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ABSTRACT

As the use of large-scale radiocarbon datasets becomes more common and applications of Bayesian chronological modeling become a
standard aspect of archaeological practice, it is imperative that we grow a community of both effective users and consumers. Indeed,
research proposals and publications now routinely employ Bayesian chronological modeling to estimate age ranges such as statistically
informed starts, ends, and spans of archaeological phenomena. Although advances in interpretive techniques have been widely adopted,
sampling strategies and determinations of appropriate sample sizes for radiocarbon data remain generally underdeveloped. As chrono-
logical models are only as robust as the information we feed into them, formal approaches to assessing the validity of model criteria and the
appropriate number of radiocarbon dates deserve attention. In this article, through a series of commonly encountered scenarios, we
present easy-to-follow instructions for running simulations that should be used to inform the design and construction of chronological
models.
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A medida que aumenta el uso de conjuntos de datos de radiocarbono a gran escala y las aplicaciones del modelo cronológico bayesiano
se vuelven estándar, es imperativo que crezcamos una comunidad de usuarios y consumidores efectivos. De hecho, las propuestas de
investigación y las publicaciones ahora emplean rutinariamente modelos cronológicos bayesianos para estimar rangos de edad, como
inicios, finales y períodos de fenómenos arqueológicos informados estadísticamente. Si bien los avances en las técnicas interpretativas se
han adoptado ampliamente, las estrategias de muestreo y las determinaciones de tamaños de muestra apropiados para los datos de
radiocarbono siguen estando en general poco desarrolladas. Dado que los modelos cronológicos son tan robustos como la información
que les proporcionamos, los enfoques formales para evaluar la validez de los criterios del modelo y el número apropiado de determina-
ciones de radiocarbono merecen atención. En este documento, a través de una serie de escenarios comunes, presentamos instrucciones
fáciles de seguir para ejecutar simulaciones que deberían informar el diseño y construcción de modelos cronológicos; comenzando con
estrategias de muestreo efectivas que producirán información cronológica sólida y representativa.
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Large-scale radiocarbon dating programs at varying scales of
analysis (e.g., from the single stratigraphic context to entire
regions) have become a mainstay of archaeological research in
North America, due in part to widespread advances in and
adoption of Bayesian chronological modeling techniques (e.g.,
Abel et al. 2019; Birch et al. 2020; Brown et al. 2019; Cobb et al.
2015; Hamilton and Krus 2018; Holland-Lulewicz et al. 2020;
Kennett et al. 2014; Krus and Cobb 2018; Krus et al. 2015; Lulewicz
2018, 2019; Manning et al. 2018, 2019; Ritchison 2018a, 2018b,

2020; Thompson and Krus 2018; Thulman 2019). As evidenced by
long histories of research in Europe, advances in both radiocarbon
dating and Bayesian chronological modeling have greatly
increased the analytical potential of both large and small radio-
carbon datasets in ways that have allowed researchers to com-
pletely rethink approaches to archaeological practice and the
narrative construction of the past (see Bayliss 2009; Bayliss and
Bronk Ramsey 2004; Bronk Ramsey 2009a; Buck 2004; Buck et al.
1991, 1996; Hamilton and Krus 2018; Whittle et al. 2011). Bayesian
chronological modeling allows archaeologists to formally inte-
grate archaeological knowledge (known as prior or a priori infor-
mation) into the statistical analysis of radiocarbon data. Such
techniques allow for more scientifically rigorous approaches to
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assessing the validity of radiocarbon data, the robustness of
temporal interpretations, and the fit between archaeological
assumptions and radiocarbon probabilities. Bayesian models are
now routinely built to produce estimations of age ranges, includ-
ing statistically informed starts, ends, and spans of archaeological
phenomena.

Although advances in interpretive techniques have been widely
adopted, using simulations to explore effective research designs,
determinations of appropriate sample sizes, or the modeling of
chronological hypotheses remain generally restricted to the
practices and efforts of Bayesian specialists (e.g., Bamforth and
Grund 2012; Bayliss and Bronk Ramsey 2004; Bayliss et al. 2007,
2008; Buck 2004; Buck and Christen 1998; Christen and Buck 1998;
Contreras and Meadows 2014; Crema and Shennan 2017;
Edinborough et al. 2017; Griffiths 2014; Jorgeson et al. 2020; Krus
and Cobb 2018; Rhode et al. 2014). As the use of Bayesian frame-
works becomes more accessible and more widespread, however,
it is critical to adopt a set of standardized expectations for
developing effective sampling strategies. Bayesian chronological
models, like all models, are only as robust as the data and para-
meters that we provide (i.e., “garbage in, garbage out”).

One frequently used means to increase the robustness of a given
chronological modeling program has been to employ simulations
during research design to explore the complexities of temporal
age estimations for particular cases (e.g., Bayliss 2009; Bayliss and
Bronk Ramsey 2004; Bayliss et al. 2007; Buck and Christen 1998;
Christen and Buck 1998; Crema and Shennan 2017; Griffiths 2014;
Jorgeson et al. 2020; Kennett et al. 2017; Krus and Cobb 2018;
Manning 2006; Manning and Hart 2019; Rhode et al. 2014; Steier
and Rom 2000; Thompson and Krus 2018; Thompson et al. 2019).
In the context of Bayesian chronological modeling, simulations
involve the use of well-informed, hypothetical datasets and model
parameters, based on available observations or expected findings,
which are used to evaluate the potential representativeness of an
existing or expected radiocarbon dataset or of the efficacy and
value of particular prior information and model parameters in
producing robust age estimates—estimates that we can be con-
fident will be generally unyielding to the routine addition of new
data and information.

Although the value of simulations is well understood and
recognized among specialized Bayesian modelers dealing with
archaeological radiocarbon data, specific knowledge of how to
actually go about using simulations in this way remains limited. As
Bayesian chronological modeling continues to become more
“mainstream,” primarily through user friendly and free software
packages, knowledge of how to formally assess sampling strat-
egies and sample sizes must keep pace. Simulations allow those
submitting grant proposals or journal manuscripts to justify their
research design, datasets, and modeling decisions formally.
Additionally, simulations can identify shortcomings, weaknesses,
or areas for future research. In this article, we present easy-to-
follow instructions for how to run simulations via the freely
available OxCal v4.4 software (Bronk Ramsey 2009a, 2020) and how
to use them productively in archaeological research. We first
briefly review why simulations are important in the context of the
complexities of radiocarbon dating and chronological modeling.
We then offer a series of hypothetical case studies that mirror
some of the most common modeling efforts undertaken by
archaeologists. Although we do not assume prior knowledge of

utilizing simulations, we do assume that the reader has a working
understanding of the principles and practice of Bayesian chrono-
logical modeling. For the sake of space, we refrain from offering
explicit definitions for many of the specific terms associated with
Bayesian chronological modeling and the OxCal software. For
those seeking a more thorough background on the method,
theory, terminology, and procedures of the Bayesian analysis of
radiocarbon data, a range of published material is available to
be consulted (e.g., Bayliss 2009; Bronk Ramsey 2009a, 2009b;
Buck et al. 1996; Hamilton and Krus 2018; Lulewicz 2018;
Whittle et al. 2011).

WHY RUN SIMULATIONS?
The purpose of using simulations is to formally assess the poten-
tial representativeness of a given set of radiocarbon dates within a
particular suite of model parameters to address a research ques-
tion (e.g., determining the end boundaries for a particular site or
the beginning of the use of a particular diagnostic material across
a region). Simply put, simulations help ensure and justify repre-
sentative age models as well as justify radiocarbon sampling
strategies that address well-defined research questions (Griffiths
2014). In this regard, there are a variety of factors to consider. The
most notable of these, of course, is the number of available
radiocarbon dates. Although archaeologists are well aware of
sampling methods and the importance of matching the scale of a
sample to the scale of a question or context, when building
chronological models, it is important to recognize that it is not
only size that matters. Both the estimated temporal range and the
usefulness and power of prior knowledge will influence any
determination of an appropriate number of radiocarbon dates for
a given research design or model.

All of these considerations are further influenced by the location
of potential radiocarbon determinations along the calibration
curve (e.g., IntCal20 [Reimer et al. 2020]). For instance, determi-
nations dating to roughly the AD 1400s exhibit a single intercept
along a steep part of the calibration curve, resulting in easy-to-
interpret age estimates with short ranges (Figure 1a). On the other
hand, determinations dating to the range of approximately AD
1500–1700, for example, usually exhibit multiple intercepts along
the calibration curve. These are sometimes called “reversals”
when the curve has a significant upward inflection back in time,
or “plateaus” where the curve flattens out and provides no
single, clear intercept (Figure 1b). These phenomena result in
calibrations with extremely wide probabilities ranging from
hundreds to thousands of years. One of the more notorious
examples of such plateaus, the Hallstatt plateau (ca. 2450 BP or
ca. 800–400 BC), has been addressed extensively through the
use of Bayesian approaches and simulations to increase the
achievable precision for radiocarbon dates from this period
(e.g., Hamilton et al. 2015; Jacobsson et al. 2018). Similar efforts
have been extended for other plateaus dating both earlier
(ca. late fourth millennium BC; e.g., Meadows et al. 2020) and
later (ca. fifteenth–seventeenth centuries AD; e.g., Manning
et al. 2020).

For our purposes, it is important to recognize that depending on
the modeling goals, fewer dates will likely be required for pro-
ducing a robust, representative model for phenomena dating to
the fifteenth century AD, as compared to the sixteenth through
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the eighteenth centuries AD. In the case of this latter span (i.e., AD
1500–1700), models may be highly sensitive to the addition of new
dates and to new or more informative prior information. In fact, for
this span—and other “plateaus”—sample size alone may not be
able to ameliorate these inherent effects of the calibration curve.

We can employ simulations to explore the consequences of
varying (1) the number of radiocarbon dates and (2) the kinds of
prior knowledge built into the model. In regard to calibration
curve “reversals” and “plateaus,” for instance, simulations can be
used to explore the effects of different prior knowledge on the
mediation of such calibration issues. For instance, you might test
how dating more or fewer stratigraphic layers or incorporating
other kinds of a priori information (e.g., dates from historical
documentation or other materials with known date ranges, such as
coins or historic ceramic wares) might achieve more precise age
estimations. Simulations may reveal that more dates from the
same context or stratigraphic sequence will not overcome the
effects of reversals in the calibration curve. You might then con-
sider a different approach—perhaps dating multiple rings from
single pieces of charcoal where the number of years between
each date (i.e., number of rings) is known. Such procedures are
known as wiggle-matching, and they can greatly increase the
resolution of charcoal dates where the analysis is possible (see
Bronk Ramsey et al. 2001; Galimberti et al. 2004; Hogg et al. 2019;
Jacobsson et al. 2018; Manning et al. 2010, 2020). In each of these
cases, simulations are a valuable tool that can inform the alloca-
tion of time, energy, and money while simultaneously increasing
the potential utility, representativeness, and robustness of new
chronological models.

Simulations may demonstrate that the number of determinations
needed—or the kind of a priori information that would be ideal—
for building representative models is not feasible. For instance,
simulations may reveal that given a set of model criteria, more
dates are needed than the archaeologist can afford, or that more
stratigraphic information would be useful to constrain determina-
tions and estimated ages. As Krus and Cobb (2018) have recently
demonstrated, such knowledge should not hinder a study. In fact,
such information allows archaeologists to propose future research,

anticipate changes to their models, and to recognize potential
shortcomings of their interpretations. In this way, simulations allow
for more productive and more transparent chronology-building
practices.

HOW TO RUN SIMULATIONS
As noted at the outset—and illustrated through the many citations
of publications employing simulations to address chronological
research design—none of the issues outlined here are necessarily
new. Yet, no simple guide to using simulations exists, and there
are no established/published best practices for the use of simu-
lations in building Bayesian chronological models. You may be
asking, How do I generate simulated dates? How many simulated
models should I run? How do I run a simulated model? How do I
interpret the results of simulations? The rest of this article
endeavors to address these questions and reveal the mechanisms
inside the “black box” of Bayesian simulations. Running simula-
tions does not require any advanced computational or statistical
knowledge, and it can be accomplished using widely available
software. Here, we provide four examples that represent very
common archaeological situations. For each example, we gener-
ate dates for simulations and interpret simulation results using
Microsoft Excel (this can also be accomplished in Google Sheets,
a free and readily available online software). We build and run
simulated models using the freely available software OxCal v4.4
(Bronk Ramsey 2009a, 2020) and the built-in IntCal20 calibration
curve (Reimer et al. 2020). We note that other free software
options, such as R Statistical Software, could also be used to
undertake the analyses we present below. Although we focus on
the use of Excel as an easier and more accessible option to most,
code-based programs such as R have the added benefits of pro-
ducing more easily shareable code, outlining specific procedures,
contributing to an ease of reproducibility, and of allowing users to
create random samples following more complex, multimodal
underlying distributions.

The general steps and considerations necessary for designing
effective simulation studies are presented as a flow chart in

FIGURE 1. A simulated date (AD 1425 ± 20) with a single intercept along the radiocarbon calibration curve (left) and a simulated
date (AD 1550 ± 20) along part of the curve producing multiple intercepts and wide probability ranges (right).
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Figure 2. Before beginning, it is good to know at least something
about the kind of model you wish to build. Ideally, you will build a
model that reflects the specific archaeological context(s) being
studied and that is designed to answer a specific question (e.g.,
occupation spans, spans of hiatuses/abandonments, or age esti-
mations of particular features/events). Although you may not know
the precise temporal range of your context or archaeological
phenomena, simulations are built from expected results or
informed hypotheticals (educated guesses!).

Once you have built your model (or models, if you are evaluating
the effects of different model criteria) in OxCal, you can begin
adding simulated radiocarbon dates. For this, we recommend
Microsoft Excel as an easily accessible and user-friendly option.

For example, if you estimate that your determinations should fall
between AD 1300 and 1500, you will use Microsoft Excel to gen-
erate random numbers between these two ages. To do this, you
can enter the following equation into a cell in Excel: =RAND
BETWEEN(1300,1500). Note that for BC dates, you simply use a
negative sign in front of the age. Importantly, simulated dates are
input as actual calendrical dates (AD/BC), not radiocarbon ages or
BP (although the results can be visualized and presented as BP).
You can now drag this column down to generate a series of
random numbers. To the right of this column, insert an error range
(e.g., 20, 35, 50 years). This will depend on the lab you are using,
the period you are working in, or the material you are dating.
Choose whatever is the most appropriate for your anticipated
dates (in fact, this may be a factor that you wish to assess: how do

FIGURE 2. Suggested workflow for running effective simulations.
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models built using legacy determinations with large error ranges
compare to models built using simulated dates with much smaller
error ranges?). To the left of your age column, insert an arbitrary
identifier (e.g., Date_1, Sim_1, etc.).

Once you have these three columns (Sample ID, Date, Error), you
can place your simulated data into your OxCal model as demon-
strated in the examples below. To input dates, use the R_Simulate
command in OxCal, which is where you will enter the ID, date, and
error. As you will likely be inputting many dates across many
different models, you may opt to use the Import tool in which
you can copy and paste your three columns from Excel into OxCal.
If you are specifically interested in the effects of sample sizes,
you may start with a few dates and continuously add more to
subsequent models (e.g., 10 dates, 20 dates, 30 dates, etc.). In our
examples below, we make jumps of five dates for each iteration.
Smaller jumps of even a single date could be made, which may be
necessary when funds for radiocarbon dates are limited. The
outputs of these models will be the basis for interpreting your
simulations and assessing your sampling strategies and modeling
criteria.

You must now establish your criteria for interpreting simulated
data. There are no established rules for determining when a
minimum acceptable number of radiocarbon dates has been met.
Krus and Cobb (2018) defined a few criteria specifically designed
to estimate dates of abandonments at a number of archaeological
sites. They decided that when their estimated start and end
boundaries fell within the range of their simulated start and end
boundaries, and when these simulated boundaries were con-
strained to 50-year periods or less, they have found an appropriate
sample size. For example, if, based on current archaeological
knowledge, you estimate that the end of an occupation should fall

between AD 1300 and 1450, an acceptable simulation might
produce an end boundary that (1) falls within that range and (2) is
limited to a 50-year range (e.g., AD 1335–1385). Or put another
way, if you estimate the end of an occupation to date to AD 1350,
AD 1335–1385 would signify an appropriate simulated solution.
Using this method, you can simply keep track of your simulated
outputs and stop when these criteria are met or when they begin
repeating in subsequent models as more dates are added. This
would be the point of diminishing returns in regard to sample size,
and it would indicate that the addition of more dates would likely
have little effect on model results.

In our models below, we are primarily interested in how modeled
results are affected by the addition of more radiocarbon dates. We
focus explicitly on the increasing precision of modeled bound-
aries. We would like to point out, however, that this is not the only
method of assessing the effects of radiocarbon sample sizes on
the representativeness of a dataset or the confidence one could
place in a dataset. For instance, the addition of more dates will,
generally, also decrease the expected variance of a given dataset
(see Buck and Christen 1998; Christen and Buck 1998). In Figure 3,
we show that if you were to run 10 models, each with a different
set of five randomly simulated dates between 15,200 and 14,700
BP, the models would yield drastically different ranges for the start
boundary of that phase. As more dates are added, however, this
variance decreases (Figure 4), indicating a decreasing likelihood
that a new set of randomly selected dates will contradict an extant
dataset. Although we have provided an example of this type of
analysis, for the sake of simplicity and the “how-to” goals of this
article, we do not apply these procedures to the scenarios pre-
sented below. That said, such an analysis of variance would cer-
tainly provide supplemental information to any chronological
simulation.

FIGURE 3. Plot illustrating the variance in estimated start boundaries across 10 models, each with a random set of five simulated
dates between 15,200 and 14,700 BP.
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In the examples below, we search for the minimum number of
dates needed before the model no longer changes with the
addition of more radiocarbon determinations. As such, in the
graphs below, where we plot model outputs by number of sam-
ples, we are looking for the point at which our data “levels out.”
This leveling point, associated with a particular number of radio-
carbon dates, represents the best solution given a particular set of
modeling criteria. All OxCal code used to generate the model
frameworks for each of the scenarios below can be found in
Supplemental Text 1 and is archived online using Zenodo
(Holland-Lulewicz and Ritchison 2021).

Scenario 1: Simple Single-Phase Model, No
Calibration Curve Reversals or Plateaus
Scenario 1 is the simplest of the four scenarios presented here. In
Scenario 1, you are interested in the start range, end range, and
span of a particular phenomenon, such as the occupation span of
a single-component, non-stratified site or the use of a particular
ceramic vessel form within a region. Fortunately for you, in this
scenario, the estimated range for the occupation of the site or the
use of the vessel form is located along a steep slope of the cali-
bration curve that produces posterior distributions with small
ranges (e.g., Figure 1a).

Previous research, including a handful of dates with moderately
sized error ranges, indicates that the range for the phenomenon
may span 200 years, between approximately AD 1000 and 1200.
To estimate the minimum number of dates needed to model
precise, high-resolution start and end boundaries (at a resolution
of ca. 50 years), and to determine the point at which the model is

no longer sensitive to new dates that might fall within this range,
you build a simple model and run multiple iterations with
increasing numbers of determinations. The model consists of a
single phase with start and end boundaries. To reproduce our
results, you simply copy the code for this scenario into OxCal
and generate random dates between AD 1000 and 1200 in
Excel, adding five more dates to each model iteration up to
100 dates. We used a new set of random dates for each iteration
(as opposed to cumulatively adding to each set of dates). Start
and end boundary ranges are then copied into Excel to produce
plots.

The results of these simulations are graphically depicted as a
series of plots at both the 68% and 95% confidence intervals
(Figure 5). For the boundary ranges, note how the minimums and
maximums for the ranges become increasingly closer to one
another as more dates are added to the simulation, indicating
increasing precision. Both the boundary ranges and spans begin
to “level out” at around 50 dates, indicating increasing precision
up to roughly 50 dates. This would be the point of rapidly
diminishing returns. In this scenario, roughly 50 determinations
would be an appropriate choice of sample size and would pro-
duce both a representative and robust model for determining the
chronology of this phenomenon that will be more resilient to the
addition of new data as it becomes available.

Scenario 2: Simple Single-Phase Model,
Calibration Curve Reversal
Code for the Scenario 2 model structure is the same as code for
the Scenario 1 model structure. In this scenario, however, the

FIGURE 4. Plot illustrating variance in the estimated maximum age (blue) and minimum age (yellow) for a modeled start boundary
across model iterations with increasing numbers of simulated dates between 15,200 and 14,700 BP. Each iteration of the model
was run 10 times, each with a new set of randomly simulated dates, to calculate variance (e.g., the model of 10 dates was run 10
times with the same 10 dates, the model of 20 dates was run 10 times with the same 20 dates, etc.).
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estimated end dates for the archaeological phenomenon in
question fall along a less straightforward section of the calibration
curve (i.e., at a “reversal”; Figure 1b). The phase is estimated to fall
between approximately AD 1440 and 1640.

The results of these simulations are included as an OxCal plot
showing the posterior probability estimates (modeled date
ranges) for each boundary (Figure 6), and they are graphically
depicted as a series of plots (Figure 7). The top row of plots in this
figure represents the minimum and maximum ages for both
start and end boundaries (consequently, each iteration has two
points—a minimum and maximum age for the range). The bottom
row of plots represents estimated lengths or spans for each
simulated boundary (in number of years). Our start boundary
begins to stabilize quickly, with no significant variation as more
dates are added, after approximately 40 dates. Our start boundary
ranges for over 40 dates remain within our 50-year criterion.

For our end boundary, however, only a single iteration produced a
boundary with a span of 50 years or less. When 80 determinations
are included, the end boundary span falls to 45 years. Although

this fits our criterion of a 50-year span for boundary ranges, sub-
sequent iterations of 85, 90, 95, and 100 determinations produce
modeled end boundaries that once again exceed this criterion at
95, 55, 70, and 55 years respectively. Consequently, given our
model parameters and sample sizes, we cannot produce a confi-
dent, robust estimate (i.e., unyielding to new data) for an end
boundary with 100 dates or less. Although sample sizes of over
100 dates may yield more precise ranges, when money and
resources are limited, increasing the sample size may not be the
best solution. Instead, we might consider a research design that
prioritizes the generation of more informative a priori information
over the generation of new radiocarbon dates (e.g., excavations
that yield stratigraphically ordered deposits or the incorporation
of terminus ante quem [TAQ, date after which] estimates from
historical information, such as known production ages for glass
beads or European-produced metals). This may also be a case
where effort might be taken to identify charcoal samples from
which more than one ring can be dated and used for wiggle-
matching to produce more constrained probability estimates. In
such cases, you could simulate the results of wiggle-matching to
determine the efficacy of the method using the D_Sequence

FIGURE 5. Results from Scenario 1 at the 68% (blue) and 95% (red) confidence intervals. The top plots presents the minimum
(circles) and maximum (triangles) ages for start (left) and end (right) boundaries. The bottom row of plots presents estimated
lengths or spans for each simulated boundary (in number of years).
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command in OxCal and a set of simulated dates. Although we do
not demonstrate these procedures here, we point readers to a
number of published examples of such procedures (e.g., Bronk
Ramsey et al. 2001; Galimberti et al. 2004; Hogg et al. 2019;
Jacobsson et al. 2018; Manning et al. 2010, 2020).

Scenario 3: Sequential Phases and Transitions
In Scenarios 1 and 2, we used simulations to design research
aimed at estimating start and end boundaries on some archaeo-
logical phenomena. For Scenario 3, we are interested in estimat-
ing the length of a transition between two phases. This could

represent the number of years passed between two occupations,
the length of a hiatus or abandonment, or the length of a transi-
tion between two ceramic traditions. To these ends, we have
incorporated two simple phases into a sequential model and
included start and end boundaries for each phase. The effect of
these commands is to indicate that one phase comes after
another, but that the interval between the two phases is unknown.
The phases may directly follow one another in time, or there may
be a significant gap in years between the two. In either case, using
a sequential model includes the prior assumption that the two
phases do not overlap in time. In this case, we are interested in the
end boundary for the first phase and the start boundary for the

FIGURE 6. OxCal plot of start and end boundaries for Scenario 2 simulations. The numbers along the side are the number of
simulated dates included in each iteration of the simulation. Bars beneath each posterior probability distribution represent the
68% and 95% confidence intervals. These boundary ranges are graphically represented in Figure 7.
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second phase. Dates were iteratively added to both the early and
later phases. The early phase is estimated to date to between
approximately AD 900 and 1000, whereas the second phase is
estimated to date to between roughly AD 1100 and 1200. The
question is whether this hypothesized 100-year gap can be mod-
eled and supported using radiocarbon dates and a limited set
of prior information about a hypothesized sequence. The “Differ-
ence” command was used in OxCal to calculate the difference
between the start boundary of Phase 2 and the end boundary of
Phase 1. The “Difference” command produces a posterior distri-
bution that yields a modeled range of number of years that
includes estimates at the 68% and 95% confidence intervals. This
calculated difference represent the modeled estimate for the gap
between Phases 1 and 2.

The results of these simulations are graphically depicted in
Figure 8. The plot illustrates minimum and maximum lengths
(in years) at both the 68% and 95% ranges for the simulated gaps
between the early and late phases. Depending on the number of
radiocarbon dates included, simulations produced gap lengths
that span, at most, up to 220 years. At the very minimum, the two

phases are modeled to have a potential overlap of up to 20 years.
This means that some sample sizes of radiocarbon data would not
even be robust enough to identify/model any expected/known
hiatus, even when the appropriate sequential model is used,
which stresses the importance of sample sizes and simulations in
designing research that will be able to address your hypotheses
and expected outcomes. Although our plots never completely
level off as they did in Scenarios 1 and 2, the iterations with over
roughly 60 dates seem to be the most acceptable solution. After
60 dates, the median gap length does seem to level out around
the 100-year estimate, although the maximum and minimum
ranges cannot be ruled out. As such, it does not seem as if we can
necessarily achieve the resolution necessary to either support or
reject the hypothesis that a 100-year gap exists between these two
phases given the available prior information.

This is the point at which you can begin to design research that
aims to remedy these deficiencies. With the use of simulations,
you have determined that more information is necessary if the
question of abandonment is going to be addressed effectively
and empirically. In this case, you may begin to propose new

FIGURE 7. Results from Scenario 2 at the 68% confidence interval. The top row of plots presents the minimum (circles) and
maximum (triangles) ages for start (left) and end (right) boundaries. The bottom row of plots presents estimated lengths or spans
for each simulated boundary (in number of years).
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excavations that target stratified deposits or deposits with built-in
TPQs/TAQs (i.e., climatic events such as floods or volcanic activ-
ity). If you are working in a period or location in which written
information is available (i.e., ethnohistoric documentation, ste-
lae), you may target sites or deposits that can be linked to his-
torically known date ranges (or, at the very least, use such
documentation to derive TPQs/TAQs that can be used to
increase the precision of radiocarbon determinations). Beyond
stratigraphy and independent chronological datasets, you may
draw on detailed ceramic or lithic seriations (either site based
or region based) to model a radiocarbon dataset effectively.
At this point, your research design will of course be partially
determined by your region, period, and methodological
specialization—all of which can be creatively leveraged to build
chronological models, and the effects of which can be explored
through preliminary simulations.

Scenario 4: An Event within a Stratigraphic Unit
In each of the three previous scenarios, stratigraphic information
was not a major factor in building models. Even so, stratigraphic
information provides the most informative, useful constraints when
modeling radiocarbon dates from archaeological contexts. In this
fourth scenario, we simulate a situation in which you are attempting
to date a single event or stratum (e.g., flooding event, burning
event, capping event, house floor, midden deposit) where strati-
graphic relationships between dated materials can be determined
and incorporated into modeling efforts. Our hypothetical strati-
graphic profile is depicted in Figure 9.

In these simulated models, we set up a simple sequence with
start and end boundaries as well as a boundary that is used to
model the date of our event of interest (Stratum IV). In this case,
Stratum IV is a layer of sterile clay. It is located above Stratum V
and below Stratum III. Based on a regional ceramic chronology,
Stratum V is estimated to date to AD 975–1000. Stratum III is
estimated to date to AD 1100–1125. The question becomes,
How many dates and what stratigraphic data are needed to
model the age of this sterile layer effectively? That is, how many
dates and what kinds of model parameters are needed to pro-
duce a robust age estimation of this layer that is not sensitive to
further changes to sample size or additions of stratigraphic
information? You will note that there are also two more strata
above Stratum III and two more strata below Stratum V from
which we could pull datable materials.

Dates added to strata for each iteration are illustrated in Table 1.
Our first iteration includes a single date from Stratum V and a
single date from Stratum III, just above and below a boundary
command representing Stratum IV. For the next five iterations, we
add two dates for each subsequent iteration, one more to Stratum
V and one more to Stratum III. At the seventh iteration, we add
dates from Stratum II and Stratum VI (estimated ages for randomly
simulated dates are included in Figure 9). Through the tenth
iteration, we continue to add dates to these two strata (II and VI).
At the eleventh iteration, we add dates for Strata I and VII. Con-
sequently, through 15 iterations, we increase both the number of
radiocarbon determinations as well as the amount of stratigraphic
information built into the model.

FIGURE 8. Results from Scenario 3 at the 68% (blue) and 95% (red) confidence intervals. The plot illustrates the minimum (circles)
and maximum (triangles) lengths of these spans and the medians of the posterior probability distributions produced using the
“Difference” command in OxCal. The difference was calculated between the start boundary of Phase 2 and the end boundary of
Phase 1, representing the modeled gap between the two phases. The dark bar indicates the known/hypothesized true gap length
of 100 years.
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The results of these iterative simulations are graphically repre-
sented in Figure 10. The top plot represents the minimum and
maximum age ranges for the modeled boundary (Stratum IV).
The bottom plot represents the overall modeled span of this
boundary (Stratum IV). At both the 68% and 95% confidence
intervals, the data level off and cease to exhibit extreme
variability at roughly 12 radiocarbon determinations, or the
sixth iteration. The sixth iteration included five radiocarbon

determinations from Stratum III and five radiocarbon determina-
tions from Stratum V, as well as one date each from Strata II and VI.
In this case, for this particular location along the calibration curve,
adding more dates or more stratigraphic information does not
necessarily increase the precision of the model. Although con-
ventional wisdom may tell us to run dates from each available
layer, we need to take into account the specific questions we are
asking. In this case, we are specifically interested in the age of
Stratum IV. As such, instead of getting a small number of dates
(or even an individual date) from each available stratum, we
focus our energy on intensively dating the strata immediately
adjacent to Stratum IV. It is likely the case that five dates each from
Strata III and V was unecessary. This scenario illustrates the utility
of simulations to design effective, problem-oriented sampling
strategies.

OTHER POTENTIAL APPLICATIONS
OF SIMULATIONS
The scenarios presented here represent situations in which
archaeologists commonly find themselves. The first three scen-
arios were primarily concerned with determining appropriate
sample sizes and whether sample size alone could be used to
produce robust age estimations. Scenario 4 was slightly more
complex, evaluating the effects of both sample size and available
archaeological information on the ability to produce robust age
estimations within a stratigraphic context. These scenarios barely
scratch the surface of the kinds of modeling decisions that can be
evaluated using simulations. Although space limits us from illus-
trating many of the kinds of situations archaeologists may en-
counter and address with simulations, we briefly highlight some
potential expanded uses below. The procedures outlined above
should provide the appropriate skills and background to be able
to use simulations in these diverse ways and toward the particular
goals and situations of the archaeologist. These expanded uses of
simulations may include questioning long-held chronological
assumptions, accounting for outliers, exploring the effects of
boundary choices, and incorporating temporal information from
non-radiocarbon data.

Challenging Chronological Assumptions
In the scenarios presented here, we employ previous observa-
tions to build a framework for our simulations—that is, we use
previous knowledge about chronology (i.e., an age range or a
gap length) to build hypothetical radiocarbon datasets and to
evaluate potential model parameters. What we have not dis-
cussed, however, is the possibility that such ranges are inaccurate
or imprecise to begin with. For each of the scenarios here, espe-
cially in North America, the prior chronological information may
represent extant culture-historic frameworks based on previous
excavations, ceramic analyses, lithic analyses, settlement pattern
analyses, and a handful of pre-AMS radiocarbon dates (often
with large standard deviations). In many cases, the chronological
frameworks attached to culture-historic sequences represent
educated guesses—or “eyeballing”—based on informal, unstan-
dardized interpretations of calibrated radiocarbon dates and
associations with particular kinds of artifacts. In cases worldwide,
these culture-historic phases can appear quite precise (i.e., phases
of 50–100 years).

FIGURE 9. The hypothetical stratigraphic unit referenced in
Scenario 4. Estimated age ranges for each stratum are derived
from a regional ceramic chronology. The goal of the simula-
tions in Scenario 4 is to determine the appropriate modeling
criteria and sample size of radiocarbon determinations to be
able to effectively date Stratum IV, a sterile clay layer. Itera-
tions of Scenario 4 models, including the number of dates
iteratively added to each layer, can be found in Table 1.
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With simulations, however, we can explicitly test whether or
not such resolutions are possible given a particular set of
data. That is, given the available priors and radiocarbon dates,
can we differentiate chronological hypotheses? For instance,
we might use simulations to assess how many radiocarbon
dates would be needed to determine whether or not a
particular ceramic style or lithic form was used for 75, 100, or
200 years. In this way, we can begin to alter our hypothetical

datasets and build in alternative model parameters to
design ways to evaluate and test chronological hypotheses
empirically.

Accounting for Outliers
Outlier models are widely used by archaeologists engaged in
Bayesian chronological modeling (see Bronk Ramsey 2009b).

FIGURE 10. Results from Scenario 4 at both the 68% (blue) and 95% (red) confidence intervals. The top plot represents the
minimum (circles) and maximum (triangles) age ranges for simulated age estimations for Stratum IV. The bottom plot represents
the overall simulated span of Stratum IV in number of years.

How Many Dates Do I Need?

November 2021 | Advances in Archaeological Practice | A Journal of the Society for American Archaeology 283

https://doi.org/10.1017/aap.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2021.10


Such modeling helps to account for the effects of outliers within a
given dataset on the outputs of a particular model. For instance,
a Charcoal Outlier model may be applied to all of the charcoal
dates included in a model to weight these dates differentially
based on their fit in relation to all other dates included within the
model, as well as their fit with the prior information included. The
purpose of this would be to account for the potential offset
between the actual date of the event of interest and the date of
the piece of charcoal (which could match the event of interest or,
more likely, date to earlier than the event of interest). Similarly,
General and Simple outlier models can be used to account for
expected variation among dated materials and their modeled fit.
Indeed, Lulewicz (2018), using a series of sensitivity analyses on
an extant radiocarbon dataset, has shown that the use of an
outlier model can significantly affect the model output and alter
long-held chronological assumptions. In this way, simulations
may be used to assess the potential effects of different kinds of
outliers. For example, you may have a handful of extant charcoal
dates, but you are interested to know how these dates might fit
with a batch of new non-charcoal radiocarbon determinations. In
this case, you might use simulations to explore the effects of
outlier modeling and the addition of more determinations from
short-lived samples such as animal bone or charred seeds. When
an extant set of radiocarbon dates is available, these dates can
simply be added to models as R_Dates alongside simulated
dates.

Exploring the Effects of Boundary Choices
An important modeling decision not often discussed by archae-
ologists (see Bronk Ramsey 2009a) is the decision of which
kinds of boundaries are most appropriate for the archaeolog-
ical phenomena being modeled. Different kinds of boundaries
are used to alter the shape of the expected distribution of
radiocarbon determinations within a model. For example,

the default boundary commands applied to a single phase in
OxCal force the dates within that phase to be uniformly dis-
tributed across the span of the phase. The trapezium option, on
the other hand, assumes that at the beginning and ends of the
phase, dated samples will be rare (see Lee and Bronk Ramsey
2012). Through time, the number of samples increases, eventu-
ally plateaus, and then decreases again toward the end of the
phase. This may be more appropriate when modeling some-
thing such as the occupation span of a particular settlement or
regional models for the use of a particular lithic technology. In
the case of a lithic technology or use of ceramic decorative
styles, we might assume that use increases, plateaus, and then
decreases rather than starting abruptly in full force and then
ending abruptly (as would be represented using the default
boundary commands). Alternatively, a settlement may be grad-
ually populated and grow, but then be abruptly abandoned, in
which case you may combine different kinds of start and end
boundaries to account for this possibility. In fact, recent studies
have used varying kinds of boundaries to model different
kinds of archaeological phenomena, including the occupation
spans of settlements (e.g., Barrier 2017; Manning et al. 2019) or
the use of particular ceramic styles and length of regional
cultural traditions (e.g., Lulewicz 2018, 2019; Quinn et al. 2020).
These decisions must be made in close consideration with both
archaeological data and with comprehension of appropriate
middle-range theory relevant to the phenomena you are mod-
eling. In this case, simulations can be used to model the effects
of different assumptions you might have about the temporality
of particular phenomena and the nature of their emergence
or decline.

Incorporating Non-radiocarbon Dates
In some cases, you may have dates derived from other sources,
such as historical documentation or OSL determinations, that
you expect to include in your chronological models alongside
radiocarbon data. Simulations provide a way to assess the effects
of these alternative temporal datasets on a set of radiocarbon
dates. On the other hand, a simulated set of radiocarbon dates
may be used to assess the reliability of other scientifically derived
date ranges (e.g., OSL or TL dating). It has been demonstrated
that OSL dates, with their long age estimations and potentially
unreliable results, can significantly affect models produced using
primarily radiocarbon data (Su et al. 2020). Alternatively, OSL dates
may increase the fit of model expectations and a radiocarbon
dataset as an independently derived temporal estimation
(e.g., Pluckhahn and Thompson 2017).

Likewise, historical information such as documentation (e.g., town
abandonments, population movements, fort constructions) can
greatly increase the precision and resolution of model outputs,
especially in situations such as Scenario 2 where the location
along the calibration curve produces less than helpful results
(Thompson et al. 2019). Historical information is useful even when
modeled as TPQs or TAQs. For instance, a coin of known age
might serve as a useful terminus post quem (TPQ, or the date after
which) for modeling dates from a particular feature. Or, a journal
entry noting abandoned towns along a river may serve as a useful
TAQ when attempting to model village abandonments. Simula-
tions can be used to assess the effects of this kind of information
on a set of radiocarbon dates and the utility of this information
in addressing a particular research question (e.g., the date of a

TABLE 1. Model Iterations for Scenario 4.

Number of Dates per Stratum

Iteration
Strat
I

Strat
II

Strat
III

Strat
IV

Strat
V

Strat
VI

Strat
VII

1 0 0 1 1 0 0

2 0 0 2 2 0 0
3 0 0 3 3 0 0

4 0 0 4 4 0 0

5 0 0 5 5 0 0
6 0 1 5 5 1 0

7 0 2 5 5 2 0

8 0 3 5 5 3 0
9 0 4 5 5 4 0

10 0 5 5 5 5 0

11 1 5 5 5 5 1
12 2 5 5 5 5 2

13 3 5 5 5 5 3

14 4 5 5 5 5 4
15 5 5 5 5 5 5
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pit feature or the abandonment of a town) during the research
design or interpretation phases.

CONCLUSION
As the use of large-scale radiocarbon datasets increases and the
use of Bayesian chronological modeling becomes more com-
monplace, it is imperative that we develop a community of prac-
tice within the field of archaeology. We must employ frameworks
that provide the tools needed for evaluating the potential of a
given research design or the robustness of published results.
Using simulations is an effective way of standardizing approaches
to sampling strategies. Even when criteria for evaluating simula-
tions vary, the practice of running simulations, thinking through
criteria, and evaluating expected model outputs creates a more
transparent science. Transparency is key if we are going to build
models that are reproducible and that can be held to standards of
representativeness and robustness. Simulations force us to think
through the explicit relationships between our modeling decisions
and radiocarbon datasets. We have all heard the “garbage in,
garbage out” adage relevant to all models. Simulations provide
archaeologists a powerful way to keep garbage out of their
chronometric models.
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