
kjm

Uk ¼
M
kjm

UF;�
k
: ð4:6Þ

For w 2 E, let
P

kjm wk be the decomposition of w with respect to the decomposition
(4.6) of E.

Theorem 4.2. Let E be the field extension of degree m
 over F ¼ GFðqÞ, where m
is not divisible by the characteristic p of F and where 
 is a power of p. If
w ¼

P
kjm wk 2 E is completely normal over F, then for every divisor k of m, wk is a

complete generator for the cyclotomic module UF;�
k
. Furthermore, the following

statements are equivalent.
1. ðq;mÞ is regular.
2. If fvk : kjmg is any collection of elements in E such that for every divisor k of

m, vk is a complete generator for the cyclotomic module UF;�
k
, then

P
kjm vk is com-

pletely normal in E over F.
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We summarize that, in a regular extension, the set of completely normal ele-
ments is precisely the sum of the sets of complete generators over all cyclotomic
submodules.

Extending the notion of regularity, we call a cyclotomic module Uk ¼ UF;�
k
regular over F ¼ GFðqÞ, if ðq; k
Þ is regular. Moreover, if Uk is regular, then it is
called exceptional if ðq; k
Þ is exceptional.

We next give a characterization of the completely normal elements for regular
but not exceptional extensions, and this characterization will be essential for our
considerations in Section 5. For the proof of Theorem 4.3 we refer to [7, Section 20].

Remember first from (3.1) that for an integer k which is prime to q, the multi-
plicative order of q modulo k is of the form ord�ðkÞðqÞ �

Q
rjk r�ðrÞ, where the product

runs over all prime divisors of k. We define the parameter �ðkÞ by

�ðkÞ ¼ �ðq; kÞ :¼
Y
rjk

rb
�ðrÞ
2 c; ð4:7Þ

where, for a rational number �, b�c denotes the integer part of �. It holds that �ðkÞ is
a divisor of k=�ðkÞ (see [7, Lemma 20.5]), whence Uk ¼ UF;�
k

carries the structure as
an Lk½x�-module, where, throughout,

Lk :¼ GFðq�ðkÞÞ: ð4:8Þ

The minimal polynomial of Uk as Lk½x�-module is equal to �

k , where

�k :¼ �k=�ðkÞ: ð4:9Þ

Theorem 4.3. Let UF;�
k
be a regular cyclotomic module over F ¼ GFðqÞ. Assume

that q � 1 is divisible by 4 if q is odd and k is even. Then v is a complete generator of
UF;�
k

if and only if the q�ðkÞ-order of v is equal to �

k ¼ �


k=�ðkÞ.

If ðq; k
Þ is exceptional, then the set of complete generators of Uk over GFðqÞ
does not allow a characterization as in the assertion of Theorem 4.3. For more
details we refer to [7, Theorem 20].

5. Character sums and characteristic functions. In the present section, we use the
theory of character and Gauss sums in order to obtain a sufficient number theore-
tical condition for the existence of a primitive completely normal element for an
extension satisfying the assumption of Theorem 1.4. Throughout, we use the same
notation as in Section 4.

Concerning the primitivity, for w 2 E let

Mq;nðwÞ :¼
’ðqn � 1Þ

qn � 1

X
djqn�1

�ðd Þ

’ðd Þ

X
ð�;d Þ

�ðwÞ; ð5:1Þ

where, for the ring of integers, ’ denotes the Euler totient function and � the
Möbius function. Furthermore, the second sum runs over all multiplicative char-
acters of the field E having multiplicative order exactly d. It is well known (see e.g.
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[3], [5] or [12]) that, with the convention Mq;nð0Þ ¼ 0, Mq;n is the characteristic
function of the set of all w in E which are primitive, i.e., Mq;nðwÞ ¼ 1 if w is primitive,
and Mq;nðwÞ ¼ 0, otherwise.

Assume next that k is a divisor of m. Furthermore, let l be a divisor of k=�ðkÞ,
whence l divides the module character ðkÞ ¼ k
=�ðkÞ of Uk ¼ U�
k

(see (4.2)), and
therefore L ¼ GFðqlÞ is an intermediate field of Fk over F. For w 2 E let

Aq;l;kðwÞ :¼
�qlð�k=lÞ

ql’ðk=lÞ

X
gjl�k=l

�qlðgÞ

�qlðgÞ

X
ð�;gÞl

�ðwÞ; ð5:2Þ

where �ql and �ql denote the Euler function and the Möbius function, respectively,
for the ring L½x�. Furthermore, jl indicates that the first sum runs over all monic L-
divisors of �k=l, whereas ð�; gÞl indicates that the second sum runs over all additive
characters of E having L-order (or ql-order) exactly g. At this point we have to
remark that the notion of L-order is also defined for the group ÊE of additive char-
acters of E, since ÊE carries the structure as an L½x�-module by letting

ðg 	L �ÞðwÞ :¼ �ðg 	L wÞ; � 2 ÊE; g 2 L½x�; w 2 E; ð5:3Þ

where 	L is as in (1.2) (see also [12], [4] or [8]). The L-order of � 2 ÊE is defined as the
monic polynomial f 2 L½x� of least degree such that f 	L � ¼ �0, where �0 is the tri-
vial additive character. As L½x�-modules, ÊE and ðE;þÞ are isomorphic, whence every
L½x�-submodule of ÊE is free on one generator; in particular, as an L½x�-module, ÊE is
annihilated by xn=l � 1. Furthermore, for each monic L-divisor g of xn=l � 1 there are
exactly �qlðgÞ � 1 additive characters whose L-order is equal to g (see e.g. [12]). By
[4, Section 3] (here applied to the field extension E over L) it holds that Aq;l;k is the
characteristic function of the set of all w in E whose L-order is divisible by �


k=l.
We assume now that E is a regular extension over F. For a divisor k of m, let

�ðkÞ ¼ �ðq; kÞ be as in (4.7), Lk as in (4.8) and �k as in (4.9). For w 2 E, let

ÂAq;nðwÞ :¼
Y
kjm

Aq;�ðkÞ;kðwÞ: ð5:4Þ

Then the following essentially is a consequence of Theorem 4.3.

Proposition 5.1. Let E be the field extension of degree n over F ¼ GFðqÞ, and let
n ¼ m
 where m is not divisible by the characteristic p of F and 
 is a power of p.
Assume that E is a regular extension over F. Assume further that q � 1 is divisible by 4
if q is odd and n is even. Then ÂAq;n is the characteristic function of the set of elements in
E which are completely normal over F, i.e., ÂAq;nðwÞ ¼ 1 if w is completely normal over
F and ÂAq;nðwÞ ¼ 0 otherwise.

Proof. Assume first that w is completely normal in E over F. If k is a divisor of
m, then �ðkÞ divides m, whence w is normal in E over Lk, and therefore the Lk-order
of w is equal to xn=�ðkÞ � 1 which is divisible by �


k . Consequently, Aq;�ðkÞ;kðwÞ ¼ 1.
Since this holds for all divisors k of m, we have that ÂAq;nðwÞ ¼ 1.

Assume conversely that ÂAq;nðwÞ ¼ 1 for some w 2 E, i.e., Aq;�ðkÞ;kðwÞ ¼ 1 for all
divisors k of m. We fix a divisor e of m and let

P
djm=�ðeÞ ŵwd be the decomposition of w

with respect to the decomposition of E given by
Q

djm=�ðeÞ �


d , i.e., as an Le½x�-mod-
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ule. Then Aq;�ðeÞ;eðwÞ ¼ 1 if and only if �

e ¼ �


e=�ðeÞ divides the q�ðeÞ-order of w, i.e.,
the Le-order of w, and this is true if and only if ŵwe=�ðeÞ has q�ðeÞ-order �


e (this is an
application of [7, Theorem 8.6]). Since

½Le : F � ¼ �ðeÞ and �

e ¼ �


e ðx
�ðeÞÞ; ð5:5Þ

it furthermore holds that

ULe;�


e
¼ UF;�
e

ð5:6Þ

(see also [7, Proposition 14.2]) and therefore ŵwe=�ðeÞ ¼ we. Thus, Aq;�ðeÞ;eðwÞ ¼ 1 if and
only if we has Le-order equal to �


e . Since this holds for all divisors e of m, Theorem
4.3 implies that w is completely normal in E over F, and everything is proved. &

A straightforward application of (5.1) and Proposition 5.1 now gives a character-
ization of primitive completely normal elements for extensions as in Theorem 1.4.

Corollary 5.2. Let E and F be as in Theorem 1.4. Then w 2 E is primitive and
completely normal over F if and only if Mq;nðwÞ � ÂAq;nðwÞ ¼ 1. Moreover, the number of
elements of E which are primitive and completely normal over F is precisely equal toP

w2E Mq;nðwÞÂAq;nðwÞ.

We now turn to the main result of this section, i.e., the announced sufficient
number theoretical criterion. Throughout, let !ðq; nÞ denote the number of different
prime divisors of qn � 1. Moreover, for a divisor k of m let �qðkÞ be the number of
different monic divisors of �k which are irreducible over Lk, i.e.,

�qðkÞ :¼
’ð k
�ðkÞÞ

ord k
�ðkÞ
ðq�ðkÞÞ

: ð5:7Þ

Finally, let

�̂�qðnÞ :¼
X
kjm

�qðkÞ: ð5:8Þ

Theorem 5.3. Let E be the field extension of degree m
 over F ¼ GFðqÞ, where m
is not divisible by the characteristic p of F and where 
 is a power of p. Assume that E
is a regular extension over F. Assume further that q � 1 is divisible by 4 if q is odd and
n is even. If

q
n
2 > ð2!ðq;nÞ � 1Þ � ð2�̂�qðnÞ � 1Þ; ð5:9Þ

then there exists an element w 2 E which is primitive and completely normal over F.

Proof. Let X ¼
P

w2E Mq;nðwÞÂAq;nðwÞ denote the number of elements w 2 E
which are primitive and completely normal over F (see Corollary 5.2). We define

� :¼
’ðqn � 1Þ

qn � 1
and �̂� :¼

Y
kjm

�q�ðkÞ ð�kÞ

q’ðkÞ
: ð5:10Þ
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Since �ðkÞ divides k=�ðkÞ, we have

’ðkÞ ¼ �ðkÞ � ’
k

�ðkÞ

� �
;

and therefore the factor of �̂� indexed with k coincides with the first factor of Aq;�ðkÞ;k

(see (5.2)). Consequently, combining (5.1), (5.2), (5.4) and Corollary 5.2, we have

X

��̂�
¼

X
djqn�1

X
gj�

�ðd Þ

’ðd Þ

Y
kjm

�q�ðkÞ ðgkÞ

�q�ðkÞ ðgkÞ

� �X
ð�;d Þ

X
ð�;gÞ

�ð�; �Þ; ð5:11Þ

where gj� indicates that the sum runs over all mappings g from the set Dm of posi-
tive divisors k of m to E ½x� such that gðkÞ ¼ gk is a monic divisor of �k with coeffi-
cients in Lk. Moreover, for a given g, ð�; gÞ denotes the set of pairs of mappings
from Dm to ÊE and E ½x�, respectively such that �ðkÞ ¼ �k has Lk-order gk. Finally,
�ð�; �Þ denotes the Gauss sum

�ð�; �Þ ¼
X
w2E

�ðwÞð
Y
kjm

�kÞðwÞ: ð5:12Þ

(As usual, we have written ÊE multiplicatively.)
For a divisor k of m, let

CLk;�


k
¼ f� 2 ÊE j �


k 	Lk
� ¼ 0g ð5:13Þ

be the set of all additive characters having Lk-order dividing �

k . Then CLk; 



k
is an

Lk½x�-submodule of ÊE. Moreover, this set coincides with the F ½x�-submodule CF;�
k
of ÊE (see also (5.5) and (5.6)). Furthermore, analogously to (4.6), we have

ÊE ¼
M
kjm

CLk;�


k
¼

M
kjm

CF;�
k
; ð5:14Þ

where � here denotes a direct product of F ½x�-submodules. In particular, the addi-
tive character

Q
kjm �k in the argument of the Gauss sum (5.12) is equal to the trivial

additive character if and only if each component �k is trivial. (Observe that, because
of (5.14), an additive character � can be identified with a mapping from Dm to ÊE by
letting �ðkÞ ¼ �k be the CF;�
k

-component of �.)
The further analysis of equation (5.11) is similar to that in [11], [4] or [8]: if � and

� are both trivial characters, then �ð�; �Þ ¼ qn; if either � or � is trivial, then
�ð�; �Þ ¼ 0; if both, � and � are nontrivial, then the absolute value of �ð�; �Þ is
equal to qn=2. A proof of the latter facts may be found in [13]. Now, substracting the
qn-term on both sides of (5.11) and taking absolute values we obtain

X

��̂�
� qn

����
����  qn=2 � Y � Z; ð5:15Þ

where, recalling properties of the Möbius functions, Y denotes the number of non-
trivial multiplicative characters � occuring in (5.11) having square-free multiplicative
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order, and where Z denotes the number of nontrivial additive characters � such that
�k has square-free Lk-order for each divisor k of m. A simple counting shows

Y ¼ 2!ðq;nÞ � 1

and, by (5.7) and (5.8),

Z ¼
Y
kjm

2�qðkÞ � 1 ¼ 2�̂�qðnÞ � 1:

Consequently, if X ¼ 0, then

q
n
2  ð2!ðq;nÞ � 1Þð2�̂�qðnÞ � 1Þ;

and everything is proved. &

6.Primitivity and complete normality for regular extensions. In the present section
we shall complete the proof of Theorem 1.4 by further investigating the sufficient
criterion in Theorem 5.3. Throughout, we assume that E ¼ GFðqnÞ and F ¼ GFðqÞ
satisfy the assumptions of Theorem 1.4. We use the same terminology as in the
foregoing sections, in particular, n ¼ m
, where m is not divisible by the character-
istic p of F and 
 is a power of p.

We first derive upper bounds for the parameters !ðq; nÞ and �̂�qðnÞ.
Assume that l > 1 is an integer and � is a set of primes s  l such that each

prime divisor of qn � 1 which is less than l is contained in �. By [12, Lemma 2.6],

!ðq; nÞ <
n log q � logLð�Þ

log l
þ j�j; ð6:1Þ

where

Lð�Þ :¼
Y
s2�

s ð6:2Þ

and j�j denotes the cardinality of �.
To obtain an upper bound for �̂�qðnÞ, recall from (5.7) and (5.8) that

�̂�qðnÞ ¼
X
kjm

�qðkÞ ¼
X
kjm

’ð k
�ðkÞÞ

ord k
�ðkÞ
ðq�ðkÞÞ

:

Since ðq; kÞ is regular, i.e., ord�ðkÞðqÞ and k are relatively prime, Lemma 20.5 in [7]
(see also (3.3)) gives

ord k
�ðkÞ
ðq�ðkÞÞ ¼

ordkðqÞ

�ðkÞ2
: ð6:3Þ

Recalling that ’ðk=�ðkÞÞ ¼ ’ðkÞ=�ðkÞ (see also (5.10)), we obtain
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�qðkÞ ¼ �ðkÞ �
’ðkÞ

ordkðqÞ
¼

’ðkÞ

�ðkÞ � ord k
�ðkÞ
ðq�ðkÞÞ

; ð6:4Þ

and therefore

�̂�qðnÞ 
X
kjm

’ðkÞ

�ðkÞ
: ð6:5Þ

Taking �ðkÞ ¼ 1 for all k, one derives the trivial upper bound �̂�qðnÞ  m from (6.5).
In fact, if �̂�qðnÞ ¼ m then ðq; nÞ is completely basic (this is a consequence of Propo-
sition 3.3).

From now on, we assume that ðq; nÞ is regular but not completely basic. Using
Lemma 3.4, we then derive a bound for �̂�qðnÞ which is much better than the trivial
one. By Proposition 3.3 and Lemma 3.4 there exists a prime divisor r of m such that
r2 divides ordmr

ðqÞ where mr is the maximal power of r dividing m; moreover, r3

divides m. Since the �-mapping is multiplicative (see (3.2), (4.7) and (4.8)), we obtain
that �ðemrÞ is divisible by r for each divisor e of l :¼ m=mr. This leads to the upper
bound (6.6) for �̂�qðnÞ.First, using (6.5),

X
kj m

mr

�qðkmrÞ 
X
kj m

mr

’ðkmrÞ

r
¼

m

mr
�
’ðmrÞ

r
¼

mðr � 1Þ

r2
;

and therefore

�̂�qðnÞ ¼
X
kjmr

�qðkÞ þ
X
kj m

mr

�qðkmrÞ 
m

r
þ

mðr � 1Þ

r2
¼

2r � 1

r2
� m: ð6:6Þ

Summarizing, the combination of (6.1) and (6.6) gives the following sufficient cri-
terion for the existence of a primitive completely normal element in E over F. We
leave the details to the reader.

Theorem 6.1. Let E be the field extension of degree n over F ¼ GFðqÞ. Let
n ¼ m
, where m is not divisible by the characteristic p of F and where 
 is a power of
p. Assume that E is regular over F but not completely basic. Assume further that q � 1
is divisible by 4 if q is odd and n is even. Next, let l > 1 be an integer, let � be a set of
primes s < l such that each prime divisor of qn � 1 which is less than l is contained in �,
and let Lð�Þ be as in (6.2). Finally, let r be a prime divisor of m such that ordm=rðqÞ is
divisible by r, and let �  r and � be a divisor of 
. If

n

log 4
�

n

log l

� �
� log q �

2�� 1

�2
� �m þ j�j �

logLð�Þ

log l
; ð6:7Þ

then there exists a primitive element in E which additionally is completely normal over F.

We are now able to finish the proof of Theorem 1.4. Assume that ðq; nÞ satisfies
the assumptions of Theorem 1.4 and by contradiction that no primitive element in
E ¼ GFðqnÞ is completely normal over F ¼ GFðqÞ.

By Lemma 3.4, m is divisible by a cube of a prime r. Moreover, if m is not
divisible by the cube of an odd prime, then 16 divides m. In particular, n � m � 16.
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We take l ¼ 68, �m ¼ n, � ¼ 2 and let �l be the set of all primes s < l. Then an
application of Theorem 6.1 shows that

log q <
3

4a
þ

1

na
� j�lj �

logLð�lÞ

log l

� �
; ð6:8Þ

where a ¼ 1= log 4 � 1= log l. This implies q  9.
Moreover, if q is even, then n � m � 27; if q ¼ 7 then n is odd and m � 27.

Thus, using the factor 5=9 instead of 3=4 in (6.8) gives a contradiction if q ¼ 8 or
q ¼ 7. If q ¼ 3 then n is odd and m � 125. We can therefore use the factor 9=25
instead of 3=4 in (6.8) and again obtain a contradiction. This leaves the cases q ¼ 9,
q ¼ 5, q ¼ 4 and q ¼ 2.

If q ¼ 9, then (using the same parameters l; �; �;�l as above) gives n  17 by
Theorem 6.1. This leaves the only possibility n ¼ 16. But ð9; 16Þ is completely basic,
a contradiction.

If q ¼ 5 then (with the same parameters as above) we obtain n  183 by Theo-
rem 6.1. Observing that all pairs ð5; 8 � 5aÞ are completely basic, it remains to con-
sider the cases where m is divisible by 16 or by the cube of an odd prime. This leaves
the cases where n is equal to one of the following numbers

16; 32; 48; 64; 80; 96; 112; 128; 144; 160; 176; 27; 54; 81; 108; 135; 162:

We can exclude n ¼ 48; 96; 112; 144; 54; 108; 162 since the corresponding pairs are
not regular. If n 2 f27; 81; 135g we apply Theorem 6.1 with l and �l as before, but
with � ¼ 3, and obtain the contradiction n  23. For the rest, i.e.,
n ¼ 16; 32; 64; 80; 128; 160; 176, we apply Theorem 6.1 with � ¼ 2 and l as above,
but this time, we can use for � the set of all primes s < 68 different from 5 and where
ordsðqÞ is a power of 2 (for n ¼ 16; 32; 64; 128), or 5 times a power of 2 (for
n ¼ 80; 160), or 11 times a power of 2 (for n ¼ 176), respectively. In all cases we
obtain a contradiction.

If q ¼ 4, we apply Theorem 6.1 with l ¼ 68 and � being the set of odd primes
less than 68. Moreover, we may choose � ¼ 3. This gives n  46, whence it remains
to consider the case n ¼ 27. But with � being the set of all primes s < 68, different
from 2, for which ordsð4Þ is a power of 3, Theorem 6.1 gives a contradiction.

Finally, let q ¼ 2. Then m is odd and thus, for every divisor k of m, ord�ðkÞðqÞ is
at least equal to 2. Since ord�ðkÞðqÞ divides ordkðqÞ=�ðkÞ

2 (see (6.3), (4.7) and (3.1)),
(6.4) can be improved to �qðkÞ  �ðkÞ=ð2�ðkÞÞ and therefore we can improve (6.6) to

�̂�2ðnÞ 
1

2
�
2r � 1

r2
� m;

where r � 3. The smallest case r ¼ 3 gives �̂�2ðnÞ 
5
18 m. With this data and with

l ¼ 68 and �l as above, an application of Theorem 6.1 shows n  93, leaving the
cases n ¼ 27; 54; 81. However, using once more Theorem 6.1 with � being the set of
all primes s < 68, different from 2, for which ordsð2Þ divides 162 gives a contra-
diction for all the remaining values of n.

This completes the proof of Theorem 1.4. &
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7. Concluding remarks. We have proved the existence of primitive completely
normal elements for the considerably large class of regular extensions E over a finite
field F which are not exceptional. Concerning Problem 1.1 in full generality, there
occur two main difficulties.

First, if ðq;mÞ is not regular and m is prime to q, then with n ¼ m
, the set of
completely normal elements is a proper subset of the direct sum of the sets of com-
plete generators over the cyclotomic submodules of E. Thus, completely normal
elements cannot be characterized by means of the decomposition (4.6), i.e., Theorem
4.2 is not valid. Nevertheless, as shown in Section 19 of [7], there still exist nontrivial
decompositions of E allowing a characterization of completely normal elements in
terms of the components of the decompositions (those decompositions are called
agreeable in [7]). In the theory developed in [7], the canonical decomposition (4.5) is
the finest possible agreeable decomposition.

Secondly, if ðq;mÞ is exceptional or not regular and if � is an agreeable
decomposition of E, then there are components of � whose set of complete gen-
erators cannot be characterized by a certain single module structure as in Theorem
4.3.

While there are satisfactory results on simultaneous module structures and in
particular on the nature of completely normal elements (see [7], [9]), the effective
handling of these structures in terms of character sums seems to be very difficult but
essential for solving Problem 1.1 in greater generality.
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