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Marko MÄKYNEN, Bin CHENG, Markku SIMILÄ
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ABSTRACT. We have studied the accuracy of ice thickness (hi) retrieval based on night-time MODIS
(Moderate Resolution Imaging Spectroradiometer) ice surface temperature (Ts) images and HIRLAM
(High Resolution Limited Area Model) weather forcing data from the Arctic. The study area is the Kara
Sea and eastern part of the Barents Sea, and the study period spans November–April 2008–11 with 199
hi charts. For cloud masking of the MODIS data we had to use manual methods in order to improve
detection of thin clouds and ice fog. The accuracy analysis of the retrieved hi was conducted with
different methods, taking into account the inaccuracy of the HIRLAM weather forcing data. Maximum
reliable hi under different air-temperature and wind-speed ranges was 35–50 cm under typical weather
conditions (air temperature <–2088C, wind speed <5m s–1) present in the MODIS data. The accuracy is
best for the 15–30 cm thickness range, ��38%. The largest hi uncertainty comes from air temperature
data. Our ice-thickness limits are more conservative than those in previous studies where numerical
weather prediction model data were not used in the hi retrieval. Our study gives new detailed insight
into the capability of Ts-based hi retrieval in the Arctic marginal seas during freeze-up and wintertime,
and should also benefit work where MODIS hi charts are used.

INTRODUCTION
In the Arctic Ocean the ocean–atmosphere heat, momen-
tum and gas exchanges are controlled by the sea-ice
thickness distribution. Thin ice with a thickness of <0.5m
produces strong heat and salt fluxes and affects the weather
and deep water circulation in the Arctic. Spaceborne remote
sensing of sea-ice thickness can be conducted based on
Archimedes’ law and satellite radar or laser altimeter
measurements of freeboard (Laxon and others, 2003; Kwok
and Rothrock, 2009). However, this method results in large
relative errors for thin ice (Laxon and others, 2003). Passive
microwave radiometer data at frequencies of 19, 37 and
85GHz have been used to estimate thickness of thin ice up
to 10–20 cm based on correlation between ice surface
salinity (i.e. dielectric properties) and ice thickness (Martin
and others, 2004; Nihashi and others, 2009; Singh and
others, 2011; Tamura and Ohshima, 2011). However,
Nihashi and others (2009) showed that at least 37GHz
data cannot detect thin ice when that ice is covered with
snow. Kaleschke and others (2012) demonstrated that lower-
frequency L-band radiometer data from the Soil Moisture
and Ocean Salinity (SMOS) satellite can be used to retrieve
sea-ice thickness up to 0.5m. The major drawbacks are the
coarse resolution of the radiometer data, grid size of 12.5–
35 km, which prevents detection of smaller leads and
polynyas, and the currently poorly known effect of snow
cover on the thin-ice thickness estimation.

Correlation between sea-ice thickness and synthetic
aperture radar (SAR) data has also been studied. For the
Baltic Sea it was demonstrated that thickness estimation of
deformed ice under dry snow conditions is possible through
a statistical relationship between the ice freeboard and the
radar backscatter (Similä and others, 2010). The variance of
the mean freeboard, i.e. large-scale surface roughness,
increases with increasing mean freeboard, and, as the
surface roughness increases, the backscatter also increases.
Nakamura and others (2006) found good correlation

between the L- (0.87) and C-band (0.80) co-polarization
ratio and the thickness of undeformed ice in the Sea of
Okhotsk. Good correlation has also been found between
Antarctic first-year pack-ice and fast-ice thickness and the
C-band co-polarization ratio (Nakamura and others, 2009).
The co-polarization ratio has little sensitivity to ice surface
roughness and is related to variations in salinity, i.e. ice
surface dielectric constant, that can be caused by changes in
ice thickness (Wakabayashi and others, 2004). Airborne
C-band polarimetric SAR data together with a theoretical
backscattering model have been used to estimate ice
thickness in the 0–10 cm range (Kwok and others, 1995).
SAR-based methods for thin-ice thickness retrieval are still
experimental, and no operational products are yet available.

The final option for spaceborne thin-ice thickness (hi)
estimation is based on the ice surface temperature, Ts, from
satellite thermal imagery and the ice surface heat balance
equation (Yu and Rothrock, 1996). Major assumptions here
are that the heat flux through the ice and snow is equal to
the atmospheric flux, and snow and ice temperature profiles
are linear. This method is based on the physical relationship
between Ts and hi and is well established in the literature. In
addition, the microwave radiometer hi estimation methods
at frequencies of 19, 37 and 85GHz are based on regression
between the radiometer data and Ts-based hi. The spatial
resolution of Ts-based hi charts is �1 km, which is fine
enough for detection of all polynyas and leads with
equivalent width. Drawbacks here are the need for external
atmospheric forcing data and cold cloud-free conditions.

Here we study hi retrieval using Moderate Resolution
Imaging Spectroradiometer (MODIS) thermal imagery, and
conduct detailed analysis on the accuracy of the retrieved hi
under different air temperature (Ta) regimes in the Arctic. The
study area includes the Kara Sea and the eastern part of the
Barents Sea (Fig. 1). The external forcing data for solving the
surface heat balance come from a numerical weather
prediction (NWP) model, HIRLAM (High Resolution Limited
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Area Model) (Källen, 1996; Undén and others, 2002). The hi
estimates are obtained only from night-time MODIS data.
Thus, the uncertainties related to the effect of the solar
shortwave radiation and surface albedo are excluded. Snow
vs ice thickness parameterization needed in the hi retrieval
was estimated from climatology and Russian Sever data
(NSIDC, 2004). The cloud masking of the MODIS data was
conducted using three spectral cloud tests and manual
methods. Our MODIS hi chart collection spans three winters
(November–April) in 2008–11 with 199 charts.

The accuracy of the retrieved hi is studied in the following
ways:

1. Using estimated or guessed standard deviations and
covariances of the input variables to the hi retrieval, the
hi uncertainty is estimated with the Monte Carlo method.
The accuracy of the HIRLAM data is studied by
comparing them to coastal weather station data.

2. Thickness charts from consecutive days are compared to
each other. Large differences are mainly due to the
cloud-masking errors and HIRLAM data inaccuracies.

Method 2 has not been used in previous studies. Un-
fortunately, we do not yet have any in situ thickness data for
the hi validation. As another new method, the typical
maximum reliable hi under different Ta ranges is determined
using not only the results from (1), but also the empirical
mean Ta � Ts vs hi curves, which show how rapidly hi
changes as a function of a slight change in Ts or Ta. We
compare our hi accuracy results and limits for the maximum
reliable hi to previous studies.

Unlike some previous studies (e.g. Yu and Rothrock,
1996; Tamura and others, 2006; Wang and others, 2010),
we use here for the first time a large MODIS dataset (nearly
200 swath images) combined with numerical weather
forcing data (HIRLAM) for the hi retrieval and accuracy
analysis of hi. We obtain uncertainty values for the weather
forcing data by comparing them to the in situ weather data
instead of using ‘best-guess’ values as in Yu and Rothrock

(1996) and Wang and others (2010). For the first time, we
present hi uncertainties and maximum reliable hi values
under different Ta and wind-speed ranges. In determining the
maximum hi we take into account the sensitivity of the
retrieved hi to a Ts or Ta change, which has not been done in
previous studies. Our study gives new detailed insight into
the capability of Ts-based hi retrieval in the Arctic marginal
seas during freeze-up and wintertime, and should benefit
work on microwave-radiometer-based thin-ice thickness
retrieval where Ts-based hi charts are used for algorithm
development and validation.

DATA AND METHODS
In the following, datasets and methods used in the ice
thickness chart calculation are described.

MODIS data
MODIS spectrometer data were acquired from NASA’s
Warehouse Inventory Search Tool (WIST) service over our
study area (Fig. 1) under cold cloud-free night-time
conditions in November–April 2008–11. The MODIS data
consist of level 1B calibrated radiances at 1 km resolution
(MOD02) and level 1A geolocation fields (MOD03). We
chose to use only Terra MODIS data, as their acquisition
times match those of Envisat advanced SAR (ASAR) Wide
Swath Mode (WSM) images which will be combined with
the MODIS data in a multisensor sea-ice thickness retrieval
study by the authors. The MODIS acquisition times were
07:00–08:50 UTC (descending orbits) and 15:15–17:15
UTC (ascending orbits). After 15 March, only the afternoon
MODIS data are utilized, as the sun zenith angle for the
morning data becomes too low. After April, air temperature
becomes too high for accurate hi retrieval, and the sun
zenith angle for the afternoon data becomes too low. The
MODIS datasets with large cloud-free areas were visually
identified using NASA’s MOD29 product (MODIS/Terra Sea
Ice Extent 5-Min L2 Swath 1 km) (Hall and others, 2007) and
MODIS thermal RGB (red, green, blue) images. The total
number of MODIS datasets here is 199. The MODIS data
were rectified to a polar stereographic coordinate system
(mid-longitude 63E, true-scale latitude 70N) with 1000m
pixel size using NASA’s MODIS Swath Reprojection Tool.

MODIS RGB images
Two different RGB images were calculated from MODIS
data: (1) brightness temperature bands 20 (red), 31 (green)
and 32 (blue) (3.750, 11.030 and 12.020 mm), and (2) band
difference 32–31, difference 31–22 and band 31 (this
combination is used for the Meteosat SEVIRI (Spinning
Enhanced Visible and Infrared Imager) instrument and is
called NightMicrophysical). Both images are used in a
manual cloud-masking procedure.

MODIS cloud mask
We used the following method for the cloud masking of
night-time MODIS data. Based on a study of MODIS cloud
masking (Frey and others, 2008) and our visual analysis of
different cloud tests for the night-time data, we selected
three cloud tests: (1) 11–3.9 mm brightness temperature
difference (BTD) for low clouds, (2) 3.9–12 mm BTD for high
clouds, and (3) 6.7 mm brightness temperature (BT) for high
clouds. The thresholds for the tests were determined using
empirical BT and BTD data for clouds and cloud-free sea ice

Fig. 1. Barents and Kara Seas study area for MODIS-based ice
thickness retrieval. Rectangle shows the area, and dots are weather
stations. Polar stereographic coordinates with mid-longitude of 63E.
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and open water. The cloud tests are performed using 10� 10
pixel blocks (10 km�10 km). If 10% or 20% of the block
pixels are cloudy according to a cloud test, the block is
labeled as cloudy. Next, morphological operations are
performed to remove small isolated block groups (cloudy)
and to fill isolated small holes (cloud-free). The results of the
individual cloud tests are combined so that if a block is
cloudy according to any cloud test then it is also cloudy in
the combined mask. Clear restoration is conducted using
11 mm brightness temperature (BT11) by reasoning that if
under cold conditions BT11 is >272K it should represent
cloud-free open water or very thin ice. After that, filling of
the small holes is again conducted. Next, the following
manual editing procedures can be conducted: filling holes,
removing erroneous cloud mask elements, and masking
arbitrary polygonal areas as cloudy or clear. The manual
editing is conducted using the two RGB images described
above. Finally, the Ts image is calculated and another round
of manual cloud-mask editing is conducted using the Ts
image and the two RGB images.

Our approach to the MODIS cloud masking yields a mask
that is much less ‘grainy’ than a typical pixel-basedmask (e.g.
in the MOD29 product (Hall and others, 2007)). In addition,
in our cloud mask, mask errors due to the MODIS sensor
striping effect are not present. However, distinguishing clear
sky from clouds is nowhere more difficult than in winter
night-time conditions (Frey and others, 2008), and there are
likely cases of unmasked thin clouds and fog in the Ts images.

MODIS ice surface temperature
The MODIS Ts under clear-sky conditions is obtained with a
split-window technique, where ‘split-window’ refers to BTD
in the 11–12mm atmospheric window (Hall and others,
2004). This technique allows for the correction of atmos-
pheric effects primarily due to water vapor. The root-mean-
square error (RMSE) of Ts is at least 1.3 K (Hall and others,
2004).

HIRLAM
HIRLAM is a short-range NWP model (Källen, 1996; Undén
and others, 2002), developed by an international consortium
of 11 European countries (http://hirlam.org). HIRLAM
products are not routinely available over the Arctic Ocean,
so we performed dedicated HIRLAM experiments over the
research domain (Fig. 1) during November–April 2008–11.
The experiments were run with the HIRLAM version
7.3newsnow, which contained improved surface parameter-
izations, including updated schemes for predicting snow
and ice. Short forecasts with a lead time up to 9 hours were
initialized every 6 hours (00, 06, 12 and 18 UTC). The
horizontal resolution of the experiments was 7.5 km, and the
model had 60 levels in the vertical. Snow depth, sea surface
temperature (SST) and ice cover analyses as well as soil
temperature and moisture data assimilation were performed
using optimal interpolation, based on SYNOP observations
and European Centre for Medium-Range Weather Forecasts
(ECMWF) SST/ice-cover analyses. Over our research do-
main, an average of seven SYNOP stations, located on the
coastline and islands, reported surface weather observations
every 3 hours. The HIRLAM upper-air analysis was replaced
by an interpolation of the ECMWF analyses, which were also
used as lateral boundaries for the HIRLAM experiment.

In the MODIS Ts-based hi retrieval, the following
HIRLAM model parameters are used: air temperature at

2m height, wind speed at 10m, relative humidity at 2m and
downward longwave radiation. The parameters at 2 and
10m heights are diagnostic variables obtained from the
HIRLAM lowest-level (�32m) prognostic variables. In our
polar stereographic coordinate system (mid-longitude 63E,
true-scale latitude 70N) the HIRLAM parameters were
interpolated to 20 km gridpoint spacing and to temporal
resolution of 1 hour. For the hi retrieval the HIRLAM
parameters were further interpolated to the MODIS 1 km
pixels using the nearest-neighbor method.

Model relating sea-ice surface temperature and level
ice thickness
Level ice thickness from Ts can be estimated on the basis of a
surface heat balance equation. Major assumptions here are
that the heat flux through the ice and snow is equal to the
atmospheric flux, and temperature profiles are linear in ice
and snow (Yu and Rothrock, 1996). The heat balance
equation at the top surface (whether sea ice or snow) during
the night-time is (Yu and Rothrock, 1996)

Fup
l þ Fdn

l þ Fs þ Fe
� �

þ Fc ¼ Ft þ Fc ¼ 0, ð1Þ

where Fup
l and Fdn

l are upward and downward longwave
radiative fluxes, Fs and Fe are turbulent sensible and latent
heat fluxes, and Fc is conductive heat flux approximated as

Fc ¼ � Tw � Tsð Þ, ð2Þ

� ¼ kiks
kshi þ kihs

, ð3Þ

where � is the thermal conductance of the snow/ice sheet, ki
and ks are heat conductivities of ice and snow, hs is snow
thickness and Tw is the freezing temperature of sea water
approximated as Tw ¼ �0:054Sw, where Sw is the salinity of
sea water. In Eqn (1), fluxes entering the top surface are
positive (Fdn

l always), and fluxes leaving the surface are
negative (Fup

l always).
Based on the known Ts, the surface heat fluxes and

parameterized hs, ki and ks, the estimation of hi can be carried
out. Fup

l is obtained on the basis of MODIS-derived Ts
assuming constant sea-ice thermal emissivity, ", of 0.98, and
Fdn
l is from the HIRLAM model. Fs and Fe are calculated as in
Yu and Rothrock (1996) where the bulk transfer coefficients
for heat and evaporation, Cs and Ce, are assumed to be 0.003
for very thin ice and 0.00175 for thick ice. For ks we assume a
constant climatological value of 0.3WmK–1 (Sturm and
others, 1997). ki is calculated using Untersteiner’s (1964)
equation and estimating ice bulk temperature, Ti, with Ts as
was done by Yu and Rothrock (1996). ki also depends
somewhat on bulk ice salinity, Si. According to the following
general expression (Kovacs, 1996),

Si ¼ 4:606þ 91:603=hi, ð4Þ
Si decreases from 13.8 ppt to 6.4 ppt when hi increases from
10 cm to 50 cm. To simplify the hi retrieval and to take into
account that Si is in reality a complex function of sea-water
salinity, ice growth rate and desalination processes, we
always use in the ki calculation an Si value for 30 cm thick ice
(7.7 ppt). The variation of ki as a function of Si is very small
(<10%) when Ti < 268K and hi > 10 cm. When Ts is close to
Tw (case of very thin ice under cold conditions) then ki
decreases rapidly as a function of Ts. Thus, ki is assumed to be
constant when Ts < 270K.
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For the hi retrieval, a relationship between hs and hi is
needed. If it is assumed to be linear of the form

hs ¼ b1hi ð5Þ
then hi is calculated from

hi ¼ ks
ks þ b1ki

H, ð6Þ

where H is so-called thermal ice thickness (effect of snow
cover excluded),

H ¼ ki Ts � Twð Þ
Ft

: ð7Þ

There are a number of simplifications/approximations in the
above approach, in order to minimize the difficulties in
retrieving hi. The accuracy of the approach is highly
sensitive with respect to the model parameterizations and
the accuracy of the forcing data. In a previous study in the
Arctic it was assessed that the hi uncertainty increases from
27% for thin ice (20 cm) to 50% for hi around 1m during
winter night-time conditions (Yu and Rothrock, 1996). The
largest uncertainties came from Fdn

l and Fs. It was concluded
that Ts-based hi data can resolve the regional and seasonal
variations in thin ice. A more recent study, utilizing the same
method of hi retrieval as Yu and Rothrock (1996) with the
Advanced Very High Resolution Radiometer (AVHRR) Polar
Pathfinder extended (APP-x) product (25 km pixel size),
showed hi estimation capability up to �2.8m with an
accuracy of >80% (Wang and others, 2010). Passive
microwave sea-ice concentration data were used to correct
Ts by removing the Tw contribution from overall ice-covered
pixel temperature. During the night-time the largest error
sources were hs, cloud amount (related to Fdn

l ) and wind
speed. Yu and Rothrock (1996) used uncertainty estimates of
the heat fluxes in the hi accuracy analysis, but Wang and
others (2010) used the variables of the heat fluxes. Neither
study used NWP model data in the hi retrieval. Ta was
estimated as Ts average over a large area plus a climato-
logical constant, and wind speed from the geostrophic wind.
Tamura and others (2006) retrieved hi using night-time
AVHRR and ECMWF NWP data over an Antarctic polynya.
The standard deviation of the difference between the
retrieved hi and in situ data (max hi 0.3m) was only 2 cm.
In addition, AVHRR and ship-borne radiation thermometer-
based hi retrievals matched each other.

In general, the hi accuracy decreases as hi increases, and
the accuracy and the maximum retrievable hi decreases as
weather gets warmer, as Ts then saturates at smaller hi and
the Ts contrast between different ice thicknesses decreases.
The above approach for Ts-based hi retrieval is only valid for
smooth thermodynamically grown ice.

Coastal weather station data
There are seven coastal weather stations in our study area
(Fig. 1). Weather observations were conducted at 0, 6, 12
and 18h UTC. Air temperature at 2m, wind speed at 10m
and relative humidity at 2m are used to study the accuracy
of the HIRLAM model data.

RESULTS AND DISCUSSION
The construction of the MODIS Ts-based ice thickness chart
starts with the determination of a statistical relationship
between hs and hi. Next, the accuracy of the HIRLAM

forcing data needed in the MODIS Ts-based hi retrieval is
studied. This is followed by presentation of the MODIS hi
charts, and detailed accuracy analysis of the hi charts with
different methods. Typical maximum reliable hi is
also estimated.

Statistical relationship between snow and ice
thickness
Yu and Rothrock (1996) used an empirical relationship
between hs and hi by Doronin (1971) in retrieving hi from
the AVHRR data:

hs ¼ 0 for hi < 5 cm

hs ¼ 0:05 hi for 5 cm � hi � 20 cm

hs ¼ 0:1hi for hi > 20 cm:

ð8Þ

We utilize snow and ice thickness data from the Soviet
Union’s airborne Sever expeditions (NSIDC, 2004) con-
ducted in 1950–89 to determine the relationship between hs
and hi. The Sever data represent late-winter conditions
before the start of sea-ice melt. To estimate the hs vs hi
relationship, we use only the so-called runway data up to
hi = 100 cm, which represent level ice, from a geographical
area extending 200 km from the borders of our study area
(Fig. 1). Data acquired after the end of April are not used, as
this time period is not included in the MODIS datasets. The
total number of data points is 322. The data amount for
hi < 40 cm is very small, only 23 data points. The linear
regression fit to the data is

hs ¼ 0:049hi þ 3:3cm: ð9Þ
The coefficient of determination, r2, is very small, only 0.04,
but the p-value is 0.00, due to the large data scatter.
Typically hs < 10 cm regardless of hi. Using Eqn (9),
hs = 4.3 cm when hi = 20 cm, whereas Eqn (8) yields hs of
only 1 cm. For ice thinner than 40 cm, Eqn (9) likely gives
snow covers that are too thick.

Due to the small number of data and the large scatter of
data points when hi �35 cm, these data points probably do
not have a large effect on the regression coefficients, as the
few data points effectively cancel out each other’s influence
on the regression line. This was verified by fitting the
regression line to data points with hi >35 cm. The results
were equal to Eqn (9), indicating a robust fit to the dataset,
particularly in this ice thickness range. Consequently, we
combine the Sever data and Eqn (8) as follows: (1) the Sever
data are divided into 10 cm thickness bins centered from
30 cm to 90 cm, and the mean hs and hi are calculated;
(2) at hi values of 0, 10 and 20 cm, Eqn (8) is used; and
(3) linear regression is fitted to these data points (Fig. 2). The
regression fit is

hs ¼ 0:09hi þ 0:1cm: ð10Þ
The constant term is so small that it can be dropped. When
hi < 20 cm, Eqn (10) likely gives snow cover that is too thick,
especially for polynyas. Thus, for this thickness range we
use Eqn (8), yielding the following final hi vs hs relationship

hs ¼ 0 for hi < 5 cm

hs ¼ 0:05hi for 5 cm � hi � 20 cm

hs ¼ 0:09hi for hi > 20 cm:

ð11Þ

The only difference between Eqns (11) and (8) is a 10%
smaller slope term in Eqn (11) when hi > 20 cm.
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HIRLAM accuracy
The accuracy of the HIRLAM air temperature, TH

a , wind
speed, uH, and relative humidity, RhH, are studied by
comparing them to the coastal weather station data (Tw

a , uw,
Rhw) from seven stations (Fig. 1). We do not have in situ data
to make a comparison for the HIRLAM Fdn

l . In the
comparison the HIRLAM data (1 hour time-step) from the
gridpoints over the ocean closest to the weather stations and
coincident with the weather station data (6 hour time step)
were used. The comparison was conducted using HIRLAM
and weather station datasets for winter 2010/11 (1 October–
30 April). Table 1 shows the comparison (HIRLAM minus
weather station data) results: mean bias, RMSE, standard
deviation (std) and their variation from station to station, and
the correlation coefficient.

The overall mean bias of TH
a is –0.98C (TH

a is on average
0.98C smaller than Tw

a ). The overall RMSE and std are rather
high, 3.88C and 3.78C, but the correlation between the two
Ta datasets is nonetheless 0.94. The high correlation between
TH
a and Tw

a shows the peaks and lows of air-temperature
changes are captured well by HIRLAM. There is some
variation of the statistics from station to station (e.g. from
2.98C to 4.28C for std). The mean bias increases somewhat
with decreasing TH

a : for the TH
a ranges –10 to –58C and –25 to

–208C, it is –0.18C and –2.38C, respectively. Both RMSE and
std increase with decreasing TH

a (e.g. in the above-mentioned
TH
a ranges, RMSE is 3.08C and 4.88C). This HIRLAM

underestimation of Ta leads to underestimation of hi, as the
Ta � Ts difference now resembles that of thinner ice.

These differences between the two Ta datasets could be
partly due to the sea-ice mask used in the HIRLAM model.
The mask only shows either open water or thick sea ice, so
the atmosphere over the sea ice is always insulated from the
ocean regardless of the ice thickness. In addition, a
modeling study by Lüpkes and others (2008) demonstrated
that, for sea-ice concentrations greater than 90%, small
changes in the sea-ice fraction have a strong increasing
effect on the near-surface Ta over thick ice under clear-sky
conditions during polar night.

The correlation between the u datasets is much lower
than for the Ta datasets, only 0.67. Because the wind speed
changes at much higher temporal frequency than air
temperature, the lower correlation between uH and uw does
not indicate a weak modeling skill by the HIRLAM as our
closer analysis showed. The overall mean bias of uH is
–1.2m s–1, std is 3.1m s–1 and RMSE is 3.3m s–1. These std
and RMSE values indicate >100% uncertainties (std(uH)/uH)
for uH at lower wind speeds. Thus, the std of uH � uw was
also studied as a function of uH. Std increases rapidly with
increasing uH up to 12m s–1, but at the same time the uH

uncertainty decreases from >100%, when uH � 2m s–1, to

�40%. When uw >9m s–1, HIRLAM mostly underestimates
it. At low uw (<3m s–1), by contrast, HIRLAM slightly
overestimates it. During the acquisitions of the MODIS
datasets, uw was typically small: in the 2010–11 data the
average was 5m s–1 in the Kara Sea. The HIRLAM under-
estimation of u leads to underestimation of absolute values
of Fs and Fe which are linear functions of u. This in turn leads
to either hi overestimation if Fs þ Fe < 0, or underestimation
if Fs þ Fe > 0.

The overall mean bias and std for RhH � Rhw is +8% and
12%, respectively. There is no correlation between the Rh
datasets. HIRLAM significantly overestimates Rh when
Rhw<80%. Rh is the input parameter only for the turbulent
latent flux, Fe, whose contribution to the heat balance
equation (1) is the smallest. In some previous studies, Rh has
been simply assumed to be constant: 90% in Yu and
Rothrock (1996) and Wang and others (2010).

For the std of the HIRLAM Fdn
l we assume a value of

20Wm–2 based on a study where different Fdn
l schemes

were compared to in situ Fdn
l measurements on Baltic Sea

ice (Zhang and others, 2006).

MODIS ice thickness chart
In calculating the MODIS hi charts, the following restrictions
and procedures are applied: (1) The MODIS sensor scan
angle (max 558) of the Ts data is limited to be <408 in order
to restrict the effect of atmosphere and deterioration of

Fig. 2. The relationship between snow and ice thickness for level
ice. Stars are the Sever data acquired in 1950–89 in our study area.
The solid–dotted line is the average snow and ice thickness
relationship using the Sever data for thickness range 30–90 cm and
Doronin’s (1971) empirical equation for 0–20 cm range. Dashed
line is linear regression fit to the average data.

Table 1. Comparison between seven weather stations and HIRLAM data (HIRLAM minus station) for air temperature, Ta (8C)), wind speed, u
(m s–1), and relative humidity, Rh (%). The time period is 1 October 2010 to 31 April 2011

Parameter Mean bias RMSE std Correlation

Overall Variation Overall Variation Overall Variation

Ta –0.9 –2.1 to +1.0 3.8 3.1–4.7 3.7 2.9–4.2 0.94
u –1.2 –2.4 to +0.7 3.3 2.4–4.6 3.1 2.2–3.9 0.67
Rh +8 +1 to +15 15 11–18 12 9–13 –0.02
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spatial resolution. At a scan angle of 408 the across-track
resolution is �2 km (at nadir it is 1 km). (2) The calculated hi
is rounded to 1 cm resolution. (3) The hi retrieval yields
sometimes erroneous negative hi values for thick ice (Ft > 0
in Eqn (7) which is erroneous) due to errors either in the
HIRLAM data or in the model parameterizations. These
erroneous hi values are flagged in the hi chart. (4) For very
thin ice (few cm), negative hi values are sometimes obtained;
these are marked to 0m (i.e. open water). (5) Using
10� 10 km block averages of Ts and Ta the following
changes are made to the calculated hi chart: (a) If
Ta > –58C then the calculated hi is masked away. It is
assumed that at these high air temperatures the sensitivity of
hi to Ts is too small for accurate hi retrieval. (b) If Ta > –58C
but Ts � Tw > –18C, then the block is flagged as open water.
It is not possible to separate accurately open water and
1–3 cm thick ice due to the inaccuracies of the Ts and heat
fluxes. (6) Finally, it is assumed that hi values greater than
1.0m are too unreliable and they are flagged away. Figure 3
shows examples of the calculated MODIS hi charts.

The areal coverage percentage of the hi charts over our
study area (land excluded) varies from 5% to 45%, with an
average of 19%. Here the areas of unsuccessful hi retrieval
are included, as they indicate areas of thick ice (hi >1m),
although without any thickness estimate. Due to the MODIS
scan angle limitation, a totally cloud-free MODIS Ts image
(none was found) would cover, on average, only 77% of the
study area. The percentage of Ts pixels for which the hi
retrieval was unsuccessful varied from 0% to 79%, with an
average of 18%, and it increased from November to April as
sea-ice thickness in general increases during the ice season
due to thermodynamic growth and deformation. The average
time difference between two MODIS hi charts is 2.4 days,
and the difference varies from 0.6 to 12.4 days. The
temporal coverage is worst (fewest hi charts) for November
and April due to prevailing cloud cover, and best for
February and March. The hi chart coverage is most frequent
over the northeastern part of the Kara Sea (top-right quarter
in Fig. 1) and less frequent over the northwestern (Barents
Sea) and southwestern (Pechora Sea) parts of our study area.
The cloudiness frequency is hence very closely associated
with the distance to open sea.

Accuracy and maximum value of the MODIS-based
ice thickness
The accuracy of the MODIS Ts-based hi is studied in two
ways: (1) Using estimated or guessed standard deviations
and covariances of the input variables to the hi retrieval, the
hi uncertainty is estimated with the Monte Carlo method.
The uncertainty, or relative accuracy, is quantified with
std(hi)/mean(hi) of the sampled hi values. (2) hi charts from
consecutive days are compared to each other. Large
differences are mainly due to the cloud-masking errors,
HIRLAM data inaccuracies and the frequency and spatial
distribution of open leads. The comparison estimates stabil-
ity of the hi retrieval when the true hi change is insignificant,
but the forcing data and Ts may undergo significant changes
in a short period of time. Currently we do not have any
coincident in situ thickness data for accuracy studies.

The typical maximum reliable hi under different Ta ranges
is determined using not only the results of the above
analyses, but also an empirical mean Ta � Ts vs hi relation-
ship which shows how rapidly hi changes as a function of a
slight change of Ts or Ta.

Fig. 3. Ice thickness charts derived from the MODIS ice surface
temperature images acquired on (a) 31 December 2009,
(b) 14 January 2010 and (c) 23 February 2010. Dark blue is either
cloud (thickness –0.2m), no data mask (–0.3m) or scan angle mask
(–0.2 m), and light blue (–0.1m) indicates areas where ice thickness
retrieval was unsuccessful or resulted in thickness values more than
1m. Polar stereographic coordinates with mid-longitude of 63E.
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Ice thickness uncertainty with the Monte Carlo method
Ice thickness uncertainty with the Monte Carlo method is
characterized by std(hi)/mean(hi), i.e. coefficient of vari-
ation (vc), of the sampled hi values from Eqn (6). The Monte
Carlo hi sampling was conducted only at the HIRLAM
gridpoints (20 km spacing), in order to reduce computation
burden. Ts is here 3 by 3 pixels average at the gridpoints, to
decrease local Ts variation. In total, there were 92 123
gridpoint datasets for the hi sampling. Table 2 shows the
estimated, or ‘best-guess’, standard deviations of the
variables needed in the hi sampling. The chosen std of
0.02 for b1 in Eqn (11) represents 40% vc for hs when
hi � 20 cm, and 22% when hi >20 cm. For the Ta, u and
Rh, stds, instead of RMSEs, from the HIRLAM and weather
station data comparison are used because the observed
difference distributions are characterized by the mean bias
and std. Only correlations between Ts and the HIRLAM Ta,
u, Rh and Fdn

l are taken into account in the random
sampling. These were estimated from the gridpoint data.
The correlation is largest, +0.90, between Ta and Fdn

l , and
second largest, +0.83, between Ts and Ta. For other
variable combinations it varied from –0.37 to +0.78. Ts,
Ta, u, Rh and Fdn

l were sampled from a five-dimensional
normal distribution. Other variables were also sampled
from normal distributions. At each gridpoint, 1000 random
hi values were calculated. Before calculating mean and std
for the sampled hi values, negative un-physical hi values
were rejected, as was the upper 5% of the positive hi
values. Very large hi values (hi � 1m) are due to Ft in Eqn
(7) having an expected value very close to zero and they
would increase std(hi) considerably if not excluded. Next,
the hi values were divided into 5 cm wide bins, and the
mean and std of vc were calculated. The results of the
Monte Carlo simulation are shown in Figures 4–6.

The mean vc with all the data is smallest, 39–41%, for
the hi range 10–25 cm and increases slowly to 64% when
hi = 80 cm (Fig. 4). The mean vc is 48% when hi = 5 cm and
approaches 100% when hi is only 1–2 cm. If the maximum
allowable mean vc is set to 50% then the typical maximum
reliable hi is �45 cm, and the typical minimum is 4–5 cm.
The large vc for very thin ice (hi < 5 cm) does not matter
when the hi charts are used for ship navigation, but can be a
drawback when they are used for ocean heat loss
calculations.

The large scatter of data points in Figure 4 is partly due to
the dependence of the hi uncertainty on Ta and u. Figure 5
shows the mean vc as a function of Ta range. The mean vc
clearly decreases with decreasing Ta when hi > 20 cm. If we
again take the vc limit of 50% for the reliable hi then the
maximum hi is 60 cm when Ta < –308C, but it is only 25 cm
when –20< Ta < –158C. For all gridpoint data, the HIRLAM
Ta is less than –208C in 82% of cases. The mean vc as a
function of u range is depicted in Figure 6. The mean vc
increases considerably with increasing u when hi > 10 cm.

Table 2. Standard deviations of the variables used in the Monte
Carlo estimation of the MODIS-based ice thickness uncertainty

Variable std Variable std

Ts 1.3 K ks 0.05Wm–1K–1

Ta 3.7 K b1 0.02
u Function of u,

2.0–5.1m s–1
Si 2 ppt

Rh 12% " 0.01
Fdn
l 20Wm–2 Cs, Ce 10% of expected

value

Fig. 4. Uncertainty of the MODIS-based ice thickness estimated with the Monte Carlo method. (a) Mean and std/mean of the sampled
thickness values. (b) Average thickness uncertainty as a function of ice thickness and the variation of the uncertainty characterized by std(std/
mean).
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With the 50% hi uncertainty limit, the maximum hi is 65 cm
when u � 2m s–1 and only 20 cm when 7� u � 8m s–1. For
the gridpoint data, the HIRLAM modal u is 3m s–1 and 83%
of the u values are <5m s–1. Figures 5 and 6 show that the hi
uncertainty is smallest under very cold calm wind condi-
tions. As the hi uncertainty depends considerably on Ta and
u, it is difficult to determine the typical maximum for hi, but
under typical weather conditions (Ta < –208C, u �5m s–1)
for the MODIS data the maximum is �50 cm. The accuracy
is best for the 15–30 cm thickness range, �38%.

The hi uncertainty values obtained here are larger than
those by Yu and Rothrock (1996). They assessed that the hi
uncertainty increases from 27% for 20 cm thick ice to 50%
for hi around 1m. However, they estimated much smaller std
for Ta and u, only 1.68C and 0.7m s–1, respectively. If we
decrease std to 18C and 1m s–1 then the hi uncertainty is
<40% when hi = 80 cm, and in the 10–30 cm range it is only
�22%. When the std of b1 is doubled to 0.04, corresponding
to 68% and 44% hs uncertainty when hi � 20 cm and
hi > 20 cm, respectively, the hi uncertainty increases slightly,
a 50% limit being reached when hi = 45 cm. The contri-
bution of different variables to the hi uncertainty was studied
by taking into account std of only one variable at a time in
the hi sampling. The largest hi uncertainty comes from Ta. Ts
and Fdn

l have somewhat smaller roughly equal contributions.
When hi <30 cm then u also makes a significant contri-
bution to the hi uncertainty. The hi uncertainty from snow
thickness alone is �10%. Direct comparison of our results to
those of Yu and Rothrock (1996) and Wang and others
(2010) is not possible as they did not use NWP model data in
the hi retrieval, but in their results Fdn

l and u were among the
largest error sources.

Comparison of thickness maps from consecutive days
The comparison of hi charts from consecutive days estimates
the stability of hi retrieval when the true hi change is
insignificant, but the forcing data and Ts may undergo large
changes in a short period of time. Large hi differences are
mainly due to the cloud-masking errors, HIRLAM data
inaccuracies and the frequency and spatial distribution of
open leads. Undetected high thin clouds result in a cold bias
in Ts, making the ice appear thicker than it actually is

(Martin and others, 2004; Tamura and others, 2006). Ice fog
generated by intense vapor flux from leads and polynyas
under cold conditions is warmer than surrounding fast- or
pack-ice Ts and colder than Ts for thin ice. This leads to hi
underestimation for pack ice and overestimation for thin ice.
Hence, the presence of open leads has an unfavorable
equalizing effect on the hi values. The highest lead activity is
also usually associated with relatively high wind speeds,
which additionally weakens the retrieval accuracy.

For this study, there are 108 hi chart pairs. The time
difference between the charts varies from 15 to 33 hours,
with an average of 24 hours. During these short time periods
the ice growth is typically only a few centimeters
(Leppäranta, 1993). hi differences from the chart pairs were
calculated using 10�10 km block averages in order to
diminish the effect of ice movement. For a block with all hi
pixels valid, (0 � hi <1m), std(hi)/mean(hi) was required to
be <20% to reject ice areas in the comparison that were too
heterogeneous. In total, there were 31 560 hi difference
values from the chart pairs.

The overall root-mean-square difference (RMS) for the hi
difference data is 8.5 cm, the mean absolute bias is 6.1 cm,
and 90% of the absolute hi differences are <14 cm. Within
the hi chart pairs, RMS varies from 2.1 to 19.7 cm and the
average is 8.3 cm. There are no correlations between the hi
and Ta or u differences, but the absolute Ta and u differences
are typically small, below 28C and 2ms–1, respectively. This
suggests that cloud-masking errors caused the large RMS for
some hi chart pairs. For the hi intervals 0–10, 10–20, 20–30,
30–40, 40–50 and 50–60 cm, RMS is 4.2, 4.9, 8.4, 9.3, 11.0
and 11.7 cm, respectively. RMS is 21–32% of the hi bin
centre value when the 0–10 cm bin is excluded. These
statistics demonstrate good stability (or repeatability) of the
MODIS and HIRLAM data-based hi charts.

Maximum reliable ice thickness
Next, typical maximum reliable hi under different Ta ranges
(width 58C) is studied using empirical mean Ta � Ts vs hi
curves, which show how rapidly hi changes as a function of
a slight change in Ts or Ta. These curves were calculated
from the Ts, hi and Ta averages (3�3 pixel block) at the
HIRLAM gridpoints. As Ta � Ts vs hi also depends on u it

Fig. 5. Average uncertainty of the MODIS-based ice thickness as a
function of HIRLAM air temperature range.

Fig. 6. Average uncertainty of the MODIS-based ice thickness as a
function of HIRLAM wind-speed range.
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was required to be <5ms–1 to include only the most
common wind conditions of the MODIS data. The number
of gridpoint datasets was 72 955. Figure 7 shows the mean
Ta � Ts vs hi curves for six different Ta ranges. The mean hi in
the curves was calculated inside 18C wide Ta � Ts bins.

When Ta � Ts approaches 08C, the sensitivity of hi to
Ta � Ts increases: a 18C change in Ta � Ts can cause >10 cm
change in hi. Taking into account the RMSE of Ts and Ta (and
other variables in Eqn (6)), this sensitivity is too large for
accurate hi retrieval, whereas when Ta � Ts = –58C, a 18C
change leads at maximum to a 4 cm change in hi. Not only
the maximum acceptable Ta � Ts vs hi sensitivity, but also
the Ta � Ts difference itself may be a limiting factor for the
maximum reliable hi. When Ta � Ts >08C, then, due to the
radiative surface cooling, the snow/ice surface is colder than
the air and the simple parameterizations of the turbulent
sensible and latent heat fluxes may be liable to large errors, a
common problem for the stable boundary layer (Hanna and
Yang, 2001; Järvenoja, 2005). We suggest that the maximum
allowed Ta � Ts should be 08C or only few degrees higher.
Figure 7 shows that at a fixed Ta � Ts value the corres-
ponding mean hi decreases considerably with increasing Ta.

In summary, the maximum reliable hi depends on
(1) maximum acceptable Ta � Ts vs hi sensitivity, (2) max-
imum allowed Ta � Ts, (3) acceptable hi uncertainty based
on the Monte Carlo simulation, and (4) Ta. If we set the
maximum Ta � Ts to 08C and the Ta � Ts vs hi sensitivity to
be <10 cm 8C–1, then the maximum hi varies from 50 cm
when Ta < –308C (max Ts � Ta now –28C due to the
sensitivity limit) to 35 cm when –20� Ta < –158C (max
Ta � Ts = 08C). For the first Ta range, the hi uncertainty is
<50%, but for the second one the 50% uncertainty limit
decreases the maximum hi to 25 cm. Combining the results,
the typical maximum reliable hi is �35–50 cm under typical
weather conditions (Ta < –208C, u �5m s–1) present in the
MODIS data.

CONCLUSIONS
We have studied ice thickness retrieval in the Kara Sea and
eastern part of the Barents Sea using night-time MODIS Ts
images and HIRLAM weather forcing data, and conducted
detailed accuracy analysis of the retrieved hi for ice <1m
thick. For the cloud masking of the MODIS data we had to
use manual methods in order to improve detection of cloud-
covered areas, mainly thin clouds and ice fog. These manual
methods are not suitable for processing a large number of
MODIS images (too time-consuming) or to be included in an
operative MODIS hi chart processing chain.

Our MODIS hi chart collection of 199 charts spans three
winters (November–April) in 2008–11. The temporal cov-
erage of the charts is worst for November and April due to
prevailing cloud cover, and best for February and March.
Over the northwestern (Barents Sea) and southwestern
(Pechora Sea) parts of our study area (Fig. 1) the temporal
and spatial hi chart coverage is typically too small to follow
development of thin-ice areas (leads, polynyas).

We conducted detailed accuracy analysis of the retrieved
hi using three different methods, taking into account the
inaccuracy of the HIRLAM weather forcing data, and
determined maximum reliable hi values under different Ta
and u ranges. The typical maximum reliable hi is 35–50 cm
under typical weather conditions (Ta < –208C, u �5m s–1)
present in the MODIS data. The accuracy is best for the

15–30 cm thickness range, �38%. Our hi limits are more
conservative than those in previous studies (Yu and
Rothrock, 1996; Wang and others, 2010) where NWP
model data were not used in the hi retrieval. The large
difference from the maximum hi of 2.8m estimated by Wang
and others (2010) is likely also due to the APP-x dataset
(25 km pixel size, Ts corrected with ice concentration data)
used in that study. A straightforward way of increasing the
accuracy of our MODIS-based hi is to increase the accuracy
of the NWP forcing data, if possible. Further studies include
hi retrieval using snow thickness information from micro-
wave radiometer data or from a sea-ice thermodynamic
model, and the effect of the ice deformation derived from
SAR data on the hi accuracy.

Our results give new detailed insight into the capability of
Ts-based hi retrieval in the Arctic marginal seas during
freeze-up and wintertime, and should also benefit work on
microwave-radiometer-based hi retrieval where Ts-based hi
charts are used for algorithm development and validation.
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