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Abstract

The classical 2-dimensional Laguerre plane is obtained as the geometry of non-trivial plane sections of
a cylinder in R3 with a circle in D&2 as base. Points and lines in K3 define subsets of the circle set of
this geometry via the affine non-vertical planes that contain them. Furthermore, vertical lines and planes
define partitions of the circle set via the points and affine non-vertical lines, respectively, contained in
them.

We investigate abstract counterparts of such sets of circles and partitions in arbitrary 2-dimensional
Laguerre planes. We also prove a number of related results for generalized quadrangles associated with
2-dimensional Laguerre planes.
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1. Introduction

Let us first recall the definition of 2-dimensional Laguerre planes. Starting with a
very general definition of these incidence structures it has been shown that all of them
can be represented in a certain normal form. We incorporate this normal form in our
definition; cf. [Grl, Gr2].

A 2-dimensional (or flat) Laguerre plane L = (§' x R, "tf, ||) is an incidence
structure consisting of a point set, a circle set and an equivalence relation (parallelism)
defined on the point set. Incidence is defined by inclusion. The point set is the
cylinder S1 x R, the circles are graphs of continuous functions S1 ->• R, and the
equivalence classes (parallel classes) of || are the verticals in §' x R, that is, the sets
{(a, y) | v e R}, a e §'. Furthermore, the incidence structure has to satisfy the
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[2] 2-dimensional Laguerre planes 105

following axioms:

(LI) Three pairwise non-parallel points are contained in a uniquely determined
circle.

(L2) For two non-parallel points p, q and a circle c through p there exists a uniquely
determined circle through q that touches c at p, that is, intersects c only in the
point p, or coincides with c.

The classical 2-dimensional Laguerre plane is obtained as the geometry of non-
trivial plane sections of a cylinder in R3 with a circle in R2 as base, or equivalently,
as the geometry of non-trivial plane sections of an elliptic cone, in real 3-dimensional
projective space, with its vertex removed.

The set of circles in this geometry that corresponds to the set of planes through some
point in R3 takes on three different forms depending on whether the point is inside
the cylinder, on the cylinder, or outside the cylinder. These sets have counterparts
in non-classical 2-dimensional Laguerre planes and 'separate' the circle sets of these
Laguerre planes into two open components. If two 2-dimensional Laguerre planes
share the same separating set, a new 2-dimensional Laguerre plane can be constructed
by combining the circles of the separating set and the circles of two open components
of the separating set, taken from the two planes, into the circle set of a new 2-
dimensional Laguerre plane. Separating sets like this have already been investigated
in [PS2].

Every vertical line in IR3 gives rise to a special kind of partition of the circle set of
the classical 2-dimensional Laguerre plane. The elements of the partition are the sets
of circles that correspond to the points in the line. Counterparts of such partitions in
non-classical 2-dimensional Laguerre planes also exist.

The set of circles that corresponds to a non-vertical line in R3 corresponds to a
pencil of circles through two points, to a pencil of circles that touch in a point, and to
a flock of circles in the classical 2-dimensional Laguerre plane, depending on whether
the line is a secant, a tangent or an exterior line of the cylinder.

Every vertical plane in R3 gives rise to a special kind of partition of the circle
set of the classical 2-dimensional Laguerre plane. The elements of the partition are
the sets of circles that correspond to the non-vertical lines in the plane. The most
interesting such partitions arise from planes that do not intersect the cylinder. These
are partitions of the circle set into flocks. Such a partition is called a resolution. We
construct examples of resolutions in non-classical Laguerre planes.

The partitions of the circle set associated with non-vertical lines and non-vertical
planes are quite messy and will not really be investigated in this paper.

In a final section we collect related results for the generalized quadrangles associated
with 2-dimensional Laguerre planes. We construct separating sets in such quadrangles
from separating sets in Laguerre planes.
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106 B. Polster and G. F. Steinke [3]

We take the opportunity to collect some more facts and definitions that we will
need in the following.

The common point set of 2-dimensional Laguerre planes §' x R is a metrizable 2-
dimensional topological space. Circles are homeomorphic to the unit circle S1. When
the circle sets are topologized by the Hausdorff metric with respect to a metric that
induces the topology of the point set, then the planes are topological in the sense that
the operations of joining three points by a circle, intersecting of circles, and touching
are continuous with respect to the induced topologies on their respective domains of
definition.

A 2-dimensional projective plane & = (P, S£) is a projective plane whose point
set P is the real projective plane (viewed as a 2-dimensional topological space) and
whose lines are subsets of P homeomorphic to the unit circle S1. The affine plane
one arrives at by deleting a line from & has a point set that is homeomorphic to R2.
Its lines all separate the point set in two open components and are homeomorphic to
R. Every affine plane of this form is called a 2-dimensional affine plane and it can be
shown that the projective extension of such a plane can be turned into a 2-dimensional
projective plane in a unique way. The classical examples of 2-dimensional affine and
projective planes are the affine and projective planes over the real numbers.

Let S? = (S1 x R, if, ||) be an incidence structure with a point set §' x R and
circle set if and let the parallelism on the point set be defined as in the special case
of a 2-dimensional Laguerre plane. Let p be a point in §>' x R. Then ^p denotes the
set of circles in 5? passing through p. Associated with every point p e §' x R is a
derived incidence structure 5?p whose point set consists of all points not parallel to p
and whose line set consists of all circles in ^ , that have been punctured at p and all
parallel classes that do not contain p. It is well-known that the incidence structure y
is a 2-dimensional Laguerre plane if and only if the derived incidence structures at all
its points are 2-dimensional affine planes (see, for example, [PS1]).

2. Ovoidal planes and the non-classical Laguerre planes constructed by
Maurer, Hartmann and Kleinewillinghofer

In this section we recall some constructions of non-classical 2-dimensional Laguerre
planes that are modifications of the construction of the classical Laguerre plane in R3.

We reiterate: The classical 2-dimensional Laguerre plane is obtained as the geo-
metry of non-trivial plane sections of a cylinder in R3 with a circle in the xy-plane as
base.

If we replace the circle in this construction by an arbitrary topological oval in the
xy-plane, that is, a differentiable, convex simply closed curve, we get one of the
so-called ovoidal Laguerre planes. These Laguerre planes are not isomorphic to the
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[4] 2-dimensional Laguerre planes 107

classical Laguerre plane if the oval under consideration is not an ellipse.
Maurer constructed non-classical Laguerre planes by replacing the non-vertical

planes that intersect the cylinder by certain bent planes [Mau]. We describe his
construction in a way that will prove very useful in the following sections.

Let the circle in the classical construction be a circle in the xy-plane with center at
the origin. Let A be an arbitrary vertical plane parallel to the xz-plane. Then every
non-vertical plane E in R3 intersects A and the yz-plane in one line each. Let a be the
first line and let p be the infinite point of the second line. Then E can be considered
as the set of all points in I 3 that get projected on a through p.

y-axis
classical Laguerre plane Maurer plane

FIGURE 1

The plane A considered as an incidence structure with a set of points and a set
of lines is, of course, just a copy of the real affine plane. We now replace the
non-vertical lines in A by lines that are bent at the yz-plane, such that the resulting
incidence structure is a Moulton plane (cf. [Mou, Stl]), that is, a very special kind of
2-dimensional affine plane. Let / be a (bent) line in this plane and let q be an infinite
point of one of the lines in the vz-plane. Then the set of all points in IR3 that gets
projected from q onto / is a 'bent' plane (see Figure 1). Let B be the set of all such
bent planes. Now, the geometry of sections of these bent planes with the cylinder is (in
general) a non-classical Laguerre plane. Since all translations in the vertical direction
are collineations of Moulton planes, all parallel translates of A (as a Moulton plane) in
directions given by vectors in the vz-plane will give exactly the same Laguerre plane.

This construction has been generalized further by Kleinewillinghofer [Kl] who
showed that we still get 2-dimensional Laguerre planes if we replace the circle in
Maurer's constructions by ovals that intersect the vz-plane at right angles. Some of
the planes in [St3] are also generalizations of Maurer's planes. Here the plane A is
replaced by a generalized Moulton plane [Stl] in which the lines are not only bent at
the yz-plane, but also broken (that is, they are no longer continuous curves). We can
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also use the generalized Moulton planes together with ovals that intersect the yz-plane
at right angles to arrive at a class of 2-dimensional Laguerre planes that includes all
Laguerre planes mentioned before (see [PRS]). In the following we will refer to the
Laguerre planes that arise from Maurer's construction as Maurer planes.

Finally, we mention that Hartmann [Ha] also generalized Maurer's construction.
His variation yields Laguerre planes that are no longer topological.

3. Points-separating sets in 2-dimensional Laguerre planes

Let us have a look at the different sets of circles in the classical, or more generally,
in an ovoidal, 2-dimensional Laguerre plane that correspond to the sets of planes
through points in R3. If p € K3, let Cp be the associated set of circles.

If p is contained in the cylinder, then Cp is, essentially, the set of lines in the derived
affine plane at the point p.

Let p be contained in the interior of the cylinder and let S be a sphere with center
at p that is completely contained in the interior of the cylinder (Figure 2). Let qx

and q2 be the points of intersection of the vertical line through p with 5. Then
5 \ {<?!, q2} and the cylinder are in 1-1 correspondence via the projection with center
p. Under this projection the circles in Cp correspond to the great circles on S that do
not pass through qx and q2 (pairs of parallel classes correspond to these circles). So,
essentially, Cp is the geometry of great circles on S, which is just the 'double cover'
of the real projective plane. Associated with p is an involutory homeomorphism
YP of the cylinder to itself that maps a point on the cylinder to the second point of
intersection of the line through the point and p with the cylinder. This involution is
fixed-point-free and orientation-reversing. Furthermore, its fixed circle set is Cp. If p
is on the z-axis and the Laguerre plane is the classical one in its usual representation,
then the involution is an automorphism of the Laguerre plane and there exist circles c
such that c D yp(c) = 0. This automorphism is induced by a central collineation of
U3 which is a reflection with centre p.

If p is situated outside the cylinder, let V be a vertical plane in E3 such that the
cylinder and the point p lie in different connected components of R3 \ V (see Figure
3), and let Vp be the set of points in V that are hit by lines in R3 that contain p
and some point on the cylinder. The set Vp is a vertical strip in an I 2 over a closed
interval. The non-vertical lines in V induce a line geometry on this strip and it is
again easy to see, via projection through p, that Cp is essentially a 'double cover' of
this incidence geometry (actually it is a double cover only of the open interior of the
strip Vp.) We can also associate with p, in the same manner as before, an involutory
homeomorphism yp of the cylinder to itself. This involution fixes two parallel classes
n0, FIoo pointwise. Again, in the classical case, this involution is an automorphism
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[6] 2-dimensional Laguerre planes 109

FIGURE 2 FIGURE 3

of the Laguerre plane. This automorphism is induced by a central collineation of real
projective 3-space which is a reflection at the plane through n 0 and FIoo with centre p.

It is clear that if we replace the cylinder over the circle and the cutting planes by
cylinders over ovals and bent planes, respectively, as described in Section 2, we get
sets Cp in the Maurer planes. Let p be a point on the jz-plane. As in the classical
model we find that if p is contained in the cylinder, or outside the cylinder, then Cp

is, essentially, the derived affine plane in p, or a double cover of a strip taken from a
2-dimensional affine plane. Actually, the affine plane we just mentioned is, essentially,
the Moulton plane in the Maurer construction. If p is situated outside the cylinder,
we can also associate with it, as in the classical case, an involutory homeomorphism
of the cylinder to itself that has Cp as its fixed circle set.

Separating sets. Let L = (S1 7, ||) be a 2-dimensional Laguerre plane. For
each p e §' x K let % be the set of all circles that pass through p and let <tfp+ and
%- be the collection of all circles that intersect the parallel class of p above or below
p, respectively.

In [PS2, Proposition 5.1] we proved the following

PROPOSITION 1. Let L = (S1 x R, <??, ||) and L* = (S1 x be two 2-
dimensional Laguerre planes. Let p e S1 x K and suppose ^p = If* Then
L\L* = (§' x U.,%U%+ U^p*_, ||) is a 2-dimensional Laguerre plane (Figure 4).

Similarly, let y be an involutory automorphism of L, and let ^ be its fixed
circle set. We note that every automorphism of a 2-dimensional Laguerre plane is a
homeomorphism of its point set to itself. If / is fixed-point-free and there exists a
circle such that c D y(c) = 0, we call y an inversion of L. If y fixes two parallel
classes pointwise, we call it a reflection of L. It is clear where these names come from:
In the classical model over the unit circle, the reflection through one of the points on
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L\L*

the z-axis induces an inversion of the classical Laguerre plane. The reflection of the
cylinder through one of the outer points of the cylinder induces a reflection of the
Laguerre plane.

Let y be an inversion of L. Then every circle that is not fixed by y is disjoint from
its image under y [Gr3, 3.4]. Let C£Y+ (^y-) be the set of all circles c e ^ such that
on the cylinder c lies above (below) y(c). In [PS2, Proposition 5.2] we proved

PROPOSITION 2. Let L = (§ ' x R, <€•, ||) and L* = (S1 x R, <jf*, ||) be two 2-
dimensional Laguerre planes. Suppose both Laguerre planes admit the inversion y
and that <gY = <tf*. Then L\L* = (S1 x R, % U %+ U "€*., ||) is a 2-dimensional
Laguerre plane (Figure 5).

L\L*

and <Sfy asThese two results show that it makes sense to think of the sets
separating sets. Both sets separate the circle set ^ in yet another sense. The circle
set of a 2-dimensional Laguerre plane is homeomorphic to R3. We already noted in
[PS2] that both ^ and ^ are closed subsets of the circle set homeomorphic to R2. hi
particular, both sets separate the circle set into two open components.
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[8] 2-dimensional Laguerre planes 111

Our considerations above suggest looking for a third kind of separating sets that
arises from reflections. Let y be a reflection of L. Let n 0 and n ^ denote the two
parallel classes that are pointwise fixed by y and let Hi and H2 be the two connected
components of (S1 x l ) \ ( n 0 U rioo). Clearly, if c e "$ is a circle that is not fixed
by y, then c and y(c) intersect in exactly two points, one in n 0 , the other one in floo,
that is, c n y(c) = c D (Yl0 U FIoo). Let'
that c lies above (below) y (c) on Hi.

PROPOSITION 3. Let L = ( S ' x l , i

(%-) be the set of all circles c e ^ such

and L* = (§ ' x R,<tf\ ||) be two 2-
dimensional Laguerre planes. Suppose both Laguerre planes admit the reflection y
and that ^Y = <af;. Then L\L* = (§ ' x R, % U ̂ x + U <«?;_, ||) is a 2-dimensional
Laguerre plane (Figure 6).

L\L*

Propositions 2 and 3 are corollaries of Propositions 2* and 3*, respectively, that we
are going to prove a little further down in the text.

Groh proved that all 2-dimensional Laguerre planes that admit inversions arise
from 2-dimensional Mobius planes via the construction described in [Gr3] and [Gr4].
The discussion in [Sch3] yields that all 2-dimensional Laguerre planes that admit
reflections arise from 2-dimensional Minkowski planes. We will say some more
about these characterization of 2-dimensional Laguerre planes admitting inversions
and reflection in Section 5, Remark 3.

Propositions 2 and 3 do not really say anything about most of the sets Cp, and
their associated involutions of the cylinder, that we considered at the beginning of this
section (most of these involutions are not automorphisms of the respective Laguerre
planes). It turns out that both propositions can be generalized to accomodate these
less specialized sets and involutions.

Let L = (§ ' x R, ¥?, ||) be a 2-dimensional Laguerre plane, and let y be an
involutory homeomorphism of S1 x R to itself that is not the identity and that has the
following properties:
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(1) it maps parallel classes to parallel classes; and
(2) for all p e §' x K for which p ^ y(p) every circle through p and y(p) is

(globally) fixed by y.

We call y a pre-inversion of L if y is fixed-point-free and orientation-reversing. We
call it pre-reflection if its fixed point set consists of two distinct parallel classes n0 and
rioo. As in the case of reflections let Hx and H2 denote the two connected components
of(§] x R)\(nounj.

LEMMA 2. Let L = (§' x R, ^', ||) be a 2-dimensional Laguerre plane and let y
be an involutory homeomorphism of§1 x Rto itself.

(1) Ify is an inversion, or a reflection ofL, then it is a pre-inversion, or pre-reflection,
respectively, of L.

(2) Ify is a pre-inversion ofLand c is a circle that is notfixed by y, then cfly(c) = 0.
(3) Ify is a pre-reflection of Land c is a circle that is not fixed by y, then cDy(c) =

c n (n0 u n^).

PROOF. (1) By [Gr4, 3.1, 3.3], we know that every inversion is a pre-inversion.
For the second part let p e Hi U H2, let c be a circle through p and y(p) and let
q = c n n0. Then y(c) contains the points y (/?), y(y(p)) = p and y (q) — q. Hence
c = y{c).

(2) Let y be a pre-inversion. Assume c is a circle that is not fixed by y. If there
exists a p € c D y(c), then y(p) is also contained in c f) y(c). By assumption,
p ^ y{p). Hence c is fixed by y. This is a contradiction.

(3) Let y be a pre-reflection. Let c be a circle that is not fixed by y. Then it
intersects its image under y in two points; one on n0, a second one on n ^ . As above,
the assumption that there exists one further point that is contained in both c and y (c)
leads to a contradiction.

With this lemma at hand, it makes sense to define the sets ^Y, C£Y+, and ^Y- as
in the case of reflections and inversions. We can generalize Propositions 2 and 3 as
follows:

PROPOSITION 2*. Let L = (§' x R, <*f, ||) and L* = (§' x K, <g*, ||) be two 2-

dimensional Laguerre planes. Suppose both Laguerre planes admit the pre-inversion
y and that % = <€*. Then L\L* = (Sl x R , ^ U tfY+ U #;_, ||) is a 2-dimensional
Laguerre plane.

PROPOSITION 3*. Let L = (S1 x K, <€, ||) and L* = (S1 x R, <<?*, ||) fee nvo 2-

dimensional Laguerre planes. Suppose both Laguerre planes admit the pre-reflection
y and that % = <£*. Then L\L* = (Sl x 1, ^ U %+ U ^*_, ||) w a 2-dimensional
Laguerre plane.
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[10] 2-dimensional Laguerre planes 113

Notice that by Lemma 2(1) these results are really generalizations of Propositions
2 and 3.

To be able to prove these propositions let us recall one further result in [PS2,
Proposition 1]: Let & = (P, ££) be a 2-dimensional projective plane. Given two
distinct points q and q' on a line /, the complement l\{q, q'} consists of two connected
components /+ and /". Now we can partition ££ by (Jz^ U ££ql) U .£f+ U JS?~ where
Jz?+ and Jzf ~ denote the collections of all lines that intersect the line / through q and q'
in /+ and /", respectively, and ££q (J£^) denotes the pencil of lines through the point
q W).

LEMMA 3. Let &> = (P, _£?) and &>* = (P, _£?*) be two 2-dimensional projective
planes, and suppose the line I is contained in both line sets. Suppose further that
j£? fl ^£* contains the line pencils through the two distinct points q,q' e I. Then

>* = (P, ±£q U S£q. U if+ U _Sf*-) is a 2-dimensional projective plane.

In order to apply this result we need one more lemma.

LEMMA 4. Let L = (§' x R, ^', ||) be a 2-dimensional Laguerre plane.
Let y be a pre-inversion or pre-reflection ofL.

(1) Let p and q be points such that q / y(q) and such that p is neither parallel to q
nor to y(q). Then there exists a unique circle in ^Y that contains both p andq.

Let y be a pre-inversion of L.

(2) Ifc* is a circle that is fixed by y, then y exchanges the two connected components
o/(S" x K)\c*.

(3) Let p be a point and let c be a circle that contains p. Then c is contained in ^y,
^Y* ' or ^y- if and only if c intersects the parallel class of y (p) in, above, or
below y{p), respectively.

Let y be a pre-reflection of L.

(4) The two halves H\ and Hi get exchanged by y.
(5) Ifc* is a circle that is fixed by y, then y fixes the two connected components of

(S1 xR)\c* (globally).
(6) Let p be a point that is not fixed by y, that is, a point that is not contained in

n 0 U FIoo, and let c be a circle that contains p. Then c is contained in %, 1fY+,
or ffy- if and only if p is contained in H2 and c intersects the parallel class of
y{p) in, above, or below y(p), respectively, or if p is contained in H\ and c
intersects the parallel class ofy(p) in, below, or above y(p).

(7) Let p be a point that is fixed by y. Then the set of circles through p that are
contained in ^ is a tangent pencil of circles through p. Let c* be a circle in
this particular tangent pencil and let c be a circle that intersects the two fixed
parallel classes in the same points as c*. Then c is contained in <&y,

 (tfY+, or 'tfy-
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if and only ifc = c*,c is situated above c* in Hi, or c is situated below c* in Hi,
respectively. Circles contained in a tangent pencil through p are all contained
in the same one of the three sets tfy, e£?

y+, or ^y-.

PROOF. (1) By assumption all circles through q and y(q) are contained in ^ , .
Since p is neither parallel to q nor parallel to y(q) it is contained in precisely one
such circle.

(2) Let p be contained in c* and let c be a circle through p and y (p) distinct from
c*. By assumption c is also fixed by y. When restricted to c, y is a fixed-point-free
involutory homeomorphism. As such it exchanges the two connected components of
c \ (/>> Y(P)} (cf- [Val, 3.1]). These two connected components are contained in the
two connected components of (§' x R) \ c*. Hence the two connected components
of (S1 x R) \ c* are exchanged by y.

(3) Let ^ , c denote the set of circles in Sg that touch c at p. Exactly one circle
c* 6 Cpc contains the point y (p). Let q be the intersection of c with the parallel class
of y(p). If q is contained in c*, that is, q = y(p),thenc = c* and c is contained in ^y.
Let q be situated above (below) y(p). Then, by (2), y(q) is situated below (above)
p. Since c and y (c) are disjoint, by Lemma 2(2), we conclude that c is situated above
(below) y(c). Hence c is contained in ^,+ (%-).

(4) Let c € Cy. Then the restriction of y to c fixes exactly the two points of
intersection of c with n 0 and I"^. Since it does not fix any other points it exchanges
the two connected components of these two points. Hence y exchanges Hi and H2.

(5) This follows from the fact that two parallel classes are pointwise fixed.
(6) Exactly one circle c* e CPiC contains the point y(p). Without loss of generality

we may assume that p is contained in H2. Let q be the intersection of c with the
parallel class of y (/?). If q is contained in c*, then c = c* and c is contained in fy.
Let q be situated above (below) y(p). Then, by (4) and (5) y(q) is situated above
(below) p (in Hi). Lemma 2(3) yields that c is situated above (below) y(c) in Hi.
Hence c is contained in ^,+ &Y-).

(7) As a consequence of (1), we know that there exist circles in ^ that contain p.
Let d* be such a circle and let d be any other circle that contains p. As a consequence
of (4) and (5) we only have to see how d and d* intersect in a neighborhood of p to
decide to which of the three sets of circles under discussion d belongs. If d touches
d* at p, then d is contained in ^y. If d is situated above (below) d* in H} in a
neighborhood of p, then d belongs to <^7

),+ (^fy-). Now the rest of the claim follows
immediately.

PROOF OF PROPOSITIONS 2* AND 3*. Let <& = % U %* U ^ _ . We prove that the
incidence structure y = (§' x IR, ^ , 11) is a 2-dimensional Laguerre plane. We show
this by verifying for all points p € S1 x R that the derived incidence structure 5Pp
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[12] 2-dimensional Laguerre planes 115

is a 2-dimensional affine plane. Let Lp and L* denote the projective completions
of the derived 2-dimensional affine planes Lp (these projective completions are 2-
dimensional projective planes).

Let p be one of the points that is not fixed by y. Then Lemma 4(3) and Lemma 4(6)
guarantee that Lemma 3 can be applied to the two 2-dimensional projective planes Lp

and L*p where q (as in Lemma 3) is the ideal point of the verticals in both Lp and L*
and q' (as in Lemma 3) is y(p). The incidence structure yp that we are interested
in is just the 2-dimensional affine plane that we arrive at by removing the uniquely
determined line through q, that does not correspond to a vertical, from Lp\L*p.

Let p be one of the points that is fixed by y. This case only occurs if y is a
pre-reflection. Note that a tangent pencil of circles through p is a parallel class of
lines in the affine planes Lp and L*. Then Lemma 4(7) guarantees that Lemma 3 can
be applied to the two 2-dimensional projective planes Lp and L* where q is the ideal
point of the verticals in both Lp and L* and q' is the ideal point of those (common)
lines in Lp and L* that come from elements of ^Y- The incidence structure S?p that
we are interested in is the 2-dimensional affine plane that we arrive at by removing
the uniquely determined line through q and q' from LP\L*.

In [PS2, Proposition 6] we found one further kind of separating set. We recall our
result for the sake of completeness.

Let L = (S1 x R, "tf, ||) be a 2-dimensional Laguerre plane and let c0 e ^ .
Consider the collection f1 of all circles that touch c0. The circle c0 separates S ' x i
into two connected components C + and C~. We define ^ to be the collection of all
circles that are completely contained in C±. Finally, let ̂ 2 be the set of all circles
that intersect c0 in precisely two points. Clearly, ^ ' U ^ U 1f+ U <W~ is a partition of
the circle set.

PROPOSITION4. Let L, = (S1 x WL,%, | |) , i = 1,2,3 be three 2-dimensional

Laguerre planes. Suppose that &* = ^ = ^l for some common circle c0. Then
Li|L2|L3 = (S1 x R, <€{ U tff U <*?2

+ U Iff, ||) is a 2-dimensional Laguerre plane
(Figure 7).

We give a characterization of the fixed circle set of a pre-inversion. Let L =
(S1 x R, if, ||) be a 2-dimensional Laguerre plane and let y be a pre-inversion of L.
Let §2 be the 'two-point compactification' of the cylinder into the 2-sphere S2 by two
points p+0O and p_oo- Let DyX be the incidence structure whose point set is §2 and
whose circle set consists of all circles in "^ and the sets that we arrive at by joining
parallel classes with their image under y and the two points p+oo and p-oo- We extend
y to an involutory homeomorphism y of S2 to itself by setting y(p+0O) = p-<»- Now
it is clear that all circles in DY,L are homeomorphic to § ' and stay fixed under y. The
quotient space §2/y, that is, the space we obtain by identifying the points of §2 via
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L2 L3

FIGURE 7

LX\L2\L3

y, is the the real projective plane P2W (viewed as a topological space only). Let
DY,L/Y denote the induced incidence structure on /^(K) from DY L.

PROPOSITION 5. Let L = (§' x a 2-dimensional Laguerre plane and let
y be a pre-inversion of L. Then DYiL/y is a 2-dimensional projective plane.

PROOF. From what we just said it is clear that DY<L/y is an incidence geometry
with the real projective plane as point set and sets homeomorphic to S1 as circles, or
better, lines. By [Sa, Theorem 2.5] it now suffices to show that given two distinct
points in this geometry there is a uniquely determined line connecting both points.
This translates back to showing that the pencil of circles through an arbitrary point
p £ §2 and y(p) is a foliation of S2, that is, every point in S2 \ [p, y(p)} is contained
in exactly one such circle. This is clearly the case.

For pre-reflections the corresponding result is not so nice and we cannot really say
more than we already said in Lemma 4.

REMARKS 1.(1) The separating sets discussed in this section can be viewed
as line sets of incidence geometries having various point sets. All these incidence
geometries are closely related to 2-dimensional projective planes:

Prop 1: The separating set is, essentially, the set of non-vertical lines of the derived
affine plane at the point p (as in Proposition 1). Remember that the point set
of this affine plane is the cylinder from which the parallel class p is contained
in has been removed.

Prop 2*: The separating set is, essentially, the line set of a 'double cover' of a 2-
dimensional projective plane (cf. Proposition 5, above). The point set of this
incidence geometry is the cylinder.
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Prop 3*: The separating set is, essentially, the set of non-vertical lines in a 'double
cover' of a strip in a 2-dimensional affine plane. The point set of this incidence
geometry is again the cylinder.

Prop 4: The separating set minus the circle c0 splits into two parts O and U where O
and U are the sets of circles that touch c0 from above and below, respectively.
Both O and U are block sets of so-called cylinder semi-biplanes (cf. [Po]). The
point set of the first (second) cylinder semi-biplane is the set of points on the
cylinder that are situated above (below) c0. Given any cylinder semi-biplane
there exists a 2-dimensional projective plane that is the 'double cover' of the
cylinder semi-biplane (cf. [Po]).

(2) Again, the circle set of a given 2-dimensional Laguerre plane is homeo-
morphic to R3: Here is an easy way to visualize this fact (cf. [Gr2, 3.8 (5b)]): Let Fl,,
i = 1, 2, 3 be three distinct parallel classes every one of which having been identified
in a natural way with R. Then a circle c gets identified with the point (xi, x2, x3) € R3

where JC, is the point of intersection of c with FT,.
Now it is easy to see that the separating sets discussed in Proposition 1,2*, and 3*

are closed subsets of the circle set homeomorphic to R2. In the case of Proposition 1,
let n3 be the parallel class the point p is contained in and let FI] and n 2 be chosen
arbitrarily. In the case of Propositions 2* and 3*, let FIi and FI2 be two parallel classes
that are not fixed by y and such that Oi ^ y(J\2). We know, by axiom LI in the first
case and Lemma 4(1) in the last two cases, that, given one point each in FIi and FI2,
there is exactly one line in "^ that contains both of them. Since the sets<^, viewed as
incidence geometries, are topological, this implies that ^p and 'tfy, as subsets of R3,
are the graphs of continuous functions R2 —»• R, that is, graphs of a functions from
the JC[X2-plane to the jc3-axis of R3. Hence they have the required properties.

We remark that the separating set in Proposition 4 is homeomorphic to a double
cone (the vertex is the circle c0 that gets touched). The proof of this fact relies on
results in [Po].

All separating sets separate the circle set into open connected components: two in
the first three cases, three in the last.

(3) Let L\ and L2 be ovoidal Laguerre planes. Let yi and y2 be two pre-inversions
of L! and L2, respectively, that come from inner points of the respective cylinders in the
3-dimensional model, as described in Section 2. Then DYuLx /yx and Dn<Ll /y2 are both
isomorphic to the classical 2-dimensional projective plane, that is, the Desarguesian
projective plane over the reals. Now it is not difficult to construct a homeomorphism
h from the first cylinder onto the second that maps verticals to verticals and such that
h o y\ o h~x = y2. Therefore the two 2-dimensional Laguerre planes h(Li) and L2

share the the same pre-inversion and Proposition 2* can be applied to construct a new
2-dimensional Laguerre plane.

A similar statement can be made if yx and y2 are two pre-reflections of L\ and
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L2, respectively, that come from exterior points of the respective cylinders in the
3-dimensional model.

Vertical lines. We continue the discussion from the beginning of this section.
Every vertical line in R3 gives rise to a special kind of partition of the circle set. The
elements of the partition are the sets of circles that correspond to the points in the line.
So, every parallel class on the cylinder gives rise to a partition of the circle set into
affine planes.

Every vertical line inside the cylinder gives rise to a partition into 'double covers'
of 2-dimensional projective planes, and so on.

Similar partitions of the Maurer planes arise in the same way.

4. Vertical planes - Resolutions of 2-dimensional Laguerre planes

Non-vertical lines. In the classical Laguerre plane, or more generally, in ovoidal
planes, a non-vertical secant line of the cylinder in R3 corresponds to the pencil of
circles through its two points of intersection with the cylinder. A non-vertical tangent
line corresponds to a pencil of tangent circles in its point of tangency with the cylinder.
An exterior line corresponds to & flock, that is, to a set of circles such that every single
point on the cylinder is contained in exactly one circle in the set.

If we have a look at the Moulton plane that is used in the Maurer construction and
suppose that this Moulton plane does not intersect the cylinder, then any bent line in
this Moulton plane gives rise to a flock in the corresponding Maurer plane. This flock
is just the set of all intersections of the bent planes that contain this bent line with the
cylinder.

Resolutions. Every vertical plane in R3 gives rise to a special kind of partition
of the circle set. The elements of the partition are the sets of circles that correspond
to the lines in the plane. If the plane intersects the cylinder, it is clear what these
partitions look like, and it is also clear what their counterparts in the non-classical
Laguerre planes are.

The most interesting such partitions arise from planes that do not intersect the
cylinder. These are partitions of the circle set into flocks. Such a partition is called a
resolution (cf. [Bo]).

The Moulton plane in the Maurer construction gives rise to all three kinds of
partitions depending how it is situated with respect to the cylinder.

Rosehr [Ro] proved that every 2-dimensional Laguerre plane contains a flock of
circles, but it is still not clear whether for any 2-dimensional Laguerre plane there
exists a resolution of its circle set into flocks.

We proceed by giving examples of resolutions of circle sets of some well-known
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examples of 2-dimensional Laguerre planes.
Let L = (S1 x R, "if, 11) be a 2-dimensional Laguerre plane such that the group of

all translations of the cylinder in the vertical direction is a subgroup of the group of
automorphisms of this Laguerre plane. The ovoidal Laguerre planes are examples of
such planes. Let R be the set of all orbits of circles of this group. Then R is clearly a
resolution of the circle set of L.

Let L = (§' x R, ^ , ||) be a 2-dimensional Laguerre plane. We identify S1 with
R U {00} in a natural way. Then all circles in L are graphs of continuous functions
R -> R to which some point on the infinite parallel class FIoo = {00} x R has been
adjoined. Using a stereographic projection as the identifying map, the circles in a
Maurer plane can be arranged to arise as follows (cf. [LP, Ha]):

{(*, y) g R2 I y = af(x) + bx + c, x < 0}

U {(*, y) e R2 I v = h(a)f(x) + bx + c, x > 0} U {(00, a)}, a, b, c e R

where h : R -»• R is a fixed strictly increasing homeomorphism and / is a differ-
entiable function such that / ' is a strictly increasing homeomorphism and such that
/ (0) = / ' (0) = 0. We note that if h is the identity, then we are dealing with an ovoidal
plane and if in addition f(x) = x2, then we are dealing with the classical Laguerre
plane. All these planes are examples of Laguerre planes such that all translations of
R2 in the vertical direction

vc : R
2 U ({00} x R) -* R2 U ({00} x R) : (x, y)

c 6 R, are automorphisms. Further examples of such planes can be found in [AG, Ha,
LP, Kl, Po, St3]. Let T be the set of all tangent pencils of circles at the origin of R2

and let {h,},eT be a set of strictly increasing homeomorphisms of R. Let /,_„ : R -*• R,
? e 7 \ a e R b e t h e function that describes the uniquely determined circle in t through
the point (00, a), and let r,,c, t e T, c e R be the set that consists of the following
circles:

{(x, y) e R I y = / , , „ ( * ) + h,(a) + c}U {(00, a)}, a e R.

Clearly, every such set of circles is a flock and/? = {r,c \ t e T, c e R} is a resolution
of our Laguerre plane. For example, let us look at the classical Laguerre plane and let
all homeomorphisms be equal to the identity homeomorphism. Then we can identify
the abstract set T with R such that r,<c consists of the circles {(x, y) e R2 | y =
ax2 + tx + a + c] U {(00, a)}, a g R.

It is also possible to construct resolutions of the examples of 2-dimensional Laguerre
planes in [St2] and [St3] that have trivial automorphism groups.

We note that in any affine plane any parallel class is a 'flock' of lines, and that the
set of all parallel classes forms a 'resolution' of the affine plane.
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5. Separating sets in quadrangles

This section is a continuation of our discussion of separating sets from Section 3.

Introduction to quadrangles and their relationship with Laguerre planes. In
1981 Forst [Fo] proved that the so-called Lie-geometry of a 2-dimensional Laguerre
plane is a 3-dimensional quadrangle, that is, a special kind of (topological) generalized
quadrangle.

We now give a brief summary of this relationship following the exposition in
[Schl].

A generalized quadrangle is an incidence structure Q = (P,J?, I) consisting of a
point set P, a line set _&f and an incidence relation / c p x J? satisfying the following
axioms:

(Ql) Any two distinct points are incident with at most one line.
(Q2) For every anti-flag (p, L) e P x j£f \ / there exists exactly one flag (q, M) e I

such that (p, M) e I and (q, L) e I.
(Q3) (Thickness) Every point is incident with at least three lines, and dually, every

line is incident with at least three points.

Axiom Q2 yields two mappings n : P x 3? \ I ^> P and A : P x 5? \ I -> 5?
with n(p, L) = q and X(p, L) = M. The definition is self-dual so the geometric
structure with points and lines interchanged is again a generalized quadrangle, called
the dual quadrangle.

Usually we will consider a line in a quadrangle to be a subset of the point set P.
All the information about the incidence in the quadrangle is then contained in the pair
(P, Jtf) and we will refer to the quadrangle in this way.

Two points are said to be collinear if they can be joined by a line. The line
connecting two collinear points p, q is denoted by p V q. The set of points collinear
with a given point p is denoted by p^.

A 3-dimensional quadrangle is a generalized quadrangle where P and j£f carry
compact Hausdorff topologies such that the maps it and A. become continuous and
such that P is 3-dimensional. In a 3-dimensional quadrangle lines, considered as
point sets, and line pencils are homeomorphic to 1-spheres. Of course, the dual of a
3-dimensional quadrangle is also 3-dimensional.

The 3-dimensional projective space ^ (R) over R carries a natural topology such
that it becomes a topological projective space with compact point and line spaces. Let
/5 be a symplectic form on this space. The incidence geometry Q{fi) whose point set
is the point set of ^(K) and whose lines are the totally isotropic lines is a generalized
quadrangle. Moreover, the dual of this quadrangle is antiregular, that is, for every
choice of three mutually non-collinear points there are either no or exactly two points
collinear to all three points. The topology on P3(IR) induces a natural topology on
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the symplectic quadrangle Q{fi). With the induced topologies the point space as
well as the line space become compact and Q(/5) and its dual turn into 3-dimensional
quadrangles.

The construction of a 3-dimensional quadrangle from a 2-dimensional Laguerre
plane L = (§' x R, <&, ||) is as follows: The points of the quadrangle are the points
of the Laguerre plane, the circles of the Laguerre plane and a symbol oo. An extended
parallel class is a parallel class to which the point oo is added and an extended tangent
circle pencil is a set of circles touching in a common point together with this point.
The lines of the quadrangle are the extended parallel classes and the extended tangent
circle pencils. The incidence is the natural one. The topologies on P and S£ of the
quadrangle are inherited from the topologies of the Laguerre plane in a rather intricate
way such that the collection of all points of the quadrangle that stem from circles
of the Laguerre plane is open in P and such that the topology induced from P on
this set of points is the given topology of ^ (remember that, by Remark 1.2, "if is
homeomorphic to R3). The same construction works for finite Laguerre planes of odd
order (see [PT1, Ta]), and for 4-dimensional Laguerre planes (cf. [Sch3, Chapter 3]).

Conversely, let Q = (P, 3?) be a generalized quadrangle and let p e P. The
derivation Qp of Q at p is the incidence structure (p1, {pL n qL \ q e P \ px}).
If p is taken to be oo this construction reverses the above one. In general, Qp is
anything but a Laguerre plane. However, for antiregular quadrangles one always
obtains Laguerre planes. Also, in general, if Q is a 3-dimensional quadrangle, then it
is antiregular if and only if its dual is not antiregular. If a 3-dimensional quadrangle
is antiregular, then the derivation at any point p is a 2-dimensional Laguerre plane
and pL is homeomorphic to the one-point compactification of the cylinder. If it is not,
then pL is homeomorphic to the real projective plane.

Separating sets in 3-dimensional antiregular quadrangles. In Section 3 we
considered certain separating sets of the circle sets of 2-dimensional Laguerre planes.
We now investigate what these separating sets correspond to in the associated 3-
dimensional quadrangles.

We begin with the separating set described in Proposition 1. Figure 8 depicts the
point set of the quadrangle Q = (P, J5f) that is associated with the Laguerre plane
L = (§' x R,^ , ||).

The point set of Q consists of the circle set of L, which, by Remark 1.2, is a
topological space homeomorphic to R3 (in the picture this is the cube), and the one-
point compactification of the point set of L by the point oo, that is, a 2-dimensional
topological space (in the picture this is the quadrilateral below the cube). These two
sets are glued together in a (topologically sound) way that is of no importance for
our discussion. The separating set corresponds (same remark) to a subset of the R3

homeomorphic to R2 that separates the R3 into two open components. The picture
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also shows how lines in the quadrangle that correspond to different parallel classes
and tangent circle bundles are situated within the quadrangle.

extendend tangent pencil
at a point not parallel to p

extendend tangent pencil
'at a point below p

xtendend tangent pencil
atp

.extendend tangent pencil
at a point above p

— circle set of L

separating set

<D + point set of L

*~ oo + extended parallel
class p is contained in

FIGURE 8

We now describe the objects we are interested in in the language of quadrangles.
A separating set in the quadrangle Q that corresponds to the separating set ̂ p in the

Laguerre plane L is oo-1- U p±: Notice that the line in Q that corresponds to a tangent
circle pencil in p is completely contained in the separating set ^ (except, of course,
for the point p itself). Clearly, ^ , = px \ {p v oo} and the points of the Laguerre
plane correspond to oox \ {oo}. The set pL \ {p v oo} is not a separating set of the
point set of the quadrangle. Recall that when gluing together two Laguerre planes as
in Proposition 1 both planes have the same point set and the same set of circles ^, .
Thus the separating set in the quadrangle that we are looking for is indeed oox U pL.

The connected components Pi and P2 of P \ (oo-1 U px) : The parallel class of p
plus the point oo form a line in Q. This line p v oo is homeomorphic to S1. Hence
(p V oo) \ {p, oo} has two connected components C\ and C2. All points not belonging
to oo-1- U p x (our new separating set) come from circles of the Laguerre plane. Each
such circle intersects the parallel class of p either above or below p. In the quadrangle
this means that each point of P \ (oox U px) is collinear to a point of (p V oo) \ {oo, p).
It follows that the connected components P{ and P2 of P \ (oox U px) are precisely
the collection of all points that are collinear to a point of Cx or C2, respectively.

The partition of the line set of the quadrangle with respect to the new separating
set: With respect to the new separating set we distinguish four essentially different
kinds of lines in the quadrangle.

(1) Lines that are completely contained in the separating set. These are the lines that
arise from parallel classes and the lines that arise from tangent circle pencils at
the point p.
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(2) Lines that (except for one point) are completely contained in Pt. Every such line
arises from a tangent circle pencil at a point above p.

(3) Lines that (except for one point) are completely contained in P2. Every such line
arises from a tangent circle pencil at a point below p.

(4) Lines that have points in common both with Px and P2. Every such line arises
from a tangent circle pencil at a point q not parallel to p and has precisely two
points in common with the separating set (q and the unique circle through p).

Let if0, ifu , if12 and if2 denote the set of lines of the first, second, third and fourth
kind, respectively. Clearly, 5f° U Sfn U i?1 2 U if2 is a partition of the line set of Q.

Let Q* = (P, Jz?*) be the quadrangle that corresponds to L* (in Proposition 1) and
let Q\Q* be the quadrangle that corresponds to L\L*. If/ e ^2, let /* be the unique
line in JO1*1 that intersects p x U oox in the same two points as /, let l\l* be the set that
coincides with / on Px U p1 U oox and with /* on P2. Finally, let J£2\&*2 be the set
of all such sets.

The gluing together of L and L* along the set of circles <tfp corresponds to the gluing
together of two chunks of points, taken from Q and Q*, along a common subset of
their point sets, that is, on each of the two connected components of the complement
of the (new) separating set the geometry of Q\Q* is induced from one of the two
quadrangles and lines of different components are glued together at their intersection
with the separating set. The line set of Q\Q* is S£* U 5£u U ^*n U (if2|if*2).

Q Q*

FIGURE 9

Q\Q*

REMARK 2. It is not known whether the point sets of all 3-dimensional antiregular
quadrangles are homeomorphic. We only know that such a point set is a compact
3-dimensional space that is the disjoint union of two sets; one homeomorphic to R3,
the other one homeomorphic to the one-point compactification of the cylinder. So,
when we denote all the point sets of 3-dimensional quadrangles by P, we do not think
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of P as a topological space, we rather think of it as a disjoint union of two sets like
this without worrying about how exactly these two sets are glued together.

The interpretation of the separating sets constructed in Propositions 2* and 3* is
essentially the same as in the case on Proposition 1 since the separating sets are still
homeomorphic to K2. So again the new separating set in the quadrangle is ^ U oox.
Notice that, although ^ cannot be described as easily in geometric terms as ̂ p, every
extended tangent circle pencil through a point q that is not fixed by y contains one
element in ̂ Y. It also contains the point q. Hence the line in the associated quadrangle
that corresponds to this tangent circle pencil intersects the (new) separating set oo^U^,
in two points. A tangent circle pencil through a point that is fixed by y (this only
happens if y is a pre-reflection) is completely contained in either ^Y, ^ + or 1fY~.
Hence the picture for the case in which y is a pre-reflection is basically the same as in
Figure 9 (just delete the distinguished line p V oo in Figure 9). In the case in which
y is a pre-inversion we arrive at the picture as in Figure 10.

Q*

FIGURE 10

Q\Q*

REMARK 3. In the situations described in Propositions 2 and 3 we can say a little
more. An inversion y of the Laguerre plane L can be extended to an involutory
automorphism y' of the associated quadrangle Q. The set of fixed points F of y'
is ffy U {oo} which, as a topological space, is homeomorphic to the 2-sphere §2

(remember that ^fY is homeomorphic to K2). Furthermore, F has the property that
every line of Q intersects F in precisely one point, for example, each tangent circle
pencil contains exactly on circle vcv'tfy. It turns out that the incidence structure
(F, ( F f l i 1 | JC 6 P \ F}) is a 2-dimensional Mobius plane and that every 2-
dimensional Mobius plane can be constructed in this way from a 3-dimensional
quadrangle admitting such an involutory automorphism y'\ cf. [Gr4] and [Sch3,
Chapter 4].
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Similarly, a reflection y can be extended to an involutory automorphism y' of the
associated quadrangle Q. The set of fixed points F of y' is ^J, U n 0 U Floo U {00}
which, as a topological space, is homeomorphic to the torus S1 x S1. The set F is
the point set of a 2-dimensional Minkowski plane whose parallel classes are the lines
contained in F. Circles in one connected component of the circle set of the Minkowski
plane are of the form FC\xL,xzP\F. Circles in the other component are defined
in a more intricate way (cf. [Sch3, Chapter 5]).

Finally, we look at the situation described in Proposition 4. Let g , , i = 1, 2, 3
be the quadrangle associated with L, and let Q\ \Q2\ Q3 be the quadrangle associated
with L\ IL2IL3. Consider the collection 'if1 of all circles that touch c0. In Q, the circle
c0 is a point and the points on c0 and all circle in ff1 are precisely c£. Hence as a
separating set in the quadrangle we have oox U c^. Written in this way this separating
set looks exactly like the separating set cx>x U pL that we considered earlier. There is
a difference, though. Whereas 00 and p are collinear, 00 and c0 are not.

A tangent circle pencil in L, through a point q not on c0 contains precisely one
circle in 'if1. Hence the line in Q, that corresponds to this pencil intersects the
(new) separating set two times. Every such line has points in only two of the three
components of R3 \ ^ " . None has points in both *^+ and ^ ~ . So, basically, we arrive
at the following picture of a quadrangle Q = (P, S£) associated with a Laguerre plane
J5f = (S1 x R, ^ , 11) that contains the circle c0 (Figure 11).

extended tangent pencil extended tangent pencil
in a point above CQ in a point below cft

FIGURE 11

Finally, the parts of Q\, Q2 and (?3 get glued together into Q\ \ Q2\ Qi as follows.
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FIGURE 12
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