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Frames and Single Wavelets for
Unitary Groups
Eric Weber

Abstract. We consider a unitary representation of a discrete countable abelian group on a separable
Hilbert space which is associated to a cyclic generalized frame multiresolution analysis. We extend
Robertson’s theorem to apply to frames generated by the action of the group. Within this setup we use
Stone’s theorem and the theory of projection valued measures to analyze wandering frame collections.
This yields a functional analytic method of constructing a wavelet from a generalized frame multi-
resolution analysis in terms of the frame scaling vectors. We then explicitly apply our results to the
action of the integers given by translations on L2(R).

1 Introduction

The theory of wavelets and multiresolution analyses are inseparably interconnected.
Indeed, the idea of generating a wavelet from a multiresolution analysis (MRA) is the
foundation of the theory [7], [13]. However, Journé introduced a wavelet that did
not arise from a multiresolution analysis, so the standard techniques did not apply.
Later, the idea of a generalized multiresolution analysis (GMRA) was introduced by
Baggett, Medina and Merrill [3]. A GMRA is a way of associating a wavelet that
does not arise from a MRA to a multiresolution structure; however, no analogous
technique for the construction of a wavelet was presented.

The procedure utilized by Daubechies and Mallat is to start with a potential low
pass filter function which generates a scaling function, from which a wavelet can
be constructed. Recently, the work of Baggett, Courter and Merrill [2] and indepen-
dently Papadakis [14] introduced techniques for generating a wavelet from non-MRA
structures, though their approaches are different. In [2] the technique is similar to
Daubechies’ in which they start with a potential low pass filter, from which a GMRA
is constructed and then subsequently a wavelet. Whereas in [14] the technique is to
start with a generalized frame multiresolution analysis (GFMRA), presented in terms
of the frame scaling vectors, from which a low pass filter function is generated, and
then finally the wavelet(s).

We present an alternate technique for constructing wavelets. We will start with a
cyclic GFMRA and construct an explicit formula for a wavelet associated with that
GFMRA. Our methods are more functional analytic in nature: we use Stone’s theo-
rem for representations of abelian groups and the theory of spectral multiplicity [3],
[8]. In so doing, we bypass the step of producing a low pass filter. Furthermore, the
constructions will be valid for a setting more general than L2(R), though since that is
the motivating example, we shall consider such a special case.
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Frames and Single Wavelets for Unitary Groups 635

There is another important idea in the theory, that of frames. Section 2 is de-
voted to analyzing frames that arise from the action of a discrete countable abelian
group. Out of this analysis comes our construction technique, which is presented in
Section 3. Finally, in Section 4, we consider several special cases, including the tradi-
tional case of translations by integers on R. Additionally, we show by example that
our technique is not, in a certain sense, exhaustive.

Let G be a discrete, countable abelian group, and let π : G → B(H) be a unitary
representation of G on a separable Hilbert space H. Denote π(g) by πg ; let Ĝ denote

the dual group of G; let λ denote normalized Haar measure on Ĝ. By Stone’s theorem
there exists a projection valued measure p on Ĝ such that

πg =
∫

Ĝ
g(ξ) dp(ξ).

Then, by the theory of projection valued measures, there exists a probability measure
µ on Ĝ, a multiplicity function m : Ĝ→ {0, 1, . . . ,∞} and a unitary operator

U : H →
k⊕

j=1

L2(F j ,C j , µ),

where F j = m−1( j). Note that k could be infinite, in which case we adjoin the
direct summand L2

(
F∞, l2(Z), µ

)
above. The operator U intertwines the projection

valued measure on H and the canonical projection valued measure on Ĝ, and can be
thought of as the Fourier transform on H. Indeed, if x ∈ H, we will denote U x by x̂.

Furthermore, we will write H '
⊕k

j=1 L2(F j , µ) to denote that such an intertwining
unitary U exists.

Suppose there exists another unitary operator D on H, such that G1 = D∗π(G)D
is a subgroup of finite index in π(G). As noted in [1], not all groups admit this type
of affine condition. Denote by Γ the quotient group of π(G)/G1. The unitary D is
called the dilation operator, and the group π(G) is called the translation group.

A (orthonormal) wavelet is a vector ψ ∈ H such that the collection {Dnπgψ :
n ∈ Z, g ∈ G} is an orthonormal basis of H. A frame wavelet is such that the same
collection is a frame for H. A generalized multiresolution analysis of H is a sequence
of closed subspaces {V j} j∈Z such that the following conditions hold:

1. V j ⊂ V j+1,
2. DV j = V j+1,
3.
⋂

j∈Z V j = {0} and
⋃

j∈Z V j has dense span in H,
4. the core subspace V0 is invariant under the action of πg .

By number 1 above, we can define a second sequence of subspaces {W j} given by
V j+1 = V j ⊕W j . For our purposes, we will assume that the subspace W0 is cyclic
under the action of π(G); we shall call such a GMRA a cyclic GMRA.

If ψ ∈ H is an orthonormal wavelet, then the subspaces defined by V j =
span{Dnπgψ : n < j, g ∈ G} satisfy the 4 conditions above [1]. Conversely, a
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routine calculation shows that given a GMRA {V j}, if ψ is such that {πgψ : g ∈ G}
is an orthonormal basis (or frame) of W0, then ψ is a wavelet (or frame wavelet).

We shall assume a stronger condition than 4 above: suppose there exist vectors
{φ j} j∈ J ⊂ V0 such that {πgφ j : g ∈ G, j ∈ J} is a frame for V0. We call such a
structure a generalized frame multiresolution analysis [14]. For γ ∈ Γ, let πgγ ∈ π(G)
be a representative of the γ coset of G1 ⊂ π(G). For γ ∈ Γ and j ∈ J, define the
vectors

ϕγ, j = PW0 Dπgγφ j .

Our main result is the following.

Theorem 1 Suppose the vectors {φ j} j∈ J are the frame scaling vectors for a GFMRA

{Vk}. Define the ϕγ, j ’s as above. For appropriately chosen sets Eγ, j ⊂ Ĝ, the vector ψ
defined by

ψ̂(ξ) =
∑
γ∈Γ

∑
j∈ J

χEγ, j (ξ)

|ϕ̂γ, j(ξ)|
ϕ̂γ, j(ξ)

is a normalized tight frame wavelet. If
⋃
γ∈Γ

⋃
j∈ J Eγ, j = Ĝ, then ψ is an orthonormal

wavelet.

We note several things regarding our presentation here. First, we will be decom-
posing the representation of G on V0 as outlined above. It turns out, that the as-
sumption that there exist frame scaling vectors φ j is equivalent to the condition that
the measure µ is the restriction of Haar measure to F1 (see Lemma 2, Theorem 2,
and Proposition 2). It is still open as to whether a wavelet can be associated to a
GMRA that is not a GFMRA. Additionally, one motivation is to construct a wavelet
from a GFMRA, which requires knowing the scaling functions. If one knows the core
space V0, one can decompose the representation and find the frame vectors. How-
ever, in practice the GFMRA is presented in terms of the scaling vectors, which is the
approach we use here.

2 Wandering Frame Collections

A sequence { fi}i∈I is a frame for a separable Hilbert space H if there exist positive
constants A, B such that, for any x ∈ H,

A‖x‖2 ≤
∑
i∈I

|〈x, fi〉|2 ≤ B‖x‖2.

The frame { fi}i∈I is called tight if A = B and normalized tight if A = B = 1. We
make the following definition:

Definition 1 A collection of vectors W = {w1, . . . ,wn} will be called a wandering
frame collection (or complete wandering frame collection) for πg if the collection S =
{πgwi : g ∈ G, i = 1, . . . , n} is a frame for its closed linear span (or for H). If
X = {x1, . . . , xn} and Y = {y1, . . . , ym} are wandering frame collections for πg on
H, we will say that X and Y are complementary if X∪Y is a complete wandering frame
collection for πg on H.
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Our purpose here is to describe the relationship between a wandering frame col-
lection and a complete wandering frame collection. Our results here can be consid-
ered as generalizations of Robertson’s theorem [16], which describes the relationship
between a wandering subspace and a complete wandering subspace. The proof ex-
tends an orthonormal basis for a wandering subspace to an orthonormal basis for a
complete wandering subspace. If the dimension of the complete wandering subspace
is finite, then this procedure is exact in the sense that the number of wandering vec-
tors that is required is precisely the difference of the two dimensions. Robertson’s
theorem is valid if we replace orthonormal bases with Riesz bases [12]; again the
procedure is exact. Frames, however, lack this exactness property, so we present two
versions.

Note We do not require that the subspaces generated by X and Y to be orthogonal.
We shall see that they may be chosen that way, however.

We begin with a technical lemma. The proof appears in [9], but we include it here
for completeness.

Lemma 1 Let {xi} be a frame for the Hilbert space H, let K be a closed subspace, and
let P be the projection of H onto K. Then {Pxi} is a frame for K. In particular, if {xi} is
a normalized tight frame for H, then {Pxi} is a normalized tight frame for K.

Proof For z ∈ K, we have

A‖z‖2 ≤
∑
i∈I

|〈z, xi〉|2 =
∑
i∈I

|〈Pz, xi〉|2 =
∑
i∈I

|〈z, Pxi〉|2 ≤ B‖z‖2,

from which the lemma follows.

Proposition 1 Suppose that the representation πg admits a complete wandering frame
collection W . Suppose that Y is a wandering frame collection for a subspace. Then there
exists a wandering frame collection that is complementary to Y . This complementary
collection may be chosen so that the resulting subspaces are orthogonal.

Proof Let K be the subspace generated by Y , let P be the projection onto K⊥, and
define xi = Pwi . It follows from the lemma and the fact that P commutes with the
representation that X = {x1, . . . xn} satisfies the statement.

This result is not optimal in the sense that our complementary collection is in
general bigger than necessary. Our second result, which can be considered as an
extension of Theorem 4 in [10], improves on the first in that our complementary
collection Y is smaller. The idea relies on Stone’s theorem for unitary representations
of abelian groups, and the decomposition of projection valued measures, see [3].
However, we first require this technical result.

Lemma 2 A representation admits a finite complete wandering frame collection if
and only if the representation is unitarily equivalent to a sub-representation of a finite
multiple of the regular representation.
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Proof This statement is shown in [9, Theorem 3.11] for any countable group but for
vectors which generate a normalized tight frame. We shall show, then, that any repre-
sentation that admits a complete wandering frame collection also admits a complete
wandering frame collection that generates a normalized tight frame.

Given a frame { fn} of a Hilbert space H, define an operator S : H → H given
by S f =

∑
n〈 f , fn〉 fn; this is called the frame operator. It is a positive, self-adjoint

invertible operator, and the collection {S−1/2 fn} is a normalized tight frame for H
(see [5]).

Suppose that {w1, . . . ,wn} is a complete wandering frame collection for πg . We
first show that the frame operator S commutes with the representation. Let f ∈ H,
h ∈ G and compute:

Sπh f =
n∑

i=1

∑
g∈G

〈πh f , πgwi〉πgwi = πh

n∑
i=1

∑
g∈G

〈 f , πgwi〉πgwi = πhS f .

Since the commutant of π(G) is a von Neumann algebra, it follows that S−1/2 com-
mutes with π(G). Hence, the collection {S−1/2w1, . . . , S−1/2wn} is a complete wan-
dering normalized tight frame collection for π.

Theorem 2 Suppose that the representation πg admits a finite complete wandering
frame collection W . Suppose that Y is a wandering frame collection for a subspace.
Then there exists an integer k, independent of the cardinality of W and Y , such that:

1. there exists a finite wandering frame collection X that is complementary to Y and the
cardinality of X is k, and;

2. if Z is complementary to Y , its cardinality is at least k.

Moreover, the frame generated by X can be taken to be normalized tight, regardless of
whether the frames generated by W and Y are normalized tight.

Proof A special case of this statement was proven in [6]. Let K be the closed sub-
space spanned by {π(G)Y}. By combining Proposition 1 and Lemma 2, the repre-
sentation of G on K⊥ is equivalent to a multiple of the regular representation. Then
by Stone’s theorem and the theory of spectral multiplicity it follows that there exists
a unitary operator

U : K⊥ →
k⊕

j=1

L2(E j , µ),

where Ĝ ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Ek and µ is the restriction of Haar measure to E1, such
that U intertwines the projection valued measure on H and the canonical projection
valued measure on Ĝ. Since {G} forms an orthonormal basis of L2(Ĝ, λ), where λ is
Haar measure, the functions g(ξ)χE j (ξ) form a normalized tight frame for L2(E j , µ).
It follows that the functions

gx j(ξ) =
(

0, . . . , g(ξ)χE j (ξ)︸ ︷︷ ︸
j-th position

, . . . , 0
)
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form a normalized tight frame for U K⊥. Hence, if we let X = {U−1x j}, then X
satisfies condition 1 of the theorem.

To establish condition 2, note that the decomposition is unique (up to unitary
equivalence), and that the summands are maximal cyclic subspaces, whence it follows
that any complete wandering frame collection must have at least k elements in it.

As we stated earlier, the technique in Proposition 1 yields (possibly) more vectors
than we would want in practice. On the other hand, the technique in Theorem 2 is
not reasonably constructive. So we wish to now demonstrate a technique for reducing
the size of the collection from Proposition 1 by combining several vectors into one.

We first need to go back to the decomposition theorem as presented in the proof of
Theorem 2. In the theory of the decomposition of projection valued measures, there
exists a multiplicity function; in the case of the decomposition given in the proof
above, the multiplicity function m : Ĝ → N is given by m(ξ) =

∑n
j=1 χE j (ξ) a.e. ξ.

For our purposes, the multiplicity function will provide us a way of “counting” what
parts of the regular representation we have. Lemma 3 follows from the theory.

Lemma 3 Suppose K = span{πgx}, whence the representation on K is cyclic. Then

the associated multiplicity function is given by χE where E = {ξ ∈ Ĝ : |x̂(ξ)| > 0}.
If X = {x1, . . . , xk} ∈ K, then the multiplicity function associated to the subspace
generated by X is χF where F =

{
ξ ∈ Ĝ : maxi=1,...,k

(
|x̂i(ξ)|

)
> 0

}
up to a set of

measure 0.

Our next proposition is a generalization of Theorem 3.4 in [4].

Proposition 2 Suppose that the representation πg is cyclic on K. Then the collection
{w1, . . . ,wk}, where k could be infinite, is a complete wandering frame collection if and
only if the following two conditions hold:

1. K ' L2(E, λ|E),
2. there exists A,B > 0 such that for almost every ξ ∈ E,

A ≤
k∑

i=1

|ŵi(ξ)|2 ≤ B.

Moreover, the frame bounds are given by

A = ess inf
k∑

i=1

|ŵi(ξ)|2, B = ess sup
k∑

i=1

|ŵi(ξ)|2.

Proof We have established the equivalence of condition 1 to the existence of a com-
plete wandering frame collection (for a cyclic representation). Hence, we shall only
consider condition 2. We first show the necessity of the upper bound in condition 2

by contrapositive. Suppose B > 0 is given and suppose that
∑k

i=1 |ŵi(ξ)|2 > B for
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some set F ⊂ E of positive measure. Then ŵiχF ∈ L2(E, λ), and consider the follow-
ing calculation:

k∑
i=1

∑
g∈G

|〈χF, π̂gŵi〉|2 =
k∑

i=1

∣∣∣∣∫
E
χF(ξ)g(ξ)ŵi(ξ) dλ

∣∣∣∣ 2

=
k∑

i=1

‖χFŵi‖2,

since G forms an orthonormal basis of L2(Ĝ, λ). We have:

k∑
i=1

‖χFŵi‖2 =
k∑

i=1

∫
Ĝ
|χF(ξ)ŵi(ξ)|2 dλ

=
∫

Ĝ
|χF(ξ)|2

k∑
i=1

|ŵi(ξ)|2 dλ

> B

∫
Ĝ
|χF(ξ)|2 dλ = B‖χF‖2,

whence B cannot be an upper frame bound. The necessity of the lower bound in 2
can be shown by an analogous calculation.

Likewise, to establish the sufficiency, let x ∈ K and consider:

k∑
i=1

∑
g∈G

|〈x, πgwi〉|2 =
k∑

i=1

∑
g∈G

|〈x̂, π̂gŵi〉|2

=
k∑

i=1

∫
Ĝ

x̂(ξ)g(ξ)ŵi(ξ) dλ

=
k∑

i=1

‖x̂ŵi‖2

since, by condition 2, x̂ŵi ∈ L2(E). Moreover, by a calculation similar to above,

A‖x̂‖2 ≤
k∑

i=1

‖x̂ŵi‖2 ≤ B‖x̂‖2.

Finally, the frame bounds follow from a calculation analogous to the first calculation
above.

The idea we present here is to “fuse” two vectors from the wandering frame collec-
tion into one. This cannot always be done. When doing so we have two requirements:
the first is that the resulting collection is cyclic for the entire space, and the second is
that the collection retains frame bounds.
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Definition 2 A collection X = {x1, . . . , xm} ⊂ H is called a cyclic collection if
the collection {πgxi} has dense span in H. A cyclic collection X will be called re-
ducible if, after an appropriate reordering of X, there exists a y1 ∈ H such that
{x1, . . . , xn−2, y1} is also a cyclic collection. We shall say that the vectors xn−1 and xn

are fusable.

Each element of a cyclic collection generates a cyclic subspace, whence we have the
following lemma.

Lemma 4 A cyclic collection is reducible if and only if two of its vectors are elements
of a common cyclic subspace. Equivalently, two vectors of a cyclic collection are fusable if
and only if they are elements of a common cyclic subspace.

Lemma 5 Let x, y ∈ H, and assume that |x̂|, |ŷ| ∈ L∞(Ĝ, λ). Let F1 = {ξ ∈ Ĝ :
x̂(ξ) 6= 0} and F2 = {ξ ∈ Ĝ : ŷ(ξ) 6= 0}. The two vectors x and y are elements
of a common cyclic subspace in H if and only if there exists a scalar valued function
h(ξ) ∈ L2(Ĝ, λ,C) such that for a.e. ξ ∈ F1 ∩ F2, ŷ(ξ) = h(ξ)x̂(ξ).

Proof Let K be the closed subspace generated by x and y; then we have that U re-
stricted to K has the form U K = L2(E, λ,C2) for some set E. Consider w defined by
ŵ = x̂χF1 + ŷχF2\F1

. It follows that w ∈ K; let K0 denote the closed subspace gen-

erated by w. A standard argument shows U K0 = { f (ξ)ŵ(ξ) : f (ξ) ∈ L2(Ĝ, λ,C)}.
Therefore, χF1 ŵ = x̂ ∈ K0; likewise, [χF2∩F1 (ξ)h(ξ) + χF2\F1

(ξ)]ŵ(ξ) ∈ K0. Thus,
K ⊂ K0, which establishes the if part.

The only if part follows immediately.

The condition that |x̂|, |ŷ| ∈ L∞(Ĝ, λ) may seem artificial; without it however, we
would not have as nice of a characterization of U K0 above. In light of Proposition 2,
however, this is a prerequisite to fusing two frame vectors into one anyway.

Theorem 3 Suppose the complete wandering frame collection W = {w1, . . . ,wn} for
πg is reducible (as a cyclic collection), with the vectors wn−1 and wn fusable. Then x1

can be chosen such that the cyclic collection W̃ = {w1, . . . ,wn−2, x1} is a complete
wandering frame collection.

Proof By Lemma 4, wn−1 and wn are in a common cyclic subspace K. Since the
projection of W onto K yields a wandering frame collection for K and K is cyclic, we
have that K ' L2(E, λ) for some E ⊂ Ĝ.

We shall construct x1 in the following manner: let F1 = {ξ : |ŵn−1(ξ)| ≥ |ŵn(ξ)|}
and let F2 = E \ F1. Then define x̂1 = ŵn−1χF1 + ŵnχF2 . It follows from Lemmas 3
and 5 that the cyclic subspace generated by x1 is the same as the subspace generated
by wn−1 and wn.

To show that W̃ generates a frame, we need show that there exist frame bounds
Ã, B̃. Let A,B be the frame bounds for W ; we shall show that Ã = A

2 and B̃ = 2B
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suffice. First suppose that y ∈ K. By Proposition 2, |x̂1|2 ≤ B, whence by the
calculation above, ∑

g∈G

|〈y, πgx1〉|2 = ‖ ŷx̂1‖2

=
∫

Ĝ
|ŷ|2 |x̂1|2 dλ

and

∑
g∈G

|〈y, πgwn−1〉|2 +
∑
g∈G

|〈y, πgwn〉|2 = ‖ ŷŵn−1‖2 + ‖ ŷŵn‖2

=
∫

Ĝ
|ŷ|2(|ŵn−1|2 + |ŵn|2) dλ.

By our construction of x1,

1

2
(|ŵn−1|2 + |ŵn|2) ≤ |x̂1|2 ≤ (|ŵn−1|2 + |ŵn|2),

whence,

1

2

(∑
g∈G

|〈y, πgwn−1〉|2 +
∑
g∈G

|〈y, πgwn〉|2
)

≤
∑
g∈G

|〈y, πgx1〉|2 ≤
∑
g∈G

|〈y, πgwn−1〉|2 +
∑
g∈G

|〈y, πgwn〉|2.

Now let y ∈ H, PK be the projection onto K and compute

n−2∑
i=1

∑
g∈G

|〈y, πgwi〉|2 +
∑
g∈G

|〈y, πgx1〉|2

=
n−2∑
i=1

∑
g∈G

|〈y, πgwi〉|2 +
∑
g∈G

|〈PK y, πgx1〉|2

≥ 1

2

( n−2∑
i=1

∑
g∈G

|〈y, πgwi〉|2 +
∑
g∈G

|〈PK y, πgwn−1〉|2 +
∑
g∈G

|〈PK y, πgwn〉|2
)

≥ 1

2
A‖y‖2.

A similar calculation shows that W̃ also has an upper frame bound of 2B.
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3 Proof of Theorem 1

We shall now prove Theorem 1. Let {V j} be a GFMRA, where W0 is cyclic. Suppose
the vectors {φ j : j ∈ J} generate a frame, under the action of π(G), in V0 with
lower and upper frame bounds of A and B, respectively. Define the vectors {ϕγ, j :
γ ∈ Γ; j ∈ J} as in the introduction.

Claim The vectors {ϕγ, j : γ ∈ Γ; j ∈ J} generate a frame for W0 with frame bounds
A ′ and B ′, where A ≤ A ′ and B ′ ≤ B.

Proof Note that by our definition of GFMRA, the subspace W0 is invariant under
the action of π(G), whence the projection PW0 commutes with the representation.
Let gγ be as in the introduction. In light of the proof of Proposition 1, it suffices to
show that the vectors {Dπgγφ j : γ ∈ Γ; j ∈ J} forms a complete wandering frame
collection for V1. Since D is a unitary operator, we have that {Dπgφ j : g ∈ G; j ∈ J}
forms a frame for V1 with the same frame bounds.

Define a homomorphism σ : π(G) → π(G) by σ(πg) = D∗πgD; recall that the
image of σ is the subgroup G1. We have that⋃

γ∈Γ

⋃
g∈G

⋃
j∈ J

πg{Dπgγφ j} =
⋃
γ∈Γ

⋃
g∈G

⋃
j∈ J

{Dσ(πg)πgγφ j}

=
⋃
j∈ J

{Dπgφ j : g ∈ G}.

By Proposition 2 and Lemma 3, the multiplicity function for the subrepresenta-
tion of π on W0 is χE for some E ⊂ Ĝ. We wish to fuse all of the ϕγ, j into one vector,
a wavelet. Define the sets

Fγ, j =
{
ξ ∈ Ĝ : |ϕ̂γ, j(ξ)|2 ≥ A

|Γ|2 j+1

}
where |Γ| is the cardinality of Γ, for γ ∈ Γ, and j ∈ N.

Claim The measure of E ∩ (
⋃
γ, j Fγ, j) is 0.

Proof Suppose, by contrapositive, that there exists a set F ⊂ E of non-zero measure
such that F ∩ (

⋃
γ, j Fγ, j) = ∅. For ξ ∈ F we have that

∑
γ, j

|ϕ̂γ, j(ξ)|2 < |Γ|
∞∑
j=1

A

|Γ|2 j+1
= A,

a violation of Proposition 2.

We now wish to “orthogonalize” the sets Fγ, j in some way. Enumerate the ele-
ments of Γ (it doesn’t matter how). Define Eγ0,1 = Fγ0,1 and recursively define Eγ0, j =
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Fγ0, j \
⋃

k< j Eγ0,k. Let E0 =
⋃

Eγ0, j , and likewise define Eγ1, j = Fγ1, j \(
⋃

k< j Fγ1,k∪E0),
with Eγ1,1 = Fγ1,1 \ E0. Continue this procedure through all elements of Γ.

We now can construct a wavelet associated with the given GFMRA. Define the
functions fγ, j by

fγ, j(ξ) =
χEγ, j (ξ)

|ϕ̂γ, j(ξ)|
.

Note that each fγ, j ∈ L2(Ĝ)∩ L∞(Ĝ) since |ϕ̂γ, j(ξ)| is bounded away from 0 on Eγ, j .

It follows that fγ, jϕγ, j ∈ Ŵ0. Now define the vector ψ by

ψ̂(ξ) =
∑
γ, j

fγ, j(ξ)ϕ̂γ, j(ξ).

Claim The sum above converges in L2(Ĝ).

Proof We compute:

‖ fγ, jϕ̂γ, j‖2 =
∫

Ĝ
| fγ, j(ξ)ϕ̂γ, j(ξ)|2 dλ

=
∫

Ĝ

∣∣∣∣ χEγ, j (ξ)

|ϕ̂γ, j(ξ)|
ϕ̂γ, j(ξ)

∣∣∣∣ 2

dλ

=
∫

Ĝ
χEγ, j (ξ) dλ

= λ(Eγ, j).

Since the Eγ, j ’s are disjoint and λ(E) ≤ 1, it follows that the sequence of partial sums
is Cauchy, whence the sum converges.

We have that ψ ∈W0 since each U−1( fγ, jϕ̂γ, j) ∈W0. Furthermore, by definition,

|ψ̂(ξ)|2 = 1 a.e. ξ ∈ E, therefore by Proposition 2, {πgψ : g ∈ G} is a normalized
tight frame for W0. Whence, from the stucture of a GFMRA, the collection {Dnπgψ :
n ∈ Z; g ∈ G} is a normalized tight frame for H.

Moreover, if the set E above is all of Ĝ, except for possibly a set of measure 0, then
{πgψ : g ∈ G} is an orthonormal basis for W0 and thus ψ is an orthonormal wavelet.

4 Special Cases

We now apply our results to classical wavelet theory on L2(R). The dilation operator
D is given by D f (x) =

√
2 f (2x). The group in question is the integers; the represen-

tation on L2(R) given by πl = T l, where T l f (x) = f (x − l). We shall normalize the
Fourier transform on L2(R) as follows; for f ∈ L1(R) ∩ L2(R)

f̂ (ξ) =
∫

R
f (x)e−2πixξ dx.
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For φ ∈ L2(R), define

|~̂φ(ξ)|2 =
∑
l∈Z

|φ̂(ξ + l)|2.

In the case of the representation of the integers on L2(R) given by translations, the
multiplicity theory gives that

L2(R) ' L2
(

Ĝ, l2(Z)
)
,

where the unitary operator yielding the equivalence is precisely the Fourier trans-
form. Hence, the representation on W0 is equivalent to L2(Ĝ,C) (via a unitary opera-
tor U ), and also equivalent to a subspace of L2

(
Ĝ, l2(Z)

)
(via the Fourier transform),

where each “fiber” is one dimensional. For f ∈W0 then, we have that

|U f (ξ)|2 =
∑
l∈Z

| f̂ (ξ + l)|2.

Moreover, we shall associate Ĝ = S1 to [0, 1) in the standard way.
Consider a finite-height GFMRA of L2(R) {Vk} [17], i.e., there exists a wandering

frame collection {φ j : j = 1, . . . , n} ⊂ V0. This may seem like a considerable restric-
tion, but actually all but the most pathological of wavelets on L2(R) are associated to
a finite-height GFMRA [6], [15].

Our construction from section 3 would give that

ψ̂(ξ) =
∑
i=1,2

n∑
j=1

χEi, j (ξ)

|~̂ϕi, j(ξ)|
ϕ̂i, j(ξ).

However, here we can be more flexible. For example, for any 0 < ε ≤ 1
2n , define the

sets Fεi, j = {ξ ∈ R : |~̂ϕi, j(ξ)|2 ≥ ε}. Then define the sets Eεi, j as above, and consider
the vector ψε given by

ψ̂(ξ) =
∑
i=1,2

n∑
j=1

χEεi, j (ξ)ϕ̂i, j(ξ).

The ψε above is a frame wavelet (but not a normalized tight frame wavelet). Since
the number of scaling vectors is finite, we do not need to normalize as we go along;

we have that |~̂ψ(ξ)|2 ≥ ε. Note that if we did normalize, we would get a normalized
tight frame wavelet, or possibly an orthonormal wavelet.

We actually have three degrees of freedom in our construction. The first is by
altering the threshold in computing the sets Fi, j as illustrated above. The second is
that we could permute the Fi, j ’s before orthogonalizing them. The third is to alter
our choice of g0 and g1 above, the representatives of the cosets of G1 in G. One may
ask then, can all wavelets in W0, given the φ j ’s fixed, be generated by appropriately
altering these parameters? The answer is no, as we will show in the following example.

It can be shown that given a GFMRA {Vk}, all wavelets η ∈W0 can be written as
η̂ = gψ̂ for a fixed wavelet ψ ∈ W0 and a 1-periodic unimodular function g. Recall
that a MRA is just as a GFMRA, but that there exists a single scaling function φ ∈ V0.
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Example 1 Consider the MRA of L2(R) given by V̂k = L2
(

2k[− 1
2 ,

1
2 )
)

. This is
the MRA associated to the Shannon wavelet set W = [−1,− 1

2 ) ∪ [ 1
2 , 1). An easy

computation shows that φ̂ = χ[− 1
2 ,

1
2 ) is a scaling function for this MRA, and that

Ŵ0 = L2
(

[−1,− 1
2 ) ∪ [ 1

2 , 1)
)

. Additionally, we have

ϕ̂0(ξ) =
1√
2
χ[−1,− 1

2 )∪[ 1
2 ,1)(ξ); ϕ̂1 =

1√
2

e−i ξ2χ[−1,− 1
2 )∪[ 1

2 ,1)(ξ),

where we have chosen g0 = 0 and g1 = 1. For any 0 < ε ≤ 1
2 , we have F0 = F1 = Ĝ.

Thus, depending upon the ordering of the F’s, we get that ψ̂(ξ) = χ[−1,− 1
2 )∪[ 1

2 ,1)(ξ)

or ψ̂(ξ) = e−i ξ2χ[−1,− 1
2 )∪[ 1

2 ,1)(ξ). Clearly not all wavelets in W0 can be generated in
this fashion.

We wish to consider one other special case, which results in a remarkably simple
construction. Notice that in Example 1 above, ψ̂ =

√
2ϕ̂0 is a wavelet; the reason is

because the MRA comes from a MSF wavelet [11]. However, this is true more gen-
erally than for just MSF wavelets. Define the operator T1/2 on L2(R) by T1/2 f (x) =
f (x−1/2). We have a much stronger result if the subspace V0 reduces T1/2. (See [18]
for a discussion of when this occurs.)

Proposition 3 Let φ be the scaling vector for a MRA, and suppose that the subspace V0

reduces T1/2. Then the function given by ψ =
√

2ϕ0 =
√

2PW0 Dφ is an orthonormal
wavelet.

Proof The subspace V0 reduces T1/2 if and only if W0 reduces T1/2. If so, then we
have

T1/2ϕ0 = T1/2PW0 Dφ = PW0 DTφ = ϕ1.

Since T̂1/2 is a unitary multiplication operator, it follows that

|~̂ϕ0(ξ)|2 = |~̂ϕ1(ξ)|2 =
1

2
.

Therefore, {T lφ0 : l ∈ Z} forms a tight frame for W0, with frame bound 1
2 . Since the

representation on W0 is equivalent to the regular representation, {T lϕ0} forms an or-
thogonal set. Whence, by normalizing ϕ0 by the factor of

√
2, we get an orthonormal

basis of W0, as required.
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