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Classical and modular approaches to

exponential Diophantine equations

II. The Lebesgue–Nagell equation

Yann Bugeaud, Maurice Mignotte and Samir Siksek

Abstract

This is the second in a series of papers where we combine the classical approach to expo-
nential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a
modular approach based on some of the ideas of the proof of Fermat’s Last Theorem. In
this paper we use a general and powerful new lower bound for linear forms in three log-
arithms, together with a combination of classical, elementary and substantially improved
modular methods to solve completely the Lebesgue–Nagell equation x2 + D = yn, x, y
integers, n � 3, for D in the range 1 � D � 100.

1. Introduction

Arguably, the two most celebrated achievements of the 20th century in the field of Diophantine
equations have been Baker’s theory of linear forms in logarithms, and Wiles’ proof of Fermat’s Last
Theorem. We call Baker’s approach to Diophantine equations the ‘classical approach’. The proof
of Fermat’s Last Theorem is based on what we term the ‘modular approach’. The proponents of
the classical approach are too many to mention; the modular approach is still in its infancy, but
among the early contributers let us just mention Frey, Serre, Ribet, Darmon, Merel, Kraus, Bennett,
Skinner, Ivorra, etc.

The motivation for our series of papers, of which this is the second, is that neither approach
(on its own and as it stands at the moment) is powerful enough to resolve unconditionally many of
the outstanding exponential Diophantine equations. Our thesis is that one should, where possible,
attack exponential Diophantine equations by a combination of classical and modular approaches.
The precise aims of this series were formulated in our first paper [BMS] as follows.

(I) To present theoretical improvements to some aspects of the classical approach.

(II) To show how local information obtained through the modular approach can be used to reduce
the size of the bounds, both for exponents and for variables, of solutions to exponential
Diophantine equations.

(III) To show how local information obtained through the modular approach can be pieced together
to provide a proof that there are no missing solutions less than the bounds obtained in (I),
(II).

(IV) To solve various famous exponential Diophantine equations.
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In [BMS] we gave a new lower bound for linear forms in three logarithms and used a combination
of classical and modular methods to determine all the perfect powers in the Fibonacci and Lucas
sequences. In the present paper, we apply a more general and powerful lower bound for linear forms
in three logarithms due to Mignotte [Mig], together with a combination of elementary, classical and
substantially improved modular methods to study the following exponential Diophantine equation:

x2 + D = yn, x, y integers, n � 3. (1)

Here, D denotes a non-zero integer. We have chosen to name this equation the Lebesgue–Nagell
equation; the reason for the name Lebesgue–Nagell is given in § 2, together with some historical
remarks. However, for now we mention that the equation has previously been solved for 81 values
of D in the range 1 � D � 100, using elementary, classical and modular methods; the remaining
values are apparently beyond these methods as they stand. We prove the following theorem.

Theorem 1. All solutions to (1) with D in the range

1 � D � 100 (2)

are given in the table in Appendix A. In particular, the only integer solutions (x, y, n) to the
generalised Ramanujan–Nagell equation

x2 + 7 = yn, n � 3,

satisfy |x| = 1, 3, 5, 11, 181.

We choose to give a complete proof of Theorem 1, rather than treating the 19 remaining values
of D in the range (2).

It is noted that the solutions for even n can be deduced quickly, for then D is expressible as a
difference of squares. It is therefore sufficient to solve the equation

x2 + D = yp, x, y integers, p � 3 is prime; (3)

the solutions to (1) can then be recovered from the solutions to (3).
We give three modular methods for attacking (3). Two are refinements of known methods and

a third that is completely new. Using a computer program based on these modular methods, we
can show, for any D in the above range, that the exponent p is large (showing that p > 109 is
quite practical). Our modular approach also yields the following rather surprising result: either
each prime factor of y divides 2D or y > (

√
p − 1)2. We are then able to deduce not only that p is

large, but also that y is large. This information helps us to reduce the size of the upper bound on
p obtained from the lower bound for the linear forms in three logarithms, making the computation
much more practical. This idea of using the modular approach to force lower bounds for solutions
of Diophantine equations was used previously, for instance by Bennett [Ben04]. Our total computer
time for the computations in this paper is roughly 206 days on various workstations (the precise
details are given in due course).

Using our approach should make it possible to solve (1) for any D, with |D| not too large, that is
not of the form D = −a2 ± 1; if D is of this form then (1) has a solution (x, y) = (a,±1) for all odd
values of the exponent n, and the modular methods we explain later are not very successful in this
situation. To deal with this case requires further considerations, which we leave for another paper.
Note, however, that the case D = 1 turns out to be quite easy and was solved in 1850 by Lebesgue
[Leb50]. Furthermore, (1) has been solved for some negative values of D of the form D = −a2 ± 1,
including D = −1 and D = −8 (see, for example, [Ivo03, Sik03]). However, proving that the only
integer solutions to x2 − 2 = yn with n � 3 satisfy |x| = 1 remains a challenging open question. For
some modest progress on this question, due to the authors, see [Sik].
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2. On the history of the Lebesgue–Nagell equation

Equation (1) has a long and glorious history and there are literally hundreds of papers devoted to
special cases of this equation. Most of these are concerned with (1) either for special values of n or
special values of y. For example, for D = 2 and n = 3, Fermat asserted that he had shown that the
only solutions are given by x = 5, y = 3; a proof was given by Euler [Eul70]. Equation (1) with
n = 3 is the intensively studied Mordell equation (see [GPZ98] for a modern approach).

Another notable special case is the generalized Ramanujan–Nagell equation

x2 + D = kn, (4)

where D and k are given integers. This is an extension of the Ramanujan–Nagell equation x2+7 = 2n,
proposed by Ramanujan [Ram13] in 1913 and first solved by Nagell [Nag48] in 1948 (see also the
collected papers of Nagell [Nag02]). This equation has exactly five solutions with x � 1 (see [Mig84]
for a very simple proof) and is, in this respect, singular: indeed, Bugeaud and Shorey [BS01] estab-
lished that (4) with D positive and k a prime number not dividing D has at most two solutions in
positive integers x, n, except for (D, k) = (7, 2). They also listed all of the pairs (D, k) as above
for which (4) has exactly two solutions. Much earlier, Apéry, [Ape60a, Ape60b] proved by p-adic
arguments that x2 + D = kn, with k prime, has at most two positive integer solutions except if
(D, k) = (7, 2). We direct the reader to [BS01] for further results and references.

Returning to (1), the first result for general y, n seems to be the proof in 1850 by Lebesgue
[Leb50] that there are no non-trivial solutions for D = 1. The next cases to be solved were D = 3, 5
by Nagell [Nag48] in 1923. It is for this reason that we call (1) the Lebesgue–Nagell equation. The
case with D = −1 is particularly noteworthy: a solution was sought for many years as a special case
of the Catalan conjecture. This case was finally settled by Ko [Ko65] in 1965.

The history of the Lebesgue–Nagell equation is meticulously documented in an important article
by Cohn [Coh93b] and so we are saved the trouble of compiling an exhaustive survey. In particular,
Cohn refines the earlier elementary approaches of various authors (especially of Ljunggren [Lju63,
Lju64]) and completes the solution for 77 values of D in the range 1 � D � 100. The solution for
the cases D = 74, 86 was completed by Mignotte and de Weger [MW96] (indeed, Cohn solved these
two equations of type (3) except for p = 5, in which case difficulties occur as the class numbers
of the corresponding imaginary quadratic fields are divisible by 5). Bennett and Skinner [BS04,
Proposition 8.5] applied the modular approach to solve the cases D = 55 and 95. The 19 remaining
values

7, 15, 18, 23, 25, 28, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100, (5)

are clearly beyond the scope of Cohn’s elementary method, although Cohn’s method can still give
non-trivial information even in these cases and is revisited in § 5. Moreover, as far as we can see,
the modular method used by Bennett and Skinner (which is what we call Method I) is not capable
of handling these values on its own, even though it still gives useful information in most cases.

Cohn [Coh93b], also makes a challenge of proving that the only solutions to the equation

x2 + 7 = yn

have |x| = 1, 3, 5, 11, 181. This challenge was taken up by Lesage [Les98] who proved, by classical
arguments, that if x > 181 then 5000 < n < 6.6×1015 and also by Siksek and Cremona [SC03] who
used the modular approach to show that there are no further solutions for n � 108 (consequently,
n must be prime); they also suggested that an improvement to lower bounds in linear forms in
three logarithms may finally settle the problem. With the benefit of hindsight, we know that they
were almost, although not entirely, correct. The substantial improvement to lower bounds in linear
forms in three logarithms used here was certainly needed. However, for this lower bound to be

33

https://doi.org/10.1112/S0010437X05001739 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001739


Y. Bugeaud, M. Mignotte and S. Siksek

even more effective, a further insight obtained from the modular approach was also needed: namely
that y is large as indicated in the introduction; note further that Lesage proved that y > 109 by
classical arguments (linear forms in two 2-adic logarithms from [BL96]) and some heavy computer
verification.

3. Reduction to Thue equations

Our main methods for attacking (3) are linear forms in logarithms (to bound p) and the modular
approach, although for some small values of p it is necessary to reduce the equation to a family of
Thue equations. The method for reducing (3) to Thue equations is well known. We do, however,
feel compelled to give a succinct recipe for this, in order to set up notation that is needed later.

It is appropriate to point out that there are other approaches that could be used to solve (3)
for small p. For p = 3 we can view the problem as that of finding integral points on an elliptic
curve, a problem that is aptly dealt with in the literature (see [Sma98, GPZ98]). For p � 5, the
equation x2 + D = yp defines a curve of genus � 2; one can sometimes determine all rational points
on this curve using the method of Chabauty [CF96], although this would also require computing
the Mordell–Weil group of the Jacobian (see [PS97, Sch95a, Sto98, Sto01, Sto02]).

We do not assume in this section that D is necessarily in the range (2), merely that −D is not
a square. We write (here and throughout the paper)

D = D2
1D2, D1, D2 are integers, D2 square-free.

Let L = Q(
√
−D2) and O be its ring of integers. Throughout the present paper, we denote the

conjugate of an element α (respectively of an ideal a) by α (respectively by a).
Let p1, . . . , pr be the prime ideals of O dividing 2D. Let A be the set of integral ideals a of O

such that:

• a = pa1
1 · · · par

r , with 0 � ai < p;
• the gcd(a, a) divides 2D1

√
−D2;

• the ideal aa is a perfect pth power.

If (x, y) is a solution to (3), then one effortlessly sees that

(x + D1

√
−D2)O = abp

for some a ∈ A and some integral ideal b.
Now let b1, . . . , bh be integral ideals forming a complete set of representatives for the ideal class

group of O. Thus, bbi is a principal ideal for some i and so bbi = β′O for some β′ ∈ O. The fractional
ideal ab

−p
i is easily seen to be also principal. The ideal b is unknown, but the ideals, a, b1, . . . , bh are

known. We may certainly determine which of the fractional ideals ab
−p
i are principal. Let Γ′ be a

set containing one generator γ′ for every principal ideal of the form ab
−p
i (a ∈ A and 1 � i � h). It

is noted that the elements of Γ′ are not necessarily integral, but we know that if (x, y) is a solution
to (3) then

(x + D1

√
−D2)O = γ′β′pO,

for some γ′ ∈ Γ′ and some β′ ∈ O. Finally, define Γ as follows:

Γ =




Γ′, if D2 > 0, D2 �= 3, or if D2 = 3 and p �= 3,

Γ′ ∪ ζΓ′ ∪ ζ−1Γ′, if D2 = p = 3, where ζ = (1 +
√
−3)/2,⋃

j

εjΓ′, if D2 < 0, where j runs over −(p − 1)/2, . . . , (p − 1)/2,

where if D2 < 0 (and so L is real) we write ε for the fundamental unit.
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We quickly deduce the following.

Proposition 3.1. With notation as above, if (x, y) is a solution to (3) then there exist γ ∈ Γ and
β ∈ O such that

x + D1

√
−D2 = γβp.

Thus if we let 1, ω be an integral basis for O then for some γ ∈ Γ,

x = 1
2(γ(U + V ω)p + γ(U + V ω)p)

for some integral solution (U, V ) to the Thue equation

1
2
√
−D2

(γ(U + V ω)p − γ(U + V ω)p) = D1.

3.1 Results I
If q is a prime we denote by vq : Z → Z�0 ∪ {∞} the normalized q-adic valuation.

We now eliminate all cases where it is inconvenient to carry out level-lowering.

Lemma 3.2. Suppose that 1 � D � 100. Suppose that (x, y, p) is a solution to (3) that is missing
from our table in Appendix A. Then p satisfies the following conditions:


p � 7,
p � vq(D) + 1, for all primes q,

p � v2(D) + 7, if v2(D) is even.

(6)

Proof. It is clear that for any particular D there are only a handful of primes p violating any of
these conditions. We wrote a pari/gp [BBBCO] program that solved all (3) for p violating (6): the
program first reduces each such equation to a family of Thue equations as in Proposition 3.1 above.
These are then solved using the built-in pari/gp function for solving Thue equations (this is an
implementation of the method of Bilu and Hanrot [BH96]).

It is perhaps worthwhile to record here two tricks that helped us in this step. First, in writing
down the set Γ appearing in Proposition 3.1 we needed a set of integral ideals b1, . . . , bh representing
the ideal class group of the quadratic field L. Both pari/gp and MAGMA [BCP97] have built-in
functions that amount to homomorphisms from the ideal class group as an abstract group, to the
set of fractional ideals, and these can be used to construct the required set b1, . . . , bh. We have
found, however, that we get much simpler Thue equations if we search for the smallest prime ideal
representing each non-trivial ideal class, and of course taking 1O to represent the trivial ideal class.

To introduce the second trick, we recall that when one is faced with a Thue equation

a0U
p + a1U

p−1V + · · · + apV
p = b

it is usual to multiply throughout by ap−1
0 and make the substitution U ′ = a0U , thus obtaining a

monic polynomial on the left-hand side. When a0 is large, this greatly complicates the equation.
The second trick is to first search for a unimodular substitution, which makes the leading coefficient
a0 small.

After optimizing our program, we were able to complete the proof of Lemma 3.2 in about 22
minutes on a 1050 MHz UltraSPARC III computer.

4. Removing common factors

It is desirable when applying the modular approach to (3) to remove the possible common factors of
the three terms in the equation. This desire leads to a subdivision of cases according to the possible
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common factors, as seen in the following elementary lemma. Here and elsewhere, for a non-zero
integer a, the product of the distinct prime divisors of a is called the radical of a, and denoted by
rad(a), in particular rad(±1) = 1. Furthermore, ( ··) stands for the Kronecker symbol.

Lemma 4.1. Suppose that (x, y, p) is a solution to (3) such that y �= 0 and p satisfies the condi-
tion (6). Then there are integers d1, d2 such that the following conditions are satisfied:

(i) d1 > 0;
(ii) D = d2

1d2;
(iii) gcd(d1, d2) = 1;
(iv) for all odd primes q|d1 we have (−d2

q ) = 1;
(v) if 2|d1 then d2 ≡ 7 (mod 8).

Moreover, there are integers s, t such that

x = d1t, y = rad(d1)s,

and

t2 + d2 = esp, gcd(t, d2) = 1, s �= 0, (7)
where

e =
∏

q prime
q|d1

qp−2vq(d1) and rad(e) = rad(d1). (8)

Proof. Suppose that (x, y, p) is a solution to (3) such that y �= 0 and condition (6) is satisfied. It is
straightforward to see that condition (6) forces gcd(x2,D) to be a square, say d2

1 with d1 > 0. We
can therefore write x = d1t and D = d2

1d2 for some integers t and d2. Moreover, because

d2
1 = gcd(x2,D) = gcd(d2

1t
2, d2

1d2) = d2
1 gcd(t2, d2),

we see that gcd(t, d2) = 1. Removing the common factors from x2 + D = yp we obtain t2 + d2 = esp

where e is given by (8). The integrality of e follows from the condition (6), and so does the equality
of the radicals rad(e) = rad(d1). Note that (iii) follows from this equality of the radicals and the fact
that t, d2 are coprime. We have thus proven (i), (ii), (iii) and it is now easy to deduce (iv) and (v).
Finally, the condition s �= 0 follows from the condition y �= 0.

Definition. Suppose that D is a non-zero integer and (x, y, p) is a solution to (3) with y �= 0 and
p satisfying (6). Let d1, d2 be as in the above lemma and its proof (thus d1 > 0, gcd(x,D) = d2

1 and
d2 = D/d2

1). We call the pair (d1, d2) the signature of the solution (x, y, p). We call the pair (t, s)
the simplification of (x, y) (or (t, s, p) the simplification of (x, y, p)).

In this terminology, Lemma 4.1 associates with any D a finite set of possible signatures (d1, d2)
for the solutions (x, y, p) of (3) satisfying (6) and y �= 0. To solve (3) it is sufficient to solve it under
the assumption that the solution’s signature is (d1, d2) for each possible signature.

Example 1. For example, if D = 25, there are two possible signatures satisfying the conditions of
Lemma 4.1; these are (d1, d2) = (1, 25) or (5, 1). If (d1, d2) = (1, 25), then x = t, y = s and we must
solve the equation

t2 + 25 = sp, 5 � t,

already solved by Cohn. However, if (d1, d2) = (5, 1), then x = 5t, y = 5s, and we must solve the
equation

t2 + 1 = 5p−2sp,

not solved by Cohn. In either case it is noted that the three terms of the resulting equation are
relatively coprime, which is important to apply the modular approach.
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5. A simplification of Cohn

We will soon apply our modular machinery to (3) with D in the range (2). Before doing this
it is helpful to introduce a simplification due to Cohn that will drastically reduce the amount
of computation needed later. All the arguments presented in this section are found in Cohn’s
papers [Coh93b, Coh03]. Cohn, however, assumed that D �≡ 7 (mod 8); the result below is not
subject to this restriction.

Proposition 5.1. Let D = D2
1D2 where D2 is square-free and D2 > 0. Suppose that (x, y, p) is a

solution to (3) with p satisfying (6) and let (d1, d2) be the signature of this solution. Then:

(i) d1 > 1; or

(ii) D ≡ 7 (mod 8) and 2|y; or

(iii) p divides the class number h of the quadratic field Q(
√
−D2); or

(iv) y = a2 + D2b
2 for some integers a and b such that b|D1, b �= ±D1,

p|(D2
1 − b2) and

1
2
√
−D2

[(U + b
√

−D2)p − (U − b
√

−D2)p] = D1; or

(v) D = 1, (x, y) = (0, 1); or

(vi) D2 ≡ 3 (mod 4) and y = (a2 + D2b
2)/4 for some odd integers a and b such that b|D1,

p|(4D2
1 − b2) and a is a solution of the equation

1
2
√
−D2

[(U + b
√

−D2)p − (U − b
√

−D2)p] = 2pD1.

Proof. We only give a brief sketch. Suppose that (i), (ii), (iii) are false. Then (x + D1

√
−D2) = αp

for some α in the ring of integers of Q(
√
−D2). There are two possibilities. The first is that α =

a + b
√
−D2 for some integers a and b. By equating the imaginary parts we deduce all of (iv) if

b �= ±D1. Thus, suppose that b = ±D1. Letting β = a − b
√
−D2 we see that

αp − βp

α − β
= ±1.

If α/β is not a root of unity, then the left-hand side is the pth term of a Lucas sequence (with p � 7)
and a deep theorem of Bilu et al. [BHV01] on primitive divisors of Lucas and Lehmer sequences
immediately gives a contradiction. Thus α/β is a root of unity, i.e. α/β = ±1, ±i, or (±1±

√
−3)/2.

Each case turns out to be impossible, except for α = −β, which together with b = ±D1 implies (v).
The second possibility for α is that α = (a + b

√
−D2)/2 with a, b odd integers (and −D2 ≡ 1

(mod 4)). Now (vi) follows quickly by equating the imaginary parts of (x + D1

√
−D2) = αp.

5.1 Results II
Corollary 5.2. Suppose that D belongs to our range (2) and (x, y, p) is a solution to (3) with p
satisfying the condition (6). If the solution (x, y, p) is missing from the table in Appendix A, then
either D ≡ 7 (mod 8) and 2|y or d1 > 1, where (d1, d2) is the signature of the solution.

Proof. We apply Proposition 5.1. Using a short MAGMA program we listed all solutions arising from
possibilities (iv)–(vi) of Proposition 5.1 with 1 � D � 100. The only solutions found in our range
are (x, y, p) = (0, 1, p) for D = 1 and (x, y, p) = (±8, 2, 7) for D = 64 and these are certainly in the
table in Appendix A.

To prove the corollary we merely have to take care of possibility (iii) of the proposition. For
1 � D � 100 and primes p satisfying (6), the only case when p could possibly divide the class number
of Q(

√
−D2) is p = 7 and D = 71 (in which case h = 7). We solved the equation x2 + 71 = y7
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by reducing to Thue equations as in § 3. It took pari/gp about 30 minutes to solve these Thue
equations, and we obtained that the only solutions are (x, y) = (±46, 3), again in the table in
Appendix A.

6. Level lowering

In this section we apply the modular approach to (7) under suitable, but mild, hypotheses. Ordin-
arily, one would have to construct a Frey curve or curves associated with our equation, show that
the Galois representation is irreducible (under suitable hypotheses) using the results of Mazur
and others [Maz78] and modular by the work of Wiles and others [Wil95, TW95, BCDT01], and
finally apply Ribet’s level-lowering theorem [Rib90]. Fortunately we are saved much trouble by the
excellent paper of Bennett and Skinner [BS04], which does all of this for equations of the form
Axn + Byn = Cz2; it is noted that (7) is indeed of this form.

Let D be a non-zero integer. We shall apply the modular approach to the Diophantine equation

x2 + D = yp, x2 �D, y �= 0 and p � 3 is prime, (9)
or the equivalent equation for the simplification (s, t)

t2 + d2 = esp, t �= ±1, gcd(t, d2) = 1, s �= 0, (10)

under the additional assumption that p satisfies (6). The assumptions made about s, t in (10) are
there to ensure the non-singularity of the Frey curves, and the absence of complex multiplication
when we come to apply the modular approach later on. Before going on we note the following
lemma, which in effect states that there is no harm in making these additional assumptions for D
in our range (2).

Lemma 6.1. There are no solutions to (3) for D in the range (2) with y = 0, or x2|D, except those
listed in the table in Appendix A.

Proof. Clearly y �= 0. We produced our list of solutions with x2|D using a short MAGMA program.

Lemma 4.1 associates with each equation of the form (9) finitely many signatures (d1, d2) satis-
fying conditions (i)–(v) and corresponding (7). Following Bennett and Skinner [BS04], we associate
a Frey curve Et with any potential solution of (10) according to Tables 1–3.

Tables 1–3 are divided into cases (a)–(l). We know that d1, d2 are coprime and, hence, at most
one of them is even. The possibility that d1, d2 are both odd is dealt with in Table 1. In cases
(a), (b), a simple modulo 8 argument convinces us that t is odd. However, for cases (c) and (d),
where d1 is odd and d2 ≡ 7 (mod 8), the integer t can be either odd or even and we assign different
Frey curves for each possibility. When t is odd (case (d)) we add the assumption that t ≡ 1 (mod 4);
this can be achieved by interchanging t with −t if necessary.

Table 2 deals with the possibility of even d1 and Table 3 deals with the possibility of even d2.
In both of these cases t is necessarily odd and the congruence condition on t can again be achieved
by interchanging t with −t if necessary.

Proposition 6.2. Suppose that D, d1, d2 are non-zero integers that satisfy (i)–(v) of Lemma 4.1.
Suppose also that p is a prime satisfying (6) and let e be as defined in (8). Suppose that (t, s) is a
solution of (10) and satisfies the supplementary condition (if any) on t in Tables 1–3. Let Et and
L be as in these tables and write ρp(Et) for the Galois representation on the p-torsion of Et. Then
the representation ρp(Et) arises from a cuspidal newform of weight 2 and level N = L rad(D).

Proof. In [BS04], Bennett and Skinner give an exhaustive recipe for Frey curves and level lowering
for equations of the form Axn + Byn = Cz2 under the assumption that the three terms in the
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Table 1. Frey curves with d1, d2 odd.

Case Condition on d2 Condition on t Frey curve Et L

(a) d2 ≡ 1 (mod 4) Y 2 = X3 + 2tX2 − d2X 25

(b) d2 ≡ 3 (mod 8) Y 2 = X3 + 2tX2 + (t2 + d2)X 25

(c) d2 ≡ 7 (mod 8) t even Y 2 = X3 + 2tX2 + (t2 + d2)X 25

(d) d2 ≡ 7 (mod 8) t ≡ 1 (mod 4) Y 2 + XY = X3 +
(

t − 1
4

)
X2 +

(
t2 + d2

64

)
X 2

Table 2. Frey curves with d1 even, d2 odd.

Case Conditions on t, s, p Frey curve Et L

(e) t ≡ 1 (mod 4) Y 2 + XY = X3 +
(

t − 1
4

)
X2 +

(
t2 + d2

64

)
X 1

Table 3. Frey curves with d1 odd, d2 even.

Case Condition on d2 Condition on t Frey curve Et L

(f) v2(d2) = 1 Y 2 = X3 + 2tX2 − d2X 26

(g) d2 ≡ 4 (mod 16) t ≡ 1 (mod 4) Y 2 = X3 + tX2 − d2

4
X 2

(h) d2 ≡ 12 (mod 16) t ≡ 3 (mod 4) Y 2 = X3 + tX2 − d2

4
X 22

(i) v2(d2) = 3 t ≡ 1 (mod 4) Y 2 = X3 + tX2 − d2

4
X 24

(j) v2(d2) = 4, 5 t ≡ 1 (mod 4) Y 2 = X3 + tX2 − d2

4
X 22

(k) v2(d2) = 6 t ≡ 1 (mod 4) Y 2 + XY = X3 +
(

t − 1
4

)
X2 − d2

64
X 2−1

(l) v2(d2) � 7 t ≡ 1 (mod 4) Y 2 + XY = X3 +
(

t − 1
4

)
X2 − d2

64
X 1

equation are coprime. After a little relabeling, their results apply to (10) and the lemma follows
from §§ 2 and 3 of their paper. It is here that we need the assumptions t �= ±1 and s �= 0 made
in (10).

It is convenient to indulge in the following abuse of language.

Definition. If (t, s, p) is a solution to (10) and if the representation ρp(Et) arises from a cuspidal
newform f , then we say that solution (t, s, p) arises from the newform f (via the Frey curve Et), or
that the newform f gives rise to the solution (t, s, p). If (t, s, p) is the simplification of (x, y, p) then
we say that (x, y, p) arises from the newform f . If the newform f is rational and so corresponds to
an elliptic curve E, then we also say that the solution (t, s, p) (or (x, y, p)) arises from E.

6.1 A summary
It may be helpful for the reader to summarize what we have done and where we are going. Given
a non-zero integer D we would like to solve (9). We can certainly write down all solutions with
y = 0 or with x2|D. We can also solve (at least in principle) all cases where p violates condition (6)
by reducing to Thue equations as in § 3. We can thus reduce to (9) and assume that p satisfies
condition (6).
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Next, we can write down a list of signatures (d1, d2) satisfying conditions (i)–(v) of Lemma 4.1.
We reduce the solution of (9) to solving (10) for each signature (d1, d2). Now we associate with the
signature (d1, d2) one or more Frey curves Et and levels N , so that any solution to (10) arises from
some newform f at level N via the Frey curve Et.

Finally (and this is to come) we must show how to solve (10) under the assumption that the
solution arises from a newform f via a Frey curve Et. If we can do this for each newform f at
the necessary level and Frey curve Et, then we will have completed the solution of our (3).

As we shall see, the assumption that a solution arises from a particular newform is a very strong
one, for it imposes congruence conditions on t modulo all but finitely many primes l.

6.2 Congruences
For an elliptic curve E and a prime of good reduction l we write �E(Fl) for the number of points
on E over the finite field Fl, and let al(E) = l + 1 − �E(Fl).

Lemma 6.3. With notation as above, suppose that the Galois representation ρp(Et) arises from a
cuspidal newform with Fourier expansion around infinity

f = q +
∑
n�2

cnqn, (11)

of level N (given by Proposition 6.2) and defined over a number field K/Q. Then there is a place
P of K above p such that for every prime l �2pD we have

al(Et) ≡ cl (mod P), if t2 + d2 �≡ 0 (mod l) (or equivalently l �s),

l + 1 ≡ ±cl (mod P), if t2 + d2 ≡ 0 (mod l) (or equivalently l|s).

Proof. The lemma is standard (see [Ser87, p. 196], [BS04, p. 7], [Kra98, Proposition 5.4], etc.). The
conditions l �2D and l �s together imply that l is a prime of good reduction for Et, whereas
the conditions l �2D and l|s imply that l is a prime of multiplicative reduction.

When the newform f is rational, there is an elliptic curve E defined over Q whose conductor is
equal to the level of the newform f such that al(E) = cl for all primes of good reduction l. In this
case we can be a little more precise than in Lemma 6.3, thanks to a result of Kraus and Oesterlé.

Lemma 6.4. With notation as above, suppose that the Galois representation ρp(Et) arises from a
rational cuspidal newform f corresponding to an elliptic curve E/Q. Then for all primes l �2D we
have

al(Et) ≡ al(E) (mod p), if t2 + d2 �≡ 0 (mod l) (or equivalently l �s),

l + 1 ≡ ±al(E) (mod p), if t2 + d2 ≡ 0 (mod l) (or equivalently l|s).

Proof. This lemma does appear to be a special case of Lemma 6.3; however, we do allow in this
lemma the case l = p, which was excluded before. In fact, Lemma 6.3 together with a result of
Kraus and Oesterlé [KO92, Proposition 3] implies that the representations ρp(Et) and ρp(E) are
semi-simply isomorphic. In this case the result of Kraus and Oesterlé also tells us that al(Et) ≡ al(E)
(mod p) if the prime l is a prime of good reduction for both curves, and al(Et)al(E) ≡ l+1 (mod p)
if l is a prime of good reduction for one of them and a prime of multiplicative reduction for the other.
Now, because l �2D we see that l �N , the conductor N of E (which is also the level of the newform
f as given by Proposition 6.2). If l|s, then l is a prime of multiplicative reduction for Et and then
al(Et) = ±1. The lemma follows.
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7. Eliminating exponents: Method I

We now focus on equations of the form (10) where, as always, p satisfies (6). Proposition 6.2 tells us
that if (t, s, p) is a solution to (10), then it arises from a newform of a certain level (or levels) and all
of these can be determined. Let us say that these newforms are f1, . . . , fn. Then to solve (10) it is
sufficient to solve it, for each i, under the assumption that the solution arises from the newform fi.
We give three methods for attacking (10) under the assumption that the solution arises from a
particular newform f .

If successful, the first method will prove that (10) has no solutions except possibly for finitely
many exponents p and these are determined by the method. This method is actually quite standard.
As far as we know the basic idea is originally due to Serre [Ser87, pp. 203–204]. It is also found in
Bennett and Skinner [BS04, Proposition 4.3]. We shall, however, give a more careful version than
is found in the literature, thereby maximizing the probability of success.

Proposition 7.1 (Method I). Let D, d1, d2 be a triple of integers satisfying Lemma 4.1(i)–(v).
Let f be a newform with Fourier expansion as in (11) having coefficients in the ring of integers of
a number field K, and let NK/Q denote the norm map. If l �2D is prime, let

B′′
l (f) = lcm{NK/Q(al(Et) − cl) : t ∈ Fl, t

2 + d2 �≡ 0 (mod l)},

B′
l(f) =




B′′
l (f), if

(
−d2

l

)
= −1,

lcm{B′′
l (f),NK/Q(l + 1 + cl),NK/Q(l + 1 − cl)}, if

(
−d2

l

)
= 1,

and

Bl(f) =

{
lB′

l(f), if K �= Q,

B′
l(f), if K = Q.

If p satisfies condition (6), and if (t, s, p) is a solution to (10) arising from the newform f , then p
divides Bl(f).

Proof. The proposition follows almost immediately from Lemmas 6.3 and 6.4.

Under the assumptions made (in this proposition), Method I eliminates all but finitely many
exponents p, provided of course that Bl(f) is non-zero. Accordingly, we shall say that Method I
is successful if there exists some prime l �2D so that Bl(f) �= 0. There are two situations where
Method I is guaranteed to succeed.

• If the newform f is not rational. In this case, for infinitely many primes l, the Fourier coefficient
cl �∈ Q and so all the differences al(Et) − cl and l + 1 ± cl are certainly non-zero, immediately
implying that Bl(f) �= 0.

• Suppose that the newform f is rational and so corresponds to an elliptic curve E defined
over Q. Suppose that E has no non-trivial 2-torsion. By the Čebotarev Density Theorem we
know that �E(Fl) is odd for infinitely many primes l. Let l �2D be any such prime. From
the models for the Frey curves Et in Tables 1–3 we see that Et has non-trivial 2-torsion,
and so l + 1 − al(Et) = �Et(Fl) is even for any value of t ∈ Fl, t2 + d2 �= 0. In this case
al(Et)− cl = al(Et)− al(E) must be odd and cannot be zero. Similarly, the Hasse–Weil bound
|cl| � 2

√
l implies that l + 1 ± cl �= 0. Thus Bl(f) is non-zero in this case and Method I is

successful.
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8. Eliminating exponents: Method II

The second method is adapted from the ideas of Kraus [Kra98] (see also [SC03]). It can only be
applied to one prime (exponent) p at a time and, if successful, it does show that there are no
solutions to (10) for that particular exponent.

Let us briefly explain the idea of this second method. Suppose that f is a newform with Fourier
expansion as in (11) and suppose that p � 7 is a prime. We are interested in solutions to (10) arising
from f . Choose a small integer n so that l = np + 1 is prime with l �D. Suppose that (t, s) is a
solution to (10) arising from f . Working modulo l we see that d2

1t
2 + D = yp is either 0 or an nth

root of unity. (Indeed (yp)n = yl−1 ≡ 0 or 1 (mod l).) As n is small we can list all such t in Fl,
and compute cl and al(Et) for each t in our list. We may then find that for no t in our list are the
relations in Lemma 6.3 satisfied. In this case we have a contradiction and we deduce that there are
no solutions to (10) arising from f for the exponent p.

Let us now write this formally. Suppose that p � 7 is a prime number and n an integer such
that l = np + 1 is also prime and l �D. Define

µn(Fl) = {ζ ∈ F∗
l : ζn = 1} and A(n, l) =

{
ζ ∈ µn(Fl) :

(
ζ − D

l

)
= 0 or 1

}
.

For each ζ ∈ A(n, l), let δζ be an integer satisfying

δ2
ζ ≡ (ζ − D)/d2

1 (mod l).

It is convenient to write al(ζ) for al(Eδζ
). We can now give our sufficient condition for the insolubility

of (10) for the given exponent p.

Proposition 8.1 (Method II). Let D, d1, d2 be a triple of integers satisfying Lemma 4.1(i)–(v),
and let p � 7 be a prime satisfying condition (6). Let f be a newform with Fourier expansion as
in (11) defined over a number field K. Suppose that there exists an integer n � 2 satisfying the
following conditions.

(a) The integer l = np + 1 is prime, and l �D.

(b) Either (−d2
l ) = −1, or p �NK/Q(4 − c2

l ).
(c) For all ζ ∈ A(n, l) we have{

p �NK/Q(al(ζ) − cl), if l ≡ 1 (mod 4),
p �NK/Q(al(ζ)2 − c2

l ), if l ≡ 3 (mod 4).

Then (10) does not have any solutions for the given exponent p arising from the newform f .

Proof. Suppose that the hypotheses of the proposition are satisfied and that (t, s) is a solution
to (10).

First we show that t2 + d2 �≡ 0 (mod l). Suppose otherwise. Thus t2 + d2 ≡ 0 (mod l) and so
l|s. In this case (−d2

l ) = 1 and from (b) we know that p does not divide NK/Q(4− c2
l ). However, by

Lemma 6.3 we know that ±cl ≡ l + 1 ≡ 2 (mod P) for some place P of K above p and we obtain
a contradiction showing that t2 + d2 �≡ 0 (mod l).

From (10) and the definition of e in (8), we see the existence of some ζ ∈ A(n, l) such that

d2
1t

2 + D ≡ ζ (mod l) and t ≡ ±δζ (mod l).

Replacing t by −t in the Frey curve Et has the effect of twisting the curve by −1 (this can be easily
verified for each Frey curve in Tables 1–3). Thus al(ζ) = al(Et) if l ≡ 1 (mod 4) and al(ζ) = ±al(Et)
if l ≡ 3 (mod 4). Moreover, by Lemma 6.3, al(Et) ≡ cl (mod P) for some place P of K above p.
This clearly contradicts (c). Hence, there is no solution to (10) arising from f for the exponent p.
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If the newform f is rational and moreover corresponds to an elliptic curve with 2-torsion, then it
is possible to strengthen the conclusion of Proposition 8.1 by slightly strengthening the hypotheses.
The following variant is far less costly in computational terms as we explain below.

Proposition 8.2 (Method II). Let D, d1, d2 be a triple of integers satisfying Lemma 4.1(i)–(v), and
let p be a prime satisfying condition (6). Let f be a rational newform corresponding to elliptic curve
E/Q with 2-torsion. Suppose that there exists an integer n � 2 satisfying the following conditions.

(a) The integer l = np + 1 is prime, l � p2/4 and l �D.

(b) Either (−d2
l ) = −1, or al(E)2 �≡ 4 (mod p).

(c) For all ζ ∈ A(n, l) we have {
al(ζ) �= al(E), if l ≡ 1 (mod 4),
al(ζ) �= ±al(E), if l ≡ 3 (mod 4).

Then (10) does not have any solutions for the given exponent p arising from the newform f .

Proof. Comparing this with Proposition 8.1 we see that it is sufficient to show, under the additional
assumptions, that if al(ζ)2 ≡ al(E)2 (mod p) then al(ζ) = ±al(E), and if al(ζ) ≡ al(E) (mod p)
then al(ζ) = al(E).

Suppose that al(ζ)2 ≡ al(E)2 (mod p) (the other case is similar). Hence, al(ζ) ≡ ±al(E)
(mod p). Now note that both elliptic curves under consideration here have 2-torsion. Hence, we
can write al(ζ) = 2b1 and al(E) = 2b2 for some integers b1 and b2. Moreover, by the Hasse–Weil
bound we know that |bi| �

√
l. Thus

b1 ≡ ±b2 (mod p) and |b1 + b2|, |b1 − b2| � 2
√

l < p

as l < p2/4. Thus, b1 = ±b2 and this completes the proof.

It remains to explain how this improves our computation. To apply Proposition 8.1 for some
p we need to find a prime l satisfying conditions (a)–(c). The computationally expensive part is
to compute al(E) = cl and al(ζ) for all ζ ∈ A(n, l). Let us, however, consider the application
of Proposition 8.2 rather than Proposition 8.1. The computation proceeds as before by checking
conditions (a), (b) first. When we come to (c), we note that what we have to check is that{

�Eζ(Fl) �= l + 1 − al(E), if l ≡ 1 (mod 4),
�Eζ(Fl) �= l + 1 ± al(E), if l ≡ 3 (mod 4),

for each ζ ∈ A(n, q). Rather than computing al(ζ) for each such ζ, we first pick a random point
in Eζ(Fl) and check whether it is annihilated by l + 1 − al(E) if p ≡ 1 (mod 4) and either of the
integers l + 1± al(E) if p ≡ 3 (mod 4). Only if this is the case do we need to compute al(ζ) to test
condition (c). In practice, for primes p ≈ 109, this brings a 10-fold speed-up in program run time
for Method II.

9. Eliminating exponents: Method III

Occasionally, Methods I and II fail to establish the non-existence of solutions to an equation of the
form (10) for a particular exponent p even when it does seem that this equation has no solutions.
The reasons for this failure are not clear to us. We, shall, however give a third method, rather
similar in spirit to Kraus’ method (Method II), but requiring stronger global information furnished
by Proposition 3.1.

Suppose that D, d1, d2 are integers satisfying conditions (i)–(v) of Lemma 4.1. Let Et be one of
the Frey curves associated with (10) and let f be a newform of the level predicted by Proposition 6.2
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with Fourier expansion as in (11), defined over a number field K. Define Tl(f) to be the set of τ ∈ Fl

such that either:

• p|NK/Q(al(Eτ ) − cl) and τ2 + d2 �≡ 0 (mod l); or
• p|NK/Q(l + 1 ± cl) and τ2 + d2 ≡ 0 (mod l).

We suppose that −D is not a square and follow the notation of § 3. Fix a prime p satisfying (6).
Suppose that l is a prime satisfying the following conditions.

(a) l �2D.
(b) l = np + 1 for some integer n.
(c) (−D2

l ) = 1, thus l splits in L = Q(
√
−D2), say (l) = l1l2.

(d) Each γ ∈ Γ is integral at l; what we mean by this is that each γ belongs to the intersection of
the localizations Ol1 ∩ Ol2 .

We denote the two natural reduction maps by θ1, θ2 : Ol1 ∩ Ol2 → Fl. These of course correspond
to the two squareroots for −D2 in Fl and are easy to compute.

Now let Γl be the set of γ ∈ Γ for which there exists τ ∈ Tl(f) such that:

• (d1τ + D1θ1(
√
−D2))n ≡ θ1(γ)n or 0 (mod l); and

• (d1τ + D1θ2(
√
−D2))n ≡ θ2(γ)n or 0 (mod l).

Proposition 9.1 (Method III). Let p be a prime satisfying condition (6). Let S be a set of primes
l satisfying the conditions (a)–(d) above. With notation as above, if the newform f gives rise to
a solution (t, s) to (10), then d1t + D1

√
−D2 = γβp for some β ∈ O and some γ ∈

⋂
l∈S Γl. In

particular, if
⋂

l∈S Γl is empty, then the newform f does not give rise to any solution to (10) for
this exponent p.

Proof. Suppose that (t, s) is a solution to (10) arising from newform f via the Frey curve Et.
Clearly θ1(t) = θ2(t) is simply the reduction of t modulo l. Let τ = θ1(t) = θ2(t) ∈ Fl. It follows
from Lemma 6.3 that τ ∈ Tl(f). Let (x, y) be the solution to (9) corresponding to (t, s). Thus
x = d1t. We know by Proposition 3.1 that

d1t + D1

√
−D2 = γβp,

for some γ ∈ Γ and β ∈ O. Applying θi to both sides and taking nth powers (where we recall that
l = np + 1) we obtain

(d1τ + D1θi(
√

−D2))n ≡ θi(γ)nθi(β)l−1 (mod l) with θi(β)l−1 ≡ 0 or 1 (mod l).

Thus γ ∈ Γl as defined above. The proposition follows.

10. Examples

It is clear that our three modular methods require computations of newforms of a given level. For-
tunately the computer algebra suit MAGMA has a package completely devoted to such computations;
the theory for these computations is explained by Cremona [Cre96] for rational newforms, and by
Stein [Ste05b] in the general case. As an alternative, we could have used Stein’s Modular Forms
Database [Ste05a].

Example 2 (Absence of newforms). Lemma 4.1 and Proposition 6.2 lead us to associate solutions to
(9), where p satisfies (6), with newforms of certain levels. If there are no newforms of the predicted
levels, we immediately deduce that there are no solutions to (9). With the help of a MAGMA program
we found all D = 1, 2, . . . , 100 where there are no newforms at the predicted levels. We deduce the
following result.
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Corollary 10.1. Let D be an integer belonging to the list

4, 16, 32, 36, 64.

Then (9) does not have any solutions with p satisfying condition (6).

This Corollary does not add anything new, as (1) has already been solved by Cohn’s method
for D = 4, 16, 32, 36, 64 (but see [Ivo03, Sik03, Le02]).

Example 3. Corollary 5.2 solves (3) for all values of D in the range (2) except for 21 values; these
are the 19 values listed in (5) plus D = 55, 95. As indicated in § 2 the cases D = 55 and 95 have
been solved by Bennett and Skinner. It is however helpful to look at the case D = 95 again as
it shows how Methods I and III work together in harmony. There is only one possible signature
(d1, d2) = (1, 95). Thus, t = x, s = y and we need to solve the equation

t2 + 95 = sp, where p � 7. (12)

As d1 = 1, it follows from Corollary 5.2 that y is even and so t = x is odd. Replacing t by −t
if necessary, we can assume that t ≡ 1 (mod 4). Table 1 leads us to associate the solution (t, s, p)
with the Frey curve

Et : Y 2 + XY = X3 +
(

t − 1
4

)
X2 +

(
t2 + 95

64

)
X.

From Proposition 6.2, we know that any solution to (12) arises from a newform of level 190. Using
MAGMA we find that there are, up to Galois conjugacy, precisely four newforms at level 190. These
are

f1 = q − q2 − q3 + q4 − q5 + q6 − q7 + O(q8),

f2 = q + q2 − 3q3 + q4 − q5 − 3q6 − 5q7 + O(q8),

f3 = q + q2 + q3 + q4 + q5 + q6 − q7 + O(q8),

f4 = q − q2 + φq3 + q4 + q5 − φq6 + φq7 + O(q8), where φ2 + φ − 4 = 0.

The first three newforms above are rational and so correspond to the three isogeny classes of
elliptic curves of conductor 190. It turns out that none of these elliptic curves have non-trivial
2-torsion. By the remarks made after Proposition 7.1 we know that Method I will be successful in
eliminating all but finitely many exponents p. Indeed we find (in the notation of Proposition 7.1)
that B3(f1) = B3(f3) = 15. Thus, we know that no solutions to (12) arise from the newforms
f1 or f3, because otherwise, by Proposition 7.1, p|15 which contradicts p � 7. We also find that
B3(f4) = 24 × 3 and B7(f4) = 24 × 7. Thus no solution arises from f4. But,

B3(f2) = 3 × 7, B7(f2) = 32 × 5 × 7, B11(f2) = 0,

B13(f2) = 3 × 5 × 7 × 13, B17(f2) = 32 × 7 × 11.

We deduce that there are no solutions arising from f2 with exponent p > 7. It does, however, seem
likely that there is a solution with p = 7. Moreover, an attempt to prove that there is no solution
with p = 7 using Method II fails: we did not find any integer 2 � n � 100 satisfying the conditions
of Proposition 8.1.

We apply Method III (and follow the notation of § 9). Write

ω =
1 +

√
−95

2
.

Taking S = {113, 127, 239, 337, 491} we find that⋂
l∈S

Γl =
{
−528 − 2ω

2187

}
.
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Thus if we have any solutions at all then, by Proposition 9.1, we know that

(t − 1) + 2ω =
(
−528 − 2ω

2187

)
(U + V ω)7,

for some integers U , V . Equating imaginary parts and simplifying we get

−U7 − 1855V U6 − 5061V 2U5 + 214 165V 3U4 + 416 605V 4U3

− 2 834 013V 5U2 − 2 944 375V 6U + 2818 247V 7 = 2187.

Using pari/gp we find that the only solution to this Thue equation is given by U = −3, V = 0.
This shows that (t, s) = (529, 6).

The reader will notice that (t, s) = (−529, 6) is also a solution to (12) with p = 7 but it seems
to have been ‘missed’ by the method. This is not the case; we are assuming that the sign of t has
been chosen so that t ≡ 1 (mod 4). The solution (t, s) = (−529, 6) arises from some other newform
(probably at some different level) and via a different Frey curve that we have not determined.

Example 4. For our last example we look at the case where D = 25. This, like 18 other cases, must
be resolved by a combination of the modular approach and our lower bound for linear forms in
three logarithms which is to come. We assume that p � 7 and so p satisfies conditions (6). There
are now two possible signatures (d1, d2) = (1, 25) and (5, 1) satisfying the conditions of Lemma 4.1.
However, by Corollary 5.2, we may suppose that d1 > 1 and so d1 = 5, d2 = 1. We write t = x/5,
s = y/5 where we know that t, s are integral by Lemma 4.1. Equation (10) becomes

t2 + 1 = 5p−2sp, t �= ±1.

Following Table 1, we associate with any solution to this equation the Frey curve

Et : Y 2 = X3 + 2tX2 − X,

and we know by Proposition 6.2 that any solution must arise from a newform of level 160. Using the
computer algebra system MAGMA we find that there are, up to Galois conjugacy, three such newforms:

f1 = q − 2q3 − q5 − 2q7 + O(q8),

f2 = q + 2q3 − q5 + 2q7 + O(q8),

f3 = q + 2
√

2q3 + q5 − 2
√

2q7 + O(q8).

The first two newforms are rational, corresponding respectively to elliptic curves 160A1 and 160B1
in Cremona’s tables [Cre96]. The third has coefficients in K = Q(

√
2) and is straightforward to

eliminate using Method I. In the notation of Proposition 7.1 we find that if f3 does give rise to any
solutions (t, s, p) then p|B3(f3) = 24. This is impossible as p � 7 and so f3 does not give rise to
any solutions.

We were unable to eliminate newforms f1 and f2 using Method I. Instead using our implemen-
tation of Method II in MAGMA we showed that there are no solutions arising from either form with
7 � p � 100. With our implementation of the improved Method II (Proposition 8.2) in pari/gp
we showed that there are no solutions with 100 � p � 163 762 845; this took roughly 26 hours on a
2.4 GHz Pentium IV PC. The choice of where to stop the computation is of course not arbitrary, but
comes out of our bound for the linear form in logarithms. We will later prove that p � 163 762 845
thereby completing the resolution of this case.

11. Results III

We applied the methods of the previous sections to solve all (3) with D is our range (2).
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Table 4. Computational details for Lemma 11.1 and its proof.

D (d1, d2) Ea p0 Machineb Time

7 (1, 7) 14A1 181 000 000 P1 26 h, 43 min
15 (1, 15) 30A1 624 271 465 S1 252 h, 50 min
18 (3, 2) 384D1, 384A1, 306 111 726 S3 293 h, 14 min

384G1, 384H1
23 (1, 23) 46A1 855 632 066 S2 477 h, 36 min
25 (5, 1) 160A1, 160B1 163 762 845 P2 25 h, 58 min
28 (2, 7) 14A1 315 277 186 P1 55 h, 41 min
31 (1, 31) 62A1 860 111 230 S3 242 h, 2 min
39 (1, 39) 78A1 852 830 725 P1 193 h, 41 min
45 (3, 5) 480B1, 480F1, 340 749 424 S1 448 h, 43 min

480G1, 480H1
47 (1, 47) 94A1 1 555 437 629 S3 451 h, 34 min
60 (2, 15) 30A1 358 541 296 S1 130 h, 30 min
63 (1, 63) 42A1 292 825 735 S1 99 h, 45 min
71 (1, 71) 142C1 2 343 468 548 S3 697 h, 26 min
72 (3, 8) 96A1, 96B1 451 620 034 S1 316 h, 27 min
79 (1, 79) 158E1 1 544 381 661 S3 448 h, 47 min
87 (1, 87) 174D1 1 148 842 108 S3 329 h, 45 min
92 (2, 23) 46A1 996 255 151 S3 285 h, 10 min
99 (3, 11) 1056B1, 1056F1 593 734 622 P2 138 h, 46 min

100 (5, 4) 20A1 163 762 845 P1 21 h, 23 min
aWe give here the Cremona code for the elliptic curves E as in his book [Cre96] and
his online tables: http://www.maths.nott.ac.uk/personal/jec/ftp/data/INDEX.html.
bThe machines are as follows: P1, 2.2 GHz Intel Pentium PC; P2, 2.4 GHz Intel Pentium
PC; S1, Dual processor 750MHz UltraSPARC III; S2, 650 MHz UltraSPARC IIe; S3,
UltraSPARCIII with 12 processors of 1050 MHz speed.

Lemma 11.1. Suppose that 1 � D � 100 and p is a prime satisfying (6). If (x, y, p) is a solution
to (3) that is not included in the table in Appendix A, then D is one of

7, 15, 18, 23, 25, 28, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100. (13)

Moreover, (x, y, p) has signature (d1, d2) and arises from an elliptic curve E and p > p0 where E,
p0 and (d1, d2) are given by Table 4.

Proof. We wrote a MAGMA program that does the following. For each D in the range (2) we write
down the set of possible signatures (d1, d2) satisfying the conditions of Lemma 4.1.

For each such pair (d1, d2) write down the (one or two) Frey curves given by Tables 1–3, bearing
in mind the information given by Corollary 5.2.

For each Frey curve we compute the conductor (given by Proposition 6.2) of the newforms giving
rise to possible solutions and then write down all of these newforms.

We attempt to eliminate each newform f using Method I. This involves searching for primes
l �2D such that (in the notation of Proposition 7.1) Bl(f) �= 0. If we are successful and find such
primes l1, . . . , lm, then by Proposition 7.1 this exponent divides all of the Bli(f), and so divides
their greatest common divisor B (say). If B is divisible by any prime p that satisfies condition (6),
then we attempt to eliminate this possible p using Method II: this involves searching for an integer
2 � n � 100 satisfying conditions (a)–(c) of Proposition 8.1. If one such n is found then we know
that there are no solutions for the exponent p. Otherwise, we apply Method III (Proposition 9.1)
to write down Thue equations leading to possible solutions.
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As predicted by the comments made after Proposition 7.1, Method I succeeded with all non-
rational newforms and all rational newforms corresponding to elliptic curves with only trivial
2-torsion (it also succeeded with some rational newforms corresponding to elliptic curves with
non-trivial 2-torsion). Indeed, we found no solutions arising from non-rational newforms for D in
our range 1 � D � 100.

We are left only with rational newforms f that correspond to elliptic curves E having some
non-trivial 2-torsion. The details of these are documented in Table 4. For primes p < 100 satisfying
condition (6) we attempt to show that there are no solutions arising from E for the particular
exponent p using Method II (as before). If this fails for a particular exponent p, then we use
Method III to write down the Thue equations leading to the possible solutions.

Our proof that p � 100 is now complete except that there are some Thue equations to solve. We
had to solve Thue equations of degree 7 for D = 7, 47, 79 and 95. These were solved using pari/gp
and the solutions are incorporated in the table in Appendix A. We also had to solve a Thue equation
of degree 11 for D = 23, of degree 17 for D = 28 and of degree 13 for D = 92. We were unable
to (unconditionally) solve these three Thue equations using the built-in functions of pari/gp. The
reason is that, in each case, it was impossible for pari/gp to prove that the system of units it had
found, although of correct rank, was maximal. We are grateful to Dr. Guillaume Hanrot for sending
us his pari program for solving Thue equations without the full unit group. This program, based
on [Han00], solved all three equations in a few minutes.

For the next step we implemented our improved Method II (Proposition 8.2) in pari/gp (see
the remark after the proof). To complete the task and show that p > p0 for any missing solution
we used our pari/gp program to disprove the existence of any missing solution for each prime
100 � p � p0. We ran this pari/gp program on various machines as indicated in Table 4. The total
computer time for this step is roughly 206 days.

Remark. The reader may be surprised that some of the computations were done in MAGMA whereas
others were carried out in pari/gp. As stated earlier, MAGMA has a package for computing modular
forms. This is essential for us and is unavailable in pari/gp.

For showing that p > p0, it is simply not practical to use MAGMA. Here we are using the improved
Method II (Proposition 8.2). The main bottleneck in Method II is computing al(E) for primes l
that can be about 1011 (recall l is a prime satisfying l ≡ 1 (mod p)). For this pari/gp uses the
theoretically slower Shanks–Mestre method [Coh93a] rather than the theoretically faster Schoof–
Elkies–Atkin [Sch95b] method used by MAGMA. However, for primes of the indicated size it seems
that pari/gp is about 10 times faster than MAGMA.

The reader may also note that two of the machines we used are multiprocessor machines. The
computation for each D could have been speeded up considerably by parallelising. We however
decided against this, so as to keep our programs simple and transparent.

12. The ‘modular’ lower bound for y

In this section we would like to use the modular approach to prove a lower bound for y with D in
the range (2). Before doing this we prove a general result for arbitrary non-zero D.

Proposition 12.1. Suppose that D is a non-zero integer, and d1, d2 satisfy Lemma 4.1(i)–(v).
Suppose that (t, s, p) is a solution to (10) arising from a rational newform f via a Frey curve Et.
Then either rad(s)|2d1 or |s| > (

√
p − 1)2.

Proof. As the newform is rational we know that the newform f corresponds to an elliptic curve
E/Q whose conductor equals the level of f .
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Suppose that rad(s) does not divide 2d1. As t and d2 are coprime we see that there is some prime
l|s so that l �2D. By Lemma 6.4 we see that p divides l + 1± al(E). It follows from the Hasse–Weil
bound that l + 1 ± al(E) �= 0, and so

p � l + 1 ± al(E) < (
√

l + 1)2,

again using Hasse–Weil. Thus l > (
√

p − 1)2. The proposition follows as l|s.
Corollary 12.2. Suppose that D is one of the values in (13). If (x, y, p) is a solution to (9) not in
the table in Appendix A, then y > (

√
p − 1)2.

Proof. Suppose that D is in the range (2) and (x, y, p) is some solution to (9) not in the table in
Appendix A. From the preceding sections we know that this solution must satisfy condition (6).
Moreover by Lemma 4.1, x = d1t and y = rad(d1)s, where (t, s, p) satisfy (10) for some d1 and d2

satisfying conditions (i)–(v) of that lemma.
We have determined, for 1 � D � 100, all solutions to (10) arising from non-rational newforms

(indeed there were none). Thus we may suppose that our putative solution arises from a rational
newform. By Proposition 12.1 we see that either |y| � |s| > (

√
p− 1)2 or rad(s)|2d1. We must prove

that the second possibility does not arise.
Suppose that rad(s)|2d1. From Lemma 4.1 we see that rad(y)|2d1. We first show that rad(y) �= 2.

For in this case we have reduced to an equation of the form x2 + D = 2m. For |D| < 296, Beukers
[Beu81, Corollary 2] shows that m � 18 + 2 log |D|/ log 2. A short MAGMA program leads us to all
the solutions to this equation for 1 � D � 100 and we find that these are already in our table in
Appendix A.

Thus, we may suppose that rad(y)|2d1 and rad(y) �= 2. An examination of the possible cases
reveals the following possibilities

D = 18, 45, 72, 99 and rad(y) = 3, D = 25, 100 and rad(y) = 5.

On removing the common factors, each case quickly reduces to an equation that has already been
solved. For example, we must solve x2 + 100 = yp under the assumption that rad(y) = 5 or
equivalently the equation x2 + 100 = 5m. Removing the common factor reduces to the equation
X2 + 4 = 5m−2. However, X2 + 4 = Y n has already been solved and only has the solutions
(X,Y, n) = (2, 2, 3), (11, 5, 3). We quickly see that the only solution to x2 + 100 = 5p is (x, p) =
(55, 5).

13. The linear form in logarithms

It is useful at this point to recap what we have done so far. We would like to complete the proof of
Theorem 1 by showing that our table in Appendix A is not missing any solutions. So let us suppose
that our table in Appendix A is missing some solution (x, y, p) to (3) for some value of D in our
range (2). We have proved (Lemma 11.1) that D is one of the values in (13). Moreover (again by
Lemma 11.1 and by Corollary 12.2), any missing solution (x, y, p) must satisfy

p > p0, y � (
√

p − 1)2, (14)

with p0 given by Table 4. Our aim is to show that p � p0: a contradiction.
From the table of values of p0 we know that

|x|, p � 108 (15)

and indeed much more, although this inequality is sufficient for much of our later work. In the
remainder of this paper we assume that D is one of the remaining values (13), and always write
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(as before) D = D2
1D2, where D2 is square-free. The triple (x, y, p) will always be a solution to (3)

supposedly missing from our table in Appendix A and hence satisfying the above inequalities.
In this section we write down the linear form in logarithms corresponding to (3) and apply

a theorem of Matveev to obtain upper bounds for the exponent p. These upper bounds obtained
from Matveev’s theorem are not small enough to contradict our lower bounds for p obtained in
Lemma 11.1, but they are needed when we come to apply our bounds for linear forms in three
logarithms given in the next section.

Lemma 13.1. Let (d1, d2) be the signature of our supposedly missing solution (x, y, p) (which we
know from Lemma 11.1). Define

d =

{
d1, for D �≡ 7 (mod 8),
2d1, for D ≡ 7 (mod 8).

(16)

Then d is a prime power, say d = qc for some prime q, where, moreover, q splits in L = Q(
√
−D2), say

(q) = qq̄. Let k0 be the smallest positive integer such that the ideal q̄k0 is principal, say q̄k0 = (α0).
Also let

k =

{
k0, if k0 is odd,

k0/2, if k0 is even,
and κ =

{
2, if k0 is odd,

1, if k0 is even,
so that k =

κk0

2
.

Then there exists γ ∈ L such that(
x − D1

√
−D2

x + D1

√
−D2

)k

= ακγp, where α = ᾱ0/α0, h(α) =
k0 log d

2
, h(γ) =

k log y

2
.

Proof. We begin with the factorization

(x + D1

√
−D2)(x − D1

√
−D2) = yp.

Our first step is to show that any prime divisor q of y splits in L. Suppose otherwise, then we may
write (q) = q or (q) = q2 for some prime ideal q satisfying q̄ = q. If p = 2r+1 then clearly qr divides
both factors on the left-hand side above and so divides 2D1

√
−D2. This is impossible in view of

the fact that p is enormous and 1 � D � 100. Thus, we have shown that every prime divisor q of y
splits in L. Put

y =
∏
i∈I

qi
ai and (qi) = qiq̄i, qi �= q̄i, i ∈ I, then (x + D1

√
−D2) =

∏
i∈I

(qi
bi q̄ci

i ),

where we assume (for ease of notation) that bi � ci for all i. Thus

(x − D1

√
−D2) =

∏
i∈I

(qi
ci q̄bi

i ), with bi + ci = pai, for all i ∈ I.

Then, clearly,

d := gcd(x + D1

√
−D2, x − D1

√
−D2) =

∏
i∈I

(qiq̄i)ci =
∏
i∈I

(qi)ci .

This shows that d = (d) where d ∈ Z. We would like to calculate this d and verify that its value
is in agreement with (16). From the definition of d we see that d|2x and d|2D1. However, by our
definition of signature, gcd(x2,D) = d2

1. It follows that d2|4d2
1 and so d|2d1. However, d1|x and

d1|D1. Hence, d1|d and so d1|d. Thus, d = d1 or d = 2d1. We note the following cases.

• If D2 �≡ 7 (mod 8) then 2 �y. Thus 2 �d and so d = d1.

• Suppose that D2 ≡ 7 (mod 8). Now from Lemma 4.1 and its proof we know that D = d2
1d2

and x = d1t where gcd(t, d2) = gcd(d1, d2) = 1. Clearly d2 = d2
3D2 with d3 = D1/d1 integral.
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Suppose first that d1 is even. It follows easily that t, d2 are odd and

(d) = d = 2d1

(
t + d3

√
−D2

2
,
t − d3

√
−D2

2

)
.

Hence (2d1)|d and so d = 2d1.
• The only case left to consider is D2 ≡ 7 (mod 8) and d1 is odd. By examining Table 4 we see

that d1 = 1. Thus, 2|y by Corollary 5.2. Clearly x is odd and the same argument as above
shows that d = 2 = 2d1.

This proves that d satisfies (16). By looking again at the possible values of d1 in Table 4 we see that
d is a prime power in all cases. Let j ∈ I such that d = q

cj

j . Thus, ci = 0 for all j �= i. Then

(x + D1

√
−D2) = q̄

cj

j · qj
bj ·

∏
j �=i

qi
pai ,

whence
(x + D1

√
−D2) = (q̄jqj

−1)cj ·
∏
i∈I

qi
pai = (aā−1)gp,

where a and g are integral ideals with a = q̄
cj

j , N (a) = qj
cj = d, N (g) = y, and N denotes the

norm. Thus, as ideals, (
x − D1

√
−D2

x + D1

√
−D2

)
= (āa−1)2(ḡg−1)p.

We define k0, k, κ, α0 as in the statement of the lemma. Thus, ak0 = (α0) and we have the
relation (between ideals)

(x + D1

√
−D2)k = (a/ā)kgkp = a2k(N (a))−kgkp = (α0)κ(d)−kgkp.

However, p is an enormous prime certainly not dividing the class number. This shows that gk is
also principal, gk = (γ0) say, where γ0 is an algebraic integer chosen so that the following equality
of elements of L holds

(x + D1

√
−D2)k = ακ

0d−kγp
0 , with N (α0) = dk0 and N (γ0) = yk.

Put α = ᾱ0/α0 and γ = ±γ̄0/γ0. The proof of the lemma is complete except for the statements
about the heights of α, γ. These follow from Lemma 13.2 below.

Lemma 13.2. Let α be an algebraic number whose conjugates are all (including α itself) of modulus
equal to 1, then h(α) = (log a)/deg α, where a is the leading coefficient of the minimal polynomial
of α. In particular, if α = ᾱ0/α0 where α0 is a non-real quadratic irrationality, then h(α) =
1
2 logN (α0).

Proof. Set d = deg α. By hypothesis α is a root of a polynomial of Z[X] of the form P (X) =
aXd + · · · . We have h(α) = 1

d log M(P ), where M is Mahler’s measure, and the first result easily
follows because the roots of P are of modulus 1. This proves the first assertion. The (easy) proof of
the second assertion is omitted.

We now write the linear form in three logarithms. Define

Λ = log
(

x − D1

√
−D2

x + D1

√
−D2

)
,

where we have taken the principal determination of the logarithm.

Lemma 13.3. We have

log |Λ| � −p

2
log y + log(2.2D1

√
D2).

51

https://doi.org/10.1112/S0010437X05001739 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001739


Y. Bugeaud, M. Mignotte and S. Siksek

Proof. We will rely on the lower bounds (15). Clearly∣∣∣∣x − D1

√
−D2

x + D1

√
−D2

− 1
∣∣∣∣ < 2

D1

√
D2

|x| .

A standard inequality [Sma98, Lemma B.2] shows that

|Λ| < 2.1
D1

√
D2

|x| ,

so that

log |Λ| < −log|x| + log(2.1D1

√
|D2|).

Using the fact that yp − x2 = D and a similar argument to that above, we deduce the lemma.

To bound p we use the theory of linear forms of (at most three) logarithms. We need the special
case of three logarithms of a theorem of Matveev.

Theorem 2 (Matveev). Let λ1, λ2, λ3 be Q-linearly independent logarithms of non-zero algebraic
numbers and let b1, b2, b3 be rational integers with b1 �= 0. Define αj = exp(λj) for j = 1, 2, 3 and

Λ = b1λ1 + b2λ2 + b3λ3.

Let D be the degree of the field Q(α1, α2, α3) over Q. Put χ = [R(α1, α2, α3) : R]. Let A1, A2, A3

be positive real numbers, which satisfy

Aj � max{Dh(αj), |λj |, 0.16} (1 � j � 3).

Assume that B � max{1,max{|bj |Aj/A1; 1 � j � 3}}. Then

log |Λ| > −C1D2A1A2A3 log(1.5eDB log(eD)),

where

C1 =
5 × 165

6χ
e3(7 + 2χ)

(
3e
2

)χ

(20.2 + log(35.5D2 log(eD))).

In particular, for D = 2 and χ = 2, this gives

log |Λ| > −1.807 41 × 1011A1A2A3 log(13.807 36B). (17)

For a proof see [Mat00].

13.1 A preliminary bound for p

It follows from Lemma 13.1 that

kΛ = κ log α + p log γ + iqπ = κ log α + p log γ + r log(−1), r ∈ Z,

which appears as a linear form of logarithms. However, a small transformation of this form leads to
better estimates. Write

kΛ = κ log(ε1α) + p log(ε2γ) + iqπ, q ∈ Z,

where ε1 and ε2 = ±1 are chosen so that |log(ε1α)| < π/2 and |log(ε2γ)| < π/2, where we take
principal values for the logarithms and q such that |Λ| is minimal.

Remark. Indeed, we can take any roots of unity in L for ε1 and ε2. The only relevant case for
our set of outstanding values of D are D = 25, 100, where L = Q(

√
−1), whence we can realize

|log(ε1α)| < π/4 and |log(ε2γ)| < π/4, and we write

Λ = 2 log α + p log γ + q log ζ, where ζ = eiπ/2.
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We now return to the general case. By Lemma 13.3

log |kΛ| � −p

2
log y + log(2.2kD1

√
D2).

Our lower bounds for x, y and p imply that log |kΛ| is very small and it is straightforward to deduce
that |r| � (p + 1)/2. We can write kΛ in the form

kΛ = b1λ1 + b2λ2 + b3λ3

with b1 = κ (= 1 or 2), α1 = ε1α, b2 = p, α2 = ε2γ, b3 = q, α3 = −1 and

h(α1) =
k

κ
log d, λ1 = log α1, h(α2) =

k log y

2
, |λ2| < π/2, h(α3) = 0, λ3 = iπ,

except for the case L = Q(
√
−1) studied in the previous remark where λ3 = iπ/2.

Applying Theorem 2, we have D = χ = 2 and we can take

A1 = max
{

2k log d

κ
,
π

2

}
, A2 = max

{
k log y,

π

2

}
, A3 = π

and (using some change of notation in Theorem 2) B = p + 1 (this choice of B is justified by the
inequality |q| � (p + 1)/2 proved above), and we get

p � C2k
2 log(2D1) log p.

This implies p � C3k
2 log(2D1) log(k2 log(2D1)), and thus

p � C4D2 log(2D1) log(D2 log(2D1)), (18)

where the constants are easily made explicit.

Lemma 13.4. Suppose that D is one of the remaining values (13) and (x, y, p) is a solution to (9)
missing from our table in Appendix A.

• If D = 7 then p < 6.81 × 1012.

• Otherwise, if D is square-free, then p < 1.448 × 1015.

• For other values of D, we have p < 3.966 × 1014.

Proof. This is a simple application of Matveev’s Theorem 2. If D = 7 it is easy to show that the α0

arising in Lemma 13.1 is (up to conjugation) (1 +
√
−7)/2, we know that k = 1; thus N (α0) = 2

and 
(log α0) = 1.209 429 202 8 . . . . Then we can apply (17) with A1 = π/2, A2 = log y, log A3 = π
and B = p + 1. After a few iterations we get the stated bound on p.

In the application of Theorem 2, we can take, for all the square-free values of D,

A1 =

{
7 log 2, if k0 is odd,
8 log 2, if k0 is even,

A2 =

{
7 log y, if k0 is odd,
4 log y, if k0 is even,

A3 = π,

so that A1A2 � 49 log 2 × log y and then we get p < 1.448 × 1015.

For all the remaining values of D, we can take

A1 =




log 10, if h = 1,
π/2, if h = 2,
3 log 2, if h = 3,

A2 =




log y, if h = 1,
log y, if h = 2,
3 log y, if h = 3,

A3 = π,

so that A1A2 � 9 log 2 × log y, and we get now p < 3.966 × 1014.
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14. A new estimate on linear forms in three logarithms

14.1 Statement of the result
We shall apply the following theorem.

Theorem 3. We consider three non-zero algebraic numbers α1, α2 and α3, all �= 1, which are either
all real or all complex of modulus one. Moreover, we assume that{

either α1, α2 and α3 are multiplicatively independent, or

two multiplicatively independent, the third a root of unity �= 1.
(M)

We also consider three non-zero rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1 and the linear
form

Λ = b1 log α1 + b2 log α2 + b3 log α3 �= 0,
where the log αi are arbitrary determinations of the logarithm, but which are all real or all purely
imaginary. Without loss of generality, we assume that

b2|log α2| = |b1 log α1| + |b3 log α3| ± |Λ|.
Let K, L, R, R1, R2, R3, S, S1, S2, S3, T , T1, T2, T3 be rational integers that are all � 3, with

L � 5, R > R1 + R2 + R3, S > S1 + S2 + S3, T > T1 + T2 + T3.

Let ρ > 2 be a real number. Assume first that(
KL

2
+

L

4
−1− 2K

3L

)
log ρ � (D+1) log N +gL(a1R+a2S+a3T )+D(K−1) log b−2 log(e/2), (19)

where N = K2L, D = [Q(α1, α2, α3) : Q]/[R(α1, α2, α3) : R], e = exp(1),

g =
1
4
− N

12RST
, b = (b2η0)(b2ζ0)

(K−1∏
k=1

k!
)−4/K(K−1)

,

with

η0 =
R − 1

2
+

(S − 1)b1

2b2
, ζ0 =

T − 1
2

+
(S − 1)b3

2b2
,

and

ai � ρ|log αi| − log |αi| + 2Dh(αi), i = 1, 2, 3.
If, for some positive real number χ and V := ((R1 + 1)(S1 + 1)(T1 + 1))1/2:

(i) (R1 + 1)(S1 + 1)(T1 + 1) > K max{R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χV };
(ii) Card{αr

1α
s
2α

t
3 : 0 � r � R1, 0 � s � S1, 0 � t � T1} > L;

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2;
(iv) Card{αr

1α
s
2α

t
3 : 0 � r � R2, 0 � s � S2, 0 � t � T2} > 2KL; and

(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L;

then either

Λ′ > ρ−KL,

where

Λ′ = |Λ| · max
{

LReLR|Λ|/(2b1)

2|b1|
,
LSeLS|Λ|/(2b2)

2|b2|
,
LTeLT |Λ|/(2b3)

2|b3|

}
,

or at least one of the following conditions (C1), (C2), (C3) hold:

|b1| � Ri and |b2| � Si and |b3| � Ti, (i = 1, 2) (Ci)
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(C3) either there exist two non-zero rational integers r0 and s0 such that

r0b2 = s0b1,

with

|r0| � BS :=
(R1 + 1)(T1 + 1)

χV − max{R1, T1}
and |s0| � BR :=

(S1 + 1)(T1 + 1)
χV − max{S1, T1}

,

or there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy, for δ = gcd(r1, s1),

0 < |r1s1|/δ � BT :=
(R1 + 1)(S1 + 1)

χV − max{R1, S1}
, |s1t1|/δ � BR and |r1t2|/δ � BS.

Proof. A detailed proof can be found in [Mig]. It contains many technical improvements when
compared with the result proved in [BMS], but the main progress is a zero-lemma due to Laurent
[Lau03], which improves [Gou02] and provides an important improvement on the zero-lemma used
in our previous paper [BMS].

14.2 How to use Theorem 3
To apply the theorem, we consider an integer L � 5 and real parameters m > 0, ρ > 2 (then one
can define the ai) and we put

K = �mLa1a2a3�, with ma1a2a3 � 2.

To simplify the presentation, we also assume m � 1 and a1, a2, a3 � 1, and put

R1 = �c1a2a3�, S1 = �c1a1a3�, T1 = �c1a1a2�,
R2 = �c2a2a3�, S2 = �c2a1a3�, T2 = �c2a1a2�,
R3 = �c3a2a3�, S3 = �c3a1a3�, T3 = �c3a1a2�,

where the ci satisfy the conditions (i)–(v) of the theorem.
Clearly, condition (i) is satisfied if

(c3
1(a1a2a3)2)1/2 � χma1a2a3L, c2

1 · a � 2mL, where a = min{a1, a2, a3}.
Condition (ii) is true when 2c2

1a1a2a3 · min{a1, a2, a3} � L; we can take

c1 = max{(χmL)2/3, (2mL/a)1/2}.
To satisfy (iii) and (iv) we can take

c2 = max{21/3(mL)2/3,
√

m/aL}.
Finally, because of the hypothesis (M), condition (v) holds for

c3 = (6m2)1/3L.

Remark. When α1, α2, α3 are multiplicatively independent then it is enough to take c1 and c3 as
above and c2 = 21/3(mL)2/3.

Then we have to verify the condition (19). When this inequality holds, one obtains the lower
bound |Λ′| > ρ−KL and we get

log |Λ| > −KL log ρ − log(max{R,S, T} · L),

except maybe if at least one of the conditions (C1), (C2) or (C3) holds.
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15. Completion of the proof of Theorem 1

Having given our new bounds for linear forms in three logarithms we now use them to complete
the proof of Theorem 1. We have indeed shown in Lemma 11.1 that if (x, y, p) is a missing solution
then p > p0 where p0 is given in Table 4. To complete the proof it is enough to show that p � p0.
In § 13 we wrote down the linear form in logarithms we obtain for each outstanding value of D.
We will content ourselves by giving the details of this calculation for D = 7. The other cases are
practically identical (but with different constants).

We have seen in Lemma 13.3 that

Λ := log
x −

√
−7

x +
√
−7

satisfies log |Λ| � −p

2
log y + log(2.2

√
7).

Writing α0 = (1 +
√
−7)/2 we saw that the linear form is given by

Λ = 2 log(ε1ᾱ0/α0) + p log(ε2γ̄/γ) + iqπ, ε1, ε2 = ±1,

for some rational integer q with |q| < p and we get

log |Λ| > −KL log ρ − log(max{R,S, T} · L),

except maybe if at least one of the conditions (C1), (C2) or (C3) holds.
Now we proceed effectively to the computation of an upper bound for p. The first step is to

recall that we have proved in Lemma 13.4, by applying Matveev’s theorem (Theorem 2), that

p < 6.81 × 1012.

We then apply our Theorem 3 with the initial condition p < 6.81 × 1012 and with the lower
bound y � 22; note that we do not yet assume our lower bound (14) obtained through the modular
approach. There are two reasons for this.

• The first reason is that we would like to demonstrate how powerful our new lower bound for
linear forms in three logarithms is, even without the help of the modular approach.

• The second reason is that when we later make the assumption (14), and apply our lower
bound for linear forms in three logarithms, the reader will appreciate the saving brought by
the ‘modular lower bound’ for y.

So for now we assume simply that y � 22, which holds because y is even, not a power of 2 and that
−7 is a quadratic residue for every odd prime factor of y (see [Les98]). In a few steps we can prove
that

p < 4.2 × 108.

The reader should compare this bound with the bound p < 6.81 × 1012 obtained by Matveev’s
theorem.

We now assume our ‘modular’ lower bound for y in (14), with p > 1.3 × 108, and then we shall
obtain a much better bound for p. We give much more detail.

We have to distinguish two cases

b1 = 2, α1 = ε′ᾱ/α, b2 = p, α2 = εγ̄/γ, b3 = q, α3 = −1, (I)

and

b1 = 2, α1 = ε′ᾱ/α, b2 = q, α2 = −1, b3 = p, α3 = εγ̄/γ. (II)

Let us first consider case (I). Applying Theorem 3 we get

p < 4.3 × 108
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with the choices L = 110, ρ = 6, m = 71.602 265 32, χ = 0.7 and

R1 = 178 896, S1 = 29587, T1 = 47734, R2 = 285 899, S2 = 47284, T2 = 76285
and R3 = 1975 684, S3 = 326 756, T3 = 527 164,

unless at least one of the conditions (C1), (C2), (C3) holds. For these values, it is clear that, because
since we know that p > 108, conditions (C1) and (C2) do not hold.1 The values of BR and BT defined
in Theorem 3 are equal to

BR = 127, BT = 483.

The first case of condition (C3) implies that p � BR = 127, a contradiction. Thus, we have to
consider the last alternative:

(t1b1 + r1b3)s1 = r1t2b2.

Putting r1 = δr′1 and s1 = δs′1 and simplifying, we get here

(2t1 + δr′1q)s
′
1 = r′1t2p.

which shows that s′1 = 1 and r′1 = 1 or 2, and gives

(2/r′1)t1 + δq = t2p, with |t2| � BT /2.

We write δΛ = δb1 log α1 + δb2 log α2 + (t2b2 − (b1/r
′
1)t1) log α3, that is

δΛ =
2
r′1

log(αr′1δ
1 /αt1

3 ) + p log(αδ
2α

t2
3 ) = a linear form in two logarithms

and we apply [LM95] (with L = 10 and ρ = 16), which now gives p < 3 × 108.
Thus, we have proved that, in case I,

p < 4.3 × 108.

Concerning case (II), we first note that in the non-degenerate case we obtain p < 4.3 × 108 as
before. Then we note that (C1) or (C2) implies that p � max{T1, T2}, (the present Ti play the role
of the previous Si, and both are bounded independently of y.) Now we study condition (C3). For
the first alternative r0b2 = s0b1, we get |q| < BR and we can apply [LM95] to the linear form in two
logarithms

Λ = (log(ε′ᾱ/α)2 + q log(−1)) + p log(εγ̄/γ),

which works quite well. Consider now the second alternative, which gives here (we have t2 �= 0: if
t2 = 0, then p < 108)

(2/r′1)t1 + δp = t2q
′, with |s1| � BS/2 and q = s′1q

′, r′1 = 1 or 2.

We write now t2Λ = t2b1 log α1 + t2b2 log α2 + (s1b3 + (b1/r
′
1)s

′
1t1) log α3, that is

t2Λ =
2
r′1

log(αr′1t2
1 α

s′1t1
3 ) + p log(αt2

2 αs1
3 )

and we apply [LM95] (again with L = 10 and ρ = 16), which now gives p < 2 × 108.
Thus, we have proved that, in all cases,

p < 4.3 × 108.

1To be more precise we can take the above values for S1, S2 and S3 independently of y but the Ri and Ti have to be
increased for y > 1.3 × 108, as can be seen on the definition of the parameters given in the previous section (a1 and
a3 are independent of y but not a2). Luckily, the larger y is, the better our resulting estimate for p will be and thus
we can always replace y by some lower bound for it.
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Iterating this process four times we obtain that, in all cases

p < 1.3 × 108,

which is indeed better than the upper bound used in the modular computation.

Remark. We note that without the modular lower bound for y we were able to show that p <
1.11 × 109, but with this modular lower bound we were able to improve this to p < 1.81 × 108.
Whilst it is certainly possible to reach the former target with the methods of this paper, it would
have taken about six times as long as it took to reach the latter. From this it is a plausible guess
that without the modular lower bound for y the computational part for the entire proof for all the
values of 1 � D � 100 might have taken at least 800 days rather than 206 days.
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Appendix A

We list all the solutions to (1) in the range 1 � D � 100.

D Solutions (|x|, |y|, n)

1 (0, 1, n)
2 (5, 3, 3)
3
4 (2, 2, 3), (11, 5, 3)
5
6
7 (1, 2, 3), (181, 32, 3), (3, 2, 4), (5, 2, 5), (181, 8, 5), (11, 2, 7), (181, 2, 15)
8 (0, 2, 3)
9

10
11 (4, 3, 3), (58, 15, 3)
12 (2, 2, 4)
13 (70, 17, 3)
14
15 (7, 4, 3), (1, 2, 4), (7, 2, 6)
16 (0, 2, 4), (4, 2, 5)
17 (8, 3, 4)
18 (3, 3, 3), (15, 3, 5)
19 (18, 7, 3), (22434, 55, 5)
20 (14, 6, 3)
21
22
23 (2, 3, 3), (3, 2, 5), (45, 2, 11)
24
25 (10, 5, 3)
26 (1, 3, 3), (207, 35, 3)
27 (0, 3, 3)
28 (6, 4, 3), (22, 8, 3), (225, 37, 3), (2, 2, 5), (6, 2, 6), (10, 2, 7), (22, 2, 9), (362, 2, 17)
29
30
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D Solutions (|x|, |y|, n)

31 (15, 4, 4), (1, 2, 5), (15, 2, 8)
32 (7, 3, 4), (0, 2, 5), (88, 6, 5)
33
34
35 (36, 11, 3)
36
37
38
39 (5, 4, 3), (31, 10, 3), (103, 22, 3), (5, 2, 6)
40 (52, 14, 3)
41
42
43
44 (9, 5, 3)
45 (96, 21, 3), (6, 3, 4)
46
47 (13, 6, 3), (41, 12, 3), (500, 63, 3), (14, 3, 5), (9, 2, 7)
48 (4, 4, 3), (148, 28, 3), (4, 2, 6)
49 (524, 65, 3), (24, 5, 4)
50
51
52
53 (26, 9, 3), (156, 29, 3), (26, 3, 6)
54 (17, 7, 3)
55 (3, 4, 3), (419, 56, 3), (3, 2, 6)
56 (76, 18, 3), (5, 3, 4)
57
58
59
60 (2, 4, 3), (1586, 136, 3), (14, 4, 4), (50 354, 76, 5), (2, 2, 6), (14, 2, 8)
61 (8, 5, 3)
62
63 (1, 4, 3), (13 537, 568, 3), (31, 4, 5), (1, 2, 6), (31, 2, 10)
64 (0, 4, 3), (0, 2, 6), (8, 2, 7)
65 (4, 3, 4)
66
67 (110, 23, 3)
68
69
70
71 (21, 8, 3), (35, 6, 4), (46, 3, 7), (21, 2, 9)
72 (12, 6, 3), (3, 3, 4)
73
74 (985, 99, 3), (13, 3, 5)
75
76 (7, 5, 3), (1015, 101, 3)
77 (2, 3, 4)
78
79 (89, 20, 3), (7, 2, 7)
80 (1, 3, 4)
81 (46, 13, 3), (0, 3, 4)
82
83 (140, 27, 3), (140, 3, 9)
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D Solutions (|x|, |y|, n)

84
85
86
87 (16, 7, 3), (13, 4, 4), (13, 2, 8)
88
89 (6, 5, 3)
90
91
92 (6, 2, 7), (90, 2, 13)
93
94
95 (11, 6, 3), (529, 6, 7)
96 (23, 5, 4)
97 (48, 7, 4)
98
99 (12, 3, 5)

100 (5, 5, 3), (30, 10, 3), (198, 34, 3), (55, 5, 5)
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