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A b s t r a c t : The dynamo equation for the mean field (B) contains a random forcing term 
of unknown magnitude, which is therefore always omitted. The influence of this term is 
potentially large. To evaluate its effect, we employ ensemble averaging. If an ensemble 
average is used, there is no random forcing term in the dynamo equation. The effect 
of fluctuations is that the ensemble members get out of phase, so that {B) —• 0. The 
damping time of (B) can be found by requiring that the mean energy (BB) remains 
finite. The eigenvalues K of the dynamo equation then all have negative real parts. Im« 
determines the period, and -Re/c/ImK the relative period stability of the dynamo. We 
have developed a code to solve the equation for (BB) in a spherical shell (the convec
tion zone), assuming axisymmetry. We report our first results, which do not yet include 
differential rotation. Using spherically symmetric boundary conditions, we reproduce the 
well known a2-dynamo, whose behaviour is known analytically. For instance, for an a2-
dynamo located in a shell with inner boundary at .ft/2, we find that (BB) remains finite 
for R2~f//3 = 1.48, where /? represents turbulent diffusion and 7 turbulent vorticity. Tak
ing a = V ^ / ^ ) 1 ' 2 — a factor of four below maximum helicity — implies that we have 
a dynamo number Ca = Ra/0 = 0.30. Using this value we find a damping time of 
6 X 10~2 R2//3 for (B), which is a measure for the coherence time of B in a single ensem
ble member. This result implies that the large-scale field of this particular a2-dynamo 
reorganizes its structure completely on a time scale of only about one year (for solar 
values of R and /?), and it shows the enormous influence of random forcing in general. 

1. Introduction 
T h e effects of turbulence in the convection zone of s tars on the magnet ic field B 
are described by the dynamo equation: 

dt(B) = aVx(B) + / 3 V 2 ( B ) , (1) 

where (B) is some average of the magnetic field B, which we discuss presently. 
We have assumed tha t there is no differential rotat ion. T h e first t e rm in (1) is 
the turbulent helicity te rm, and the second is the turbulent diffusion term. Their 
coefficients are denned as: 

a « - ( u i - V x u i ) T c / 3 ; $ « ( " I K / S , (2) 

which we assume to be constant; Ui(r,t) is t he turbulent velocity, and r c i ts 
correlation t ime. 

All finite solutions of the dynamo equation are strictly periodic, and in our case 
this period is infinite, since we assume no differential rotat ion. Strict periodicity 
is very strange, since the underlying mechanisms are of a stochastic na ture , so we 
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would expect to find at best quasi-periodic solutions. Yet, the traditional dynamo 
equation suggests that the dynamo has an infinite memory. The origin of this 
feature lies in the derivation of (1). The averaging operator (•) must satisfy the 
Reynolds relations (e.g., Krause and Radler, 1980): 

(/ + g) = (f) + (g); (/(<?)) = (/) (g); (c) = c; (3a, b, c) 
(•) commutes with V, dt and all integrals , (3d) 

where f(r, t) and g(r, t) are arbitrary functions and c is an arbitrary constant. 
The average over space or time, generally used in (1), does not satisfy (3b) and 

(3d), which means that there is actually an extra term on the r.h.s. of (1) to account 
for this discrepancy. This extra term depends on the turbulent velocity U\ and has 
therefore the nature of a random forcing term, henceforth abbreviated as r.f.t. Even 
if (•) is defined as a longitudinal average, i.e. (•) = (2n)~1 ^(»)d<f>, which satisfies 
(3) exactly, there still is random forcing, because according to their definition a 
and /? will now have a fluctuation component according to their definition (2). 

The r.f.t. is usually omitted, and that explains the (unphysical) infinite phase 
memory of the dynamo. We wish to investigate the magnitude of this r.f.t., but 
since it is very difficult to obtain a manageable expression for it, we adopt another 
approach. 

2. Ensemble average 
We interpret (•) in (1) as an ensemble average, which does obey (3) exactly. In this 
case a and /? are constant, meaning that (1) holds as it stands: there is no r.f.t. if 
an ensemble average is used. One has to take the ensemble literally: an infinite set 
of identical systems, each having a different realization of U\(r,t). This, however, 
implies that (B) no longer refers to a specific dynamo, or in other words: we don't 
know which of the ensemble members is our dynamo. Nevertheless, the ensemble 
averaging turns out to be a useful approach for estimating the order of magnitude 
of the r.f.t. 

Our line of thought is as follows: Since each of the ensemble members has a 
different realization of fluctuations, the ensemble members gradually get out of 
phase. In other words: eventually {B) —• 0. If we can determine the damping 
time of this process, we know the correlation time of B itself in a given ensemble 
member. 

3. Mean magnetic energy 

In order to find the damping time of {B), we analyse the mean magnetic energy 
(BB). On physical grounds we must require that this mean magnetic energy re
mains finite. For if (BB) —> 0, then B = 0 in the end, contrary to the assumption 
that there is a dynamo. And if (BB) would increase, the energy would grow in
definitely, which is physically not acceptable either. Therefore we must require 
that (BB) remains finite. We can now find the damping time of (B), because 
the requirement " (BB) remains finite" fixes a combination of parameters also 
present in the dynamo equation. 

The equation for the tensor Tij = (BiBj) is (Knobloch, 1978; Hoyng, 1987): 
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dtTij = a (e , - H V t r , i + ejklVkTu) + / ? V % + - 7 ( 2 T « $ y - T,y), (4) 

where i,j represent Cartesian coordinates; recall that differential rotation is 
omitted. The first and second terms in (4) are turbulent helicity and diffusion, 
also present in the dynamo equation (1). The third term depends on the turbulent 
vorticity, and it represents generation of magnetic energy. The coefficient is defined 
as: 

7 « (\V x ui\2)re/3 , (5) 

which we also assume to be constant. Note that a, /? and 7 must fulfill Schwarz' 
inequality: 

a 2 < / ? 7 or C 2 < C 7 , (6) 

where: 

Ca = Ra/p ; C7 = i?2
7//? , (7) 

with R the outer radius of the dynamo. Ca is the usual dynamo number, 
important in both (1) and (4); C 7 is a second "dynamo number" relevant for 
(4) only. The definition of these two numbers follows upon the introduction of a 
dimensionless time t(3/R? in both (1) and (4). 

The damping time of (B) is found as follows. We choose a value of Ca and 
determine, subject to condition (6), the value of C 7 for which eq. (4) has a solution 
that remains finite. With the adopted value of Ca we determine the eigenvalues 
of (1), from which we obtain the damping time of (J3). This is expounded in the 
following sections. 

4. Results 

We have developed a code to determine the eigenvalues of (4) in a spherical shell, 
using spherical coordinates r, 6, <j>, and assuming axisymmetry. Eq. (4) is in fact a 
set of six coupled differential equations, and therefore six boundary conditions are 
needed, both on the inner boundary r = rc and on the outer boundary r = R; for 
completeness they are summarized in the Appendix. 

Let us write the eigenvalues of (4) as Ak = A* + fik\ (k = 0 ,1 ,2 , . . . ) . The real 
parts Xk of the eigenvalues form a decreasing series (because (4) is a parabolic 
equation). The requirement that {BB) remains finite implies that the largest of 
the real parts must equal zero, i.e. Ao = 0. The eigenfunction Tijfi then describes 
the corresponding energy distribution within the dynamo; Tyi0 depends on the 
value of Ca, but A0 does not (Van Geffen and Hoyng, 1990). Figure 1 shows two 
examples: 
a) Spherically symmetric boundary conditions, which reproduces the spherically 

symmetric a2-dynamo, whose behaviour is known analytically (Van Geffen 
and Hoyng, 1990), and can serve as a check on the computations. 

b) Axisymmetric boundary conditions. In this case there is a preferred direction 
(the vertical axis). 

In both figures, the top row shows the distribution of magnetic energy along the 
radial direction (-B2), the bottom row along the <f> direction (BV). Since there is no 
magnetic field within the core, we have Br = 0 at the inner boundary, implying 

https://doi.org/10.1017/S0252921100079525 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100079525


132 J.H.G.M. van Geffen et al 

that (1}%) equals zero at r = rc, and increases outward. On the other hand, (5?) 
is maximal on the inner boundary and decreases outward. 

1,0 1=1 1=2 1 = 0 1=1 1=2 

Fig. 1. Contour lines of the distribution of magnetic energy in a spherical shell, using 
a) spherically symmetric and b) axisymmetric boundary conditions. Solid lines repre
sent positive contours, broken lines negative contours. In both cases C7 = R2*//P = 
1.48, Ca = xjiyjC^ = 0.30. See the text for an explanation. 

The left column shows the eigenfunction Tijto belonging to the eigenvalue with 
the largest real part Ao = 0. The second and third column show the eigenfunctions 
belonging to the states with the next two largest real parts: Ai and A2. The solu
tions shown in Figure 1 axe non-periodic, i.e. they have /z* = 0. The states with 
negative energy (k = 1,2,...) are damped and will play only a transient role, as 
the solution of (4) relaxes from arbitrary initial conditions to the stationary solu
tion. Some of the higher eigenfunctions are periodic (that is: they have /xjt 7̂  0) in 
addition to being damped; we found, however, that /zo always equals zero. 

We can assign quantum numbers to the eigenmodes. First of all m equals zero 
because of axisymmetry. The quantum number I, representing the number of zeros 
along the 6 direction, takes values 0, 1 and 2 as indicated in Figure 1. The radial 
quantum number n equals zero in the cases shown, but going to larger values of 
|Ajt| there will also be states with n = 1,2, 

5. Damping time of (B) 

It turns out that Ao = 0 is reached if Cy = 1.48, independent of Ca (see Van 
Geffen and Hoyng, 1990). In the figure we have taken Ca = 1/4y/C^ = 0.30, so 
that a equals 1/i of its maximum value according (6). With this value we solve 
(1) analytically by extending the method of Krause and Radler (1980, Ch. 14), to 
allow for the existence of an inner boundary (where Br = 0). The eigenvalues «;* 
of (1) are real, since there is no differential rotation. For Ca = 0.30 it turns out 
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that K/s < 0 for all k, thus confirming that all solutions of the dynamo equation 
are damped (cf. Hoyng, 1987). The longest living mode is determined by the the 
smallest |/cjt |, which we found to be equal to 16/3/R2. Hence the damping time of 
(B) is (16P/R2)-1 « 6 x 10- 2 i?7 /? . 

Our interpretation of this result is as follows. The dynamo equation (1) with 
(•) is a spatial or time average contains a r.f.t. and may be written as follows: 

di,B) = a V x(B) + /3V2(B> + •••(B) . (8) 

r.f.t 
The diffusion term is of the order of P/R2, so we must conclude that in this 

case the r.f.t. is about 16 times larger than the diffusion term. Although this is 
only a rough estimate, it shows that the r.f.t. is certainly not small, as has been 
assumed so far (e.g., Krause and Radler, 1980). We have analyzed values of Ca 

ranging from 1 to 1/i28 times the maximum value \ / C ^ , and we found the damping 
time to be of the same order of magnitude as in the above example. 

6. Concluding remarks 

We have shown above that by using ensemble averaging and requiring that (BB) 
remains finite, the damping time of (B) can be found, and the magnitude of the 
random forcing term in the dynamo equation can be estimated. We have also 
shown that this random forcing dominates in (8), rather than being negligible. 
This result raises several issues: 

• First of all the role of non-linearities. Our main result is that random forcing 
is an essential ingredient in the dynamo equation (1), if an average over space 
or time is used. The use of an ensemble average to estimate the magnitude 
of the r.f.t. is merely a technical matter. Apparently the r.f.t. is very large 
and this makes the dynamo unsteady and erratic. At present it is not clear 
whether non-linearities (which are of course important) will further destabilize 
the dynamo. The traditional approach, however, where non-linear effects are 
included in (1) — for example by making a a function of |(i?)| — while random 
forcing is ignored, seems rather pointless in the light of the present results. 

• We have assumed isotropic, homogeneous turbulence and infinite resistivity. 
These assumptions are not very realistic and have to be removed, but we 
believe that this will not drastically change the outcome of our study. 

• What happens if we adopt a larger value of Ca? We found the dipole solution 
of (1) to be marginally stable only at Ca = 6.57. We have verified that for 
this large value of Ca, eq. (4) always has growing solutions (i.e. A0 > 0). A 
full discussion will appear later. 

• The aim of our work is to study the effect of random forcing in the solar 
dynamo, in order to find out whether the observed period stability of the 
22-year cycle of the sun (SP/P w 0.1) can be explained within linear theory. 
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Appendix: Boundary conditions 

We consider a dynamo in a spherical shell: 0 < rc < r < R, and assume axisymme-
try. The first column shows the boundary conditions and quantities specified on the 
inner boundary, and the second column those on the outer boundary. The first two 
lines follow directly from physics, where e = 2gem is the mean magnetic energy 
density, and where a, r are related to the distribution of magnetic energy over 
spatial scales; these are discussed in more detail in Van Geffen and Hoyng (1990). 
The bottom three lines represent cross-correlation functions at the boundaries. On 
the axis: Tr$ = Tr^ = Tej, = 0 , T$$ = T44 because of axisymmetry. 

r = rc r = R 

de/dr = 0 de/dr + e/g = 0 
Trr = Tr0 = Tr^ = 0 

v = (Tee + T^/Trr 
T = Tee/T^ r = Tee/T^ 

Cre = Tre/y/TWTee 
CT<j> = Tr<j,ly/TrrT^j, 

Cg^ = Te^/y/TeeT^ Ce^> = Tej,/y/TeeT^ 

The distribution and correlation functions chosen for the graphs in Figure 1 are: 

spherically sym. axisymmetric 

1/2 l/2+sin0 
1 l+sin0 
0 sin^ 
0 0 
1 1 
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