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Abstract

Zinc oxide is known to produce a wide variety of nanostructures that show promise
for a number of applications. The use of electrochemical deposition techniques for
growing ZnO nanostructures can allow tight control of the morphology of ZnO through
the wide range of deposition parameters available. Here we model the growth of the
rods under typical electrochemical conditions, using the Nernst–Planck equations in
two dimensions to predict the growth rate and morphology of the nanostructures as
a function of time. Generally good quantitative and qualitative agreement is found
between the model predictions and recent experimental results.
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1. Introduction

Zinc oxide is a material known to form a wide variety of nanostructures that show
promise for applications in optoelectronics [10], sensors [1] and piezoelectronics [9].
As aqueous electrochemical deposition techniques often allow precise control of the
morphology of oxide nanostructures, there is interest in applying these methods to
ZnO [6]. Indeed there is evidence that electrochemical parameters such as the substrate
lattice parameter [13], the electrolyte [3, 4, 8], the amount of oxygen dissolved in
the electrolyte [11], the applied potential across the cell [14], and electrode pre-
treatment [3] can all influence the morphology of electrochemically deposited ZnO [6].
Electrochemical synthesis is also attractive because it has the scope for large-scale
industrial application [15] while being low-cost and readily accessible to researchers.

1MacDiarmid Institute, School of Chemical and Physical Sciences, Victoria University, Wellington, New
Zealand; e-mail: jademackay@gmail.com.
2Industrial Research Limited, Lower Hutt, New Zealand; e-mail: s.hendy@irl.cri.nz,
shaun.hendy@vuw.ac.nz.
c© Australian Mathematical Society 2009, Serial-fee code 1446-1811/2009 $16.00

395

https://doi.org/10.1017/S1446181109000157 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000157


396 J. R. Mackay, S. P. White and S. C. Hendy [2]
In

te
ns

ity
 (

ar
bi

tr
ar

y 
un

its
)

5 10
time (minutes)

15 20

In
te

ns
ity

 (
ar

bi
tr

ar
y 

un
its

)

5 10
time (minutes)

15 20

(a)  High (solid) and low (dashed) cathodic  
potential.

(b)  High (dashed) and low (solid) Zn2+ 

concentration.

FIGURE 1. Schematic representations of the results obtained from x-ray absorption measurements of ZnO
crystallite film growth with variation of (a) cathodic potential and (b) Zn2+ concentration.

In [6] ZnO nanostructured films were deposited by applying a cathodic potential
bias to an electrode substrate immersed in an electrolyte at 80 ◦C. The electrolytic
solution was composed of a small amount (5 mM) of zinc chloride (ZnCl2), 100 mM
calcium chloride (CaCl2), and dissolved molecular oxygen. Typically, the resulting
films consisted of an array of columnar hexagonal prismatic crystallites (“rods”) each
with a radius between 80 and 200 nm and length greater than 1000 nm, depending on
the deposition conditions. The crystallites were identified as having the P63mc crystal
structure [18], a hexagonal structure often referred to as “wurtzite”.

Subsequently, synchrotron radiation was used to measure the rate of ZnO deposition
in situ under various electrochemical conditions [7]. A schematic representation of the
observed growth rates is shown in Figure 1. These results show a clear difference
between the effect of varying the potential and that of varying concentration of zinc
ions. Both results show a short initial period (less than five minutes) of rapid growth
followed by a long period of slower growth. At a given zinc concentration an increase
in the magnitude of the cathodic potential resulted in no discernible difference in the
rapid growth curve segment, but yielded a dramatic increase in the slope of the second
phase curve segment. Increasing the zinc concentration at a given cathodic potential
resulted in a shortening of the duration of the initial phase but little change in the initial
growth rate, and only marginal differences between the growth rates of the second
phase.

Here our goal is to model the growth of the rods under conditions as close
as possible to the experiments described in [7] in terms of mass transport, using
the Nernst–Planck equations and electroneutrality, to predict the growth rate and
morphology of the nanostructures as a function of time. The information produced
is then used to interpret the observed growth dependence on the growth conditions and
the identification of critical parameters that control film morphology.
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2. Electrochemistry

In this section we give a brief summary of the basic electrochemical processes
necessary to model the system. Dissolved zinc ions (Zn2+) react with hydroxide
(OH−) that is generated at the electrode by reduction of oxygen (O2) with water (H2O)
to form the insoluble metal oxide ZnO. The formation of hydroxide occurs via the
oxygen reduction reaction:

O2 + 2H2O+ 4e−→ 4OH− E = 0.4 V/NHE (2.1)

which leads to the formation of ZnO by:

Zn2+
+ 2OH−
 ZnO+ H2O. (2.2)

Conditions that result in Zn metal formation

Zn2+
+ 2e−→ Zn E =−0.76 V/NHE

must be avoided. Thermodynamic considerations allow the determination of an
applied potential domain consistent with the above requirements. The potential
boundaries are found to be −0.76< Ec <+0.4 V/NHE where Ec is the applied
cathodic potential and NHE denotes reference to the normal hydrogen electrode. We
evaluate Reaction (2.2) on the crystal surfaces, and Reaction (2.1) at both the electrode
and the crystal surfaces.

3. Model

The transport of M aqueous charged species in an electric field under the constraints
of electroneutrality (

∑M
i zi ci = 0, where ci is the concentration and zi is the

valence of species i) yields the following nonlinear system of partial differential
equations [17]:

∂ci

∂t
= zi ui F∇ · (ci∇φ)+ Di∇

2ci (3.1)

∇ · (σ∇φ)= F
M∑
i

zi Di∇
2ci where σ = F2

M∑
i

z2
i ui∇ci . (3.2)

Here φ is the electric potential, F is Faraday’s constant, while ui and Di are the
mobility and diffusion coefficient of species i , respectively. The M equations (3.1)
are known as the Nernst–Planck equations. Implicit in this formulation is the
electroneutrality condition. Frequently, one would use the electroneutrality condition
to eliminate one species from the problem, and solve only the remaining M − 1
Nernst–Planck equations. However, because the CaCl2 buffer, which is not involved
in any of the electrode reactions, dominates the ionic strength of the electrolyte, we
simply solve the three Nernst–Planck equations for the three species involved in the
electrode reactions (Zn2+, O2 and OH−).
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FIGURE 2. Schematic of computational domain (white) and the relevant boundaries. Also shown are the
reactions considered at various boundaries.

To simplify the problem we have solved this system numerically on a two-
dimensional domain with periodic boundary conditions in the direction perpendicular
to the electrode as shown in Figure 2. This amounts to considering the growth of an
array of infinitely long ridges rather than rods. In this study we have chosen to include
only the full chemical reactions necessary for ZnO deposition, omitting intermediate
reactions. Furthermore, we have constrained them to occur only at the appropriate
boundaries, not in the electrolyte. In addition, periodic boundary conditions are
applied at the domain sides to simulate an array of growing nanostructures, and bulk
electrolyte concentrations are imposed at the top of the computational domain.

The precise mechanistic details of how the ZnO forms and the solution composition
(Znx OyHz complexes are known to exist) are still only known for a few specific con-
ditions [16]. The model transport–reaction scheme is shown in Figure 3. The scheme
depicts fluxes with vertical arrows and electrochemical reactions with horizontal
arrows, and summarizes the paths that the bulk species must take for ZnO to be formed.

The details of both the chemical reactions (2.1) and (2.2) can be quite complex.
Firstly, the oxygen reduction reaction is an electrode reaction, and therefore is
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FIGURE 3. The constrained transport–reaction scheme for the species involved in ZnO formation with
Zn2+/OH− reaction fixed at the electrode. Again (bulk) refers to the solution composition at great distance
from the growing film, (el) is the electrode region, (rxn) is the region where Zn2+ and OH− meet, and
(hkl) refers to a particular ZnO crystal facet. Transport is denoted with vertical arrows and chemical
reactions with horizontal arrows.

influenced by the electrode overpotential. The accepted treatment is to use the Butler–
Volmer equation under the assumption of low field conditions [19]. However, in
the ZnO system at the potentials we are investigating, the oxygen reduction reaction
proceeds very close to the diffusion limited regime [5]. Therefore, in this study we
assume the [O2]electrode = 0 as the electrode boundary condition for O2.

The reaction and incorporation of ZnO units into the growing crystal is also a
complex process which involves the surface charge of the growing crystal, the electric
double layer, the dynamics of the crystal surface features (such as steps and kinks), and
the multitude of intermediate steps between adsorption and inclusion. In this study we
use a simple scaling rate law of the type

Rhkl = αhkl

(
1−

Q

K

)
,

where Rhkl is the rate of inclusion of ZnO units in mol s−1, αhkl is the surface specific
reaction–inclusion rate constant, and Q is the reaction quotient corresponding to the
reverse of Reaction (2.2),

Q = [Zn2+
][OH−]2,

where square brackets denote concentrations. The magnitude of the rate coefficients
αhkl can be estimated to match the experimental growth rates in [7]. Note that the
forward form

Q =
1

[Zn2+][OH−]2

is problematic if any concentration is zero. Finally, K is the equilibrium (dissolution)
constant. It is easy to see that when Q > K ⇒ R < 0 the rate of production of Zn2+

and OH− is negative, that is, ZnO is produced. Conversely when Q < K ⇒ R > 0 the
rate of production of Zn2+ and OH− is positive and ZnO dissolution is favoured.
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In the wurtzite structure, ZnO predominantly exhibits two families of crystal facets:
the {0001} (which is polar) and the {011̄0} (which is nonpolar). The anisotropy of
the different crystal surfaces is modelled here by assigning different values of αhkl for
each facet. Furthermore, changes in the applied potential will also alter the reaction
rates at the different crystal facets, an effect we mimic in this paper by varying the rate
constants αhkl . The boundary conditions for the ionic flux of species i at the (hkl)
crystal facet are then given by

Ahkl Enhkl ·

(
EJi + ci Evhkl

)
= Rhkl

where Enhkl is the unit normal to the facet, vhkl is the velocity of the facet, Rhkl is the
rate of ZnO formation and Ahkl is the facet area.

The model parameters Di and K can be found in the literature. We have
calculated K to be 10−7.65 from the Gibbs free energy of formation [2]. The
diffusion coefficients of Zn2+ (1.4× 10−5 cm2 s−1) and OH− (5.3× 10−5 cm2 s−1)
were obtained from the reference literature [12] and DO2 (3.4× 10−5 cm2 s−1) was
obtained from the electrochemical literature [5]. The magnitude of the αhkl parameters
was chosen so that the simulations grew at approximately the rates observed in
experiments; nonetheless, these parameters were varied in order to understand their
effect on the growth regimes.

4. Numerical method

We used the method of finite differences with a rectangular mesh to solve the
system of equations for the three reactive species. Central differences were used for all
differential operators, giving second-order spatial accuracy on the uniform mesh. To
reduce computational overhead we used a nonuniform mesh away from the growing
crystal (shown in Figure 4). The mesh rules used were

{
xm = (m − 1)1x, m < mc,

xm = xm−1 + 2am−11x, m > mc,{
yn = (n − 1)1y, n < nc,

yn = yn−1 + 2an−11y, n > nc,

where1x and1y are the x and y fine grid increments, mc and nc are the indices after
which the grid becomes nonuniform and an−1 =

∑n−2
k=0 ak and am−1 =

∑m−2
k=0 ak are

responsible for nonuniformity. In the subsequent calculations, critical indices mc and
nc were set to 5 which corresponds to 25 nm of fine mesh surrounding the crystallite.
The mesh was updated when the amount of material having crossed the boundary
exceeded the amount of material encased in one fine mesh increment. The new solution
vector is acquired by linear interpolation (weighted averaging) of the four bounding
points from the previous mesh.
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FIGURE 4. Illustration of a nonuniform mesh. Here the outer boundary corresponds to the artificial
x+1 and y+1 points used to evaluate Neumann-like boundary conditions, the dark rectangle inside the
boundary is the NP domain boundary and the filled rectangle represents the crystal. The dark gridlines
are the present grid, and the fainter grey lines indicate the grid belonging to the previous interpolant.

Dirichlet conditions were implemented indirectly as the central average of adjacent
neighbours, resulting in a boundary condition with very similar structure to a Neumann
boundary condition. For example, the Dirichlet condition

c0 = p

was approximated as the central average of its neighbours

c0 ≈
c−1 + c+1

2
,

where c−1 is a ghost point outside the physical domain. The boundary condition
c0 = p is now evaluated at c−1 by rearranging (c−1 + c+1)/2= p to c−1 = 2p − c+1,
allowing all boundary conditions to be coded with the same structure. This method
also ensures that the boundary condition is evaluated at same the point for both
Neumann and Dirichlet boundary conditions. Comparison of results obtained from
the direct and indirect Dirichlet implementations found the solutions to be identical,
and a marginal improvement in convergence for the indirect method.

To move forward in time we used Newton’s algorithm to iteratively solve the
implicit time discretized difference equations. We used the Cranck–Nicolson time
discretization for the Nernst–Planck equation (3.1) and the fully implicit limit for the
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charge continuity equation (3.2). The resulting system of linear equations was solved
using an LU-decomposition (implemented with the LAPACK dgesv routine). The
solution was then used as the guess for the next time step. We used a time increment of
1 s, and a grid increment of 5 nm for the uniform mesh region. The spatial domain has
real space dimensions of height between 500 and 1000 nm and width between 40 and
100 nm. A typical mesh consists of around 1600 points. However, as the crystal grows
into the domain this number is reduced. We observe the desired quadratic convergence
of Newton’s method and, using an appropriate error criterion, we typically obtained
convergence within two to three iterations.

5. Results

Our goal is to relate the individual facet growth behaviour to the experimentally
observed growth profiles. The real time duration of our simulations is approximately
20 minutes or less, with the simulations being stopped when the neighbouring
crystallites meet. Our first simulations sought to locate the magnitude of the facet rate
constants observed experimentally. We found that use of the mass transport limited
extreme for ZnO formation at the lateral facet,

[Zn2+
]side = 0,

resulted in a phase one growth curve very similar to the experimental measurements.
The result demonstrates the important role of mass transport in determining the
outcome of the crystallization. Since the mass transport limited lateral growth yields a
good match to the phase one growth it provides a good basis for further investigation
of the second growth phase.

Further simulations were undertaken investigating the effect of varying the rate of
ZnO formation on the top crystal surface whilst keeping the lateral growth rate fixed at
the mass transport limited rate. Applying the mass transport limited growth condition
to the lateral boundary gives us a phase one growth curve consistent with experiment.
Figure 5 shows the growth profiles obtained using αtop = 1× 10−8 mol s−1, αtop =

2× 10−8 mol s−1, αtop = 5× 10−8 mol s−1, αtop = 1× 10−7 mol s−1, and the mass
transport limited ZnO formation condition ([Zn2+

]face = 0). Faster vertical growth is
observed for greater top-face reaction rates. The lateral growth contribution to phase
two growth is greater for the slower top-face rates, as we might expect due to the
greater abundance of reactants associated with slower consumption at the top face.
However, growth at the top dominates during phase two growth, so that the reduced
lateral growth only slightly reduces the volumetric growth rate. It is apparent that
there is strong similarity with the experimental results. In particular, the location of
growth mode transition and the differing slopes of the second phase growth. However,
despite using lateral mass limited growth which yields the sharpest possible transition
achievable by our model we observe deviation in the first growth phase not present
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FIGURE 5. Simulated growth profiles of ZnO under mass transport limited lateral growth conditions for
a variety of αtop values. Shown are simulation results for (top) crystallite growth, (middle) crystal width
and (bottom) height decomposed simulation results for crystallite growth. The traces show that greater
αtop results in slowed lateral growth.
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FIGURE 6. Concentration fields for Zn2+ and OH− shortly before growth mode transition at time t = 100
s for αtop = 1× 10−7 mol s−1. The scale bars both have units of mol L−1.

in the experimental measurements, which exhibit a very clear transition between the
two growth phases. This may be due to the two-dimensional nature of our simulation
which does not weight the contribution of the side growth as strongly as it would
be in the experiments. Figure 6 shows the concentrations of Zn2+ and OH− shortly
before the switch in growth mode. We observe that the lateral growth has virtually
ceased due to the consumption of all Zn2+ and OH− and the inter-rod channel is
too small for significant Zn2+ or O2 replenishment. It seems likely that consumption
of Zn2+ between the rods may also be the cause of the two-phase growth seen
experimentally [7].

6. Discussion and conclusion

We have shown that the model developed here reproduces the experimentally
observed two-mode growth behaviour and the time at which the transition between
modes occurs. Our simulation using the diffusion limited oxygen reduction reaction
condition on both the electrode and crystallite faces is close enough to the experimental
result for us to be confident that the numerical model is capable of replicating
experiment and predicting new behaviour under different conditions. Generally
good quantitative agreement is found between the model predictions and recent
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experimental results, suggesting that the two-mode growth seen in the experiments
is caused by a transition from three-dimensional to one-dimensional growth as the
Zn2+ is consumed between the rods.

Acknowledgements

Funding was provided in part by the New Zealand Foundation for Research, Science
and Technology under contract C08X0409. Unfortunately Stephen White passed away
in 2006 before the bulk of this work was complete. Nonetheless, Steve played a vital
role in the formulation and methodology used in this paper. Without his contribution
this work would not have been possible.

References

[1] M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, “Field-effect transistors based on single
semiconducting oxide nanobelts”, J. Phys. Chem. B 107 (2003) 659–663.

[2] G. Aylward and T. Findlay, SI chemical data, 3rd edn (Wiley, Brisbane, 1994).
[3] B. Canava and D. Lincot, “Nucleation effects on structural and optical properties of

electrodeposited zinc oxide on tin oxide”, J. Appl. Electrochem. 30 (2000) 711–716.
[4] D. Gal, G. Hodes, D. Lincot and H.-W. Schock, “Electrochemical deposition of zinc oxide films

from non-aqueous solution: a new buffer/window process for thin film solar cells”, Thin Solid
Films 361 (2000) 79–83.

[5] A. Goux, T. Pauporte and D. Lincot, “Temperature effects on ZnO electrodeposition”, Electrochim.
Acta 50 (2005) 3168–3172.

[6] B. Illy, B. A. Shollock, J. L. MacManus-Driscoll and M. P. Ryan, “Electrochemical growth of ZnO
nanoplates”, Nanotechnology 16 (2005) 320–324.

[7] B. Ingham, B. N. Illy, J. R. Mackay, S. P. White, S. C. Hendy and M. P. Ryan, “In situ synchrotron
X-ray absorption experiments and modelling of the growth rates of electrochemically deposited
ZnO nanostructures”, Mater. Res. Soc. Symp. Proc. 1017 (2007) DD12–DD16.

[8] M. Izaki and T. Omi, “Transparent zinc oxide films prepared by electrochemical reaction”, Appl.
Phys. Lett. 68 (1996) 2439–2440.

[9] M. Kadota and T. Miura, “Shear bulk wave transducer made of (112̄0)-plane epitaxial ZnO film
on r-sapphire”, Japan J. Appl. Phys. 41 (2002) 3281–3284.

[10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, “Nanowire dye-sensitized solar
cell”, Nature Mater. 4 (2005) 455–459.

[11] J. Lee and Y. Tak, “Electrodeposition of ZnO on ITO electrode by potential modulation method”,
Electrochem. Solid State Lett. 4 (2001) C63–C65.

[12] D. R. Lide (ed), CRC handbook of chemistry and physics, 86th edn (CRC Press, Boca Raton, FL,
2004).

[13] R. V. A. Liu, E. Bohannan, T. Sorensen and J. Switzer, “Epitaxial electrodeposition of ZnO
nanopillars on single-crystal gold”, Chem. Mater. 13 (2001) 508–512.

[14] B. O’Regan, V. Sklover and M. Gratzel, “Electrochemical deposition of smooth and
homogeneously mesoporous ZnO films from propylene carbonate electrolytes”, J. Electrochem.
Soc. 148 (2001) C498–505.

[15] R. K. Pandy, S. N. Sahu and S. Chandra, Handbook of semiconductor electrodeposition, 1st edn
(Marcel Dekker Inc., New York, 1996).

[16] S. Peulon and D. Lincot, “Cathodic electrodeposition from aqueous solution of dense or open-
structured zinc oxide films”, Adv. Mater. 8 (1996) 166–170.

[17] S. P. White, G. J. Weir and N. J. Laycock, “Calculating the chemical concentrations during the
initiation of crevice corrosion”, Corros. Sci. 42 (2000) 605–629.

https://doi.org/10.1017/S1446181109000157 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000157


406 J. R. Mackay, S. P. White and S. C. Hendy [12]

[18] M. H. Wong, A. Berenov, X. Qi, M. J. Kappers, Z. H. Barber, B. Illy, Z. Lockman, M. P. Ryan and
J. L. MacManus-Driscoll, “Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil”,
Nanotechnology 14 (2003) 968–973.

[19] E. Yeager, J. O’M. Bockris, B. E. Conway and S. Sarangapani (eds), Comprehensive treatise of
electrochemistry, 1st edn, Volume 6 (Plenum Press, New York, 1983).

https://doi.org/10.1017/S1446181109000157 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000157

