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SETS OF IDEMPOTENTS THAT GENERATE THE SEMIGROUP
OF SINGULAR ENDOMORPHISMS OF A FINITE-

DIMENSIONAL VECTOR SPACE
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(Received 1st October 1980)

If M is a mathematical system and End M is the set of singular endomorphisms of M,
then End M forms a semigroup under composition of mappings. A number of papers
have been written to determine the subsemigroup SM of EndM generated by the
idempotents EM of EndM for different systems M. The first of these was by J. M.
Howie [4]; here the case of M being an unstructured set X was considered. Howie
showed that if X is finite, then EndX = Sx.

Soon afterwards, J. A. Erdos [3] considered the case of M being a finite-dimensional
vector space V over an arbitrary field F. Erdos showed that in this case also End V = Sv.
I have given two alternative proofs in [2]. J. B. Kim [6] has also given a proof of this
result if the field F is algebraically closed. The proofs given by Erdos and myself show
that End V is, in fact, generated by the subset E of Ev consisting solely of the elements
of £ v with one-dimensional null-space. It is easy to show that, except in the trivial case
of V being a one-dimensional vector space, End V may be generated by a proper subset
of E.

In this paper I determine conditions that are necessarily satisfied by a subset E' of E
if E' generates End V. I then show, if the field F is finite, that these conditions are also
sufficient. From this, again if F is finite, the minimum order of a generating set of
idempotents is determined.

1. Notation and preliminary results

Definition 1.1. The semigroup of singular endomorphisms of an n-dimensional vector
space V over a field F will be denoted by Singn. Let a e Singn. The range of a will be
denoted by Ra and the null-space of a by Na. Elements of Singn will be written on the
right of elements of the vector space V.

Using this "right mapping" convention the following lemma is immediate:

Lemma 1.2. Let a,/?eSingn. Then:

(a) N .SI
(b) , ^
(c) a, /} and <xfi all have the same rank if and only if No = Na^ and Rap = R^.

The following simple lemma will also be used.
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Lemma 1.3. ([1, Exercise 2.2.6.]) Let a,j?eSingn. Then:

(a) (X&P if and only if
(b) a^P if and only
(c) <x3)$ if and only if a and (S have the same rank,
(d) a//? if and only ifcc@p.

Definition 1.4. The principal factor of Singn containing those elements of rank n — 1
will be denoted by PF°_t. The set of elements of Sing,, of rank n— 1 will be denoted by
PFn-1. Thus PFn^1 consists of the non-zero elements of PF°-V

The remainder of this section is devoted to introducing (and using) a new notation for
the ^"-classes of PF°_t. This can quickly be adapted to serve as a new notation for
elements of E (the non-zero idempotents of PF°_ J.

Definition IS. Let £,,% be automorphisms of the field F such that (x£~1)2 is the
identity mapping. Let a = (aua2,a3,...,an) and b = (b1,b2,b3,...,bn) be elements of V. The
(£,x)-stroke product (or simply stroke product) of a with b is denoted by <a|b>(?>x) (or
simply <a | b» and defined by

I shall regard £, and x a s fixed in advance and shall not make explicit reference to
them in definitions and statements.

Definition 1.6. If a=(aua2,...,an) and b = (bub2,...,bn) are elements of V, we shall
say that a and b are perpendicular if <a|b> = 0. It is simple to check that
perpendicularity is a symmetric relation.

If A is a subset of V, we shall define the perpendicular of A to be

Ax = {xeV:<x|a> = 0 (VaeA)}.

It should be noted that in general A and Ax are not disjoint. It should also be noted
that Ax is a subspace of V.

Using this definition of perpendicularity, the following lemma is simple to prove.

Lemma 1.7. Let U and W be subspaces of an n-dimensional vector space V. Then:

(a) dimUx = n-dimU,
(b) (UX)X = UX,
(c) ifV<=W, then W±c\J.

Notation 1.8. Since every element in any particular $-class of PF°^Y has the same
one-dimensional null-space we can label the ^-classes of PF?-1 in the obvious way with
an element of V that generates this one-dimensional subspace of V. Similarly, the S£-
classes of PF°_1 could be labelled in the obvious way with n—1 elements of V that
generate the common range. But, since, if dimU = «—1, we have (by Lemma 1.7) that
dimU± = l, it follows that we can label the J5f-classes of PT7"-, in an obvious way with
an element of V that generates the one-dimensional subspace of V perpendicular to the
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common range of the elements in that if-class. Thus if a is a non-zero element of PF°- x

such that Na = <n> and Ra = <r> then we can label the if-class containing a by Lr, the
$2-class containing a by Ra and the ,?f-class containing a by H^t. As H^T is rather
unwieldy this will in future be denoted by [n:r]. It is clear that [n:r] denotes exactly
one ^-class for any choice of n and r in V (the fact that [n:r] represents at least one
^f-class of PF°_ 1 is a result of Lemma 1.3). It is also clear that for any non-zero scalars
A and fi we have [n:r] = [An:jir].

Having adopted this notation, it is then reasonable to introduce the following: If [n:r]
is a group Jf-class of P-Fj?-! we shall denote the idempotent in [n:r] by (n:r). (n:r) is
clearly unique since no Jf-class contains more than one idempotent. With this notation
there is a very simple way to tell if a particular ^"-class of Pf°_i contains an
idempotent.

Lemma 1.9. [n:r] is a group 3tf'-class if and only if <n | r> =£0.

Proof. Suppose that [n:r] is a group Jf-class. Then [n:r] contains the idempotent e
= (n:r). Now N£nR£ = {0} (for if xeN£nR£ then x = xe = 0) and since neN, and n^O
we have n^RE = (R^)±. But, since reR£ and R^ is one-dimensional, we have <n|r>=£0.

Conversely, suppose <n|r>=f 0. Now, there exists an element ocePF^_l such that Na

= <n> and Ra=<r>. Since <n|r>^0, we have An £ (R^)1 = RX for any non-zero scalar X
in F, i.e. R , n N , = {0}. Let xeNa2. Then xaeR,nN, . Thus xa = 0 and so xeNa.
Consequently Na2£Na. But NagNa 2 and so Na = Na2. Thus oc^a2. Also, since dimNa

= dimNa2, we have dimRa = dimRa2. But Rj2£Ra and so Ra = Ra2. Thus aifa2. Hence
aJf a2. So (by [5, Theorem II.2.5.]) Hx is a group and so contains an idempotent. Since
//a = [n:r], the result is proved.

Lemma 1.10. Let a. and p be elements of PF°-l in [n:r] and [m:s] respectively. Then
if and only j/<m|r>=/= 0.

Proof. Suppose first that a/?^0. Then aj3, a and /? all have the same rank. So, by
Lemma 1.2 and Lemma 1.3, oc/?eRanLp. By [1, Theorem 2.17.], RpnL,, contains an
idempotent, i.e. <m|r> =/=().

Now suppose that <m|r>=£0. Then RpnLa contains an idempotent. So, again by [1,
Theorem 2.17.], ctf}eRar\Lp. Thus a/? has rank n—\, and so y./l-O.

2. The necessary conditions

In this section necessary conditions are found for a subset E' of E to generate Singn.
Throughout this section there are no restrictions on the field F over which the vector
space V is defined.

Definition 2.1. Let £' be a subset of E. We shall say that £' covers [sparsely covers']
PF°_! if E' has non-empty intersection with [intersects in exactly one element] each
non-zero if-class and each non-zero ^-class of PF°_i. We shall also say that E' covers
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Lemma 2.2. There exists a sparse covering set E for PF°_,.

Proof. The proof is by induction on the dimension n of the vector space V. For
clarity we shall denote the m-dimensional vector space by Vm.

We now define a set of representatives V^ of the one-dimensional subspaces of Vm.
So, for all non-zero x in Vm there exists a unique y in V^ such that <x> = <y>. We shall
denote by L"[R™'] the i?-class [^-class] of PF^,l containing those elements with range
perpendicular to [null-space equal to] <x>.

Now suppose, as the induction hypothesis, that there exists a sparse covering set E'm
of PF%,_1. Then there exists exactly one element e in L"nE'm for each xeV^. All the
elements in R£ have the same null-space, generated by a particular element of V^. If we
denote this element by y(x), we have, in fact, defined a mapping V^-»V ,̂ by xi-»y(x).
This mapping is characterised by L"n R™(x) n E'm being non-empty.

This mapping is clearly a bijection. Notice that there exists an idempotent, namely e,
with null-space <y(x)> and range <x>x. Thus [y(x):x] is a group Jf-class, and so

If x = (xl,x2,...,xm) is an element of V ,̂ and aeF, then denote by (x,a) the element of
V^+1 that generates the space ((xl,x2,...,xm,a)}. We shall denote by (0,1) the element
of Vm+l that generates the space <(0,0,..., 0,1)>. Clearly, these are all distinct, and every
element of V ,̂ + 1 may be denoted in this way. Notice that if y=(j'i,)'2> •••.3;m+iX then for
some x e V ^ u {0} and some X, aeF we have (yuy2,...,jO = Ax and ym+1 = ka.

We shall now set up a bijection y: V'm + i^>V'm+1 such that LJ^/n/?°(+J, is a group 3V-
class of PF° for all x in V ,̂ and all a in F, and also such that L[2,T)̂ "> i^ t / i s a group f̂-
class of PF%,. We shall construct y so that for x in V^ and a in F we have y(x, a)
= (y(x),z) for some z in F. We need to have <y(x,a)|(x,a)>^0, and so we must have
<y(x) \x}+(z^)(ax)i=0. Now, by the definition of y(x), we know that <y(x) |x>=/=0. Thus,
if a^O, we need z<̂ =̂ — <y(x) |x>/(a%) and, if a=0, z may take any value we choose. We
know that F contains the elements 0 and 1. Thus if a^=0, we may put z£ =
1 — <y(x)|x>/(a/). The only value that this may not take is 1 since <y(x)|x>^0. So if
fl=0we shall set z = l. Thus

I) if x = 0 and a = 1

where

~^y(x) lx)/(az)]£~* if o^o

It is easy to check that y is a bijection.
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From the definition of y we have that for all (x,a) in V^,+ 1, <y(x,a)|(x,a)>^0. Thus
L™x*Jj r,R^a) contains an idempotent. Hence the set E'm+l = {(y(x,a):(x,aj):(x,a)e\'m+l}
is a sparse cover for PF°.

It remains to show that we may anchor the induction at m = 2. Since every one-
dimensional subspace of V2 may be generated by a vector of the form (I, a) or by the
vector (0,1), it is easy to see that the set

u [((1, l):(l,0)), ((0, l):(0,1))}

forms a sparse cover for PF\.

Definition 2.3. Let E be a subset of E and (j), yeE'. Then the relation n{E') is
defined by: (<f>,y)£n(E') if there exist elements e1,£2,...,ep in E such that
(j)Kle2...epyePFn_i.

Lemma 2.4. If E' is a subset of E and E generates Singn, then E covers PFn_l and
n(E') is the universal relation on E.

Proof. Let /? be any element of PFn.l. Since E generates Singn, it certainly generates
PFn ,. Thus there exist elements e1,£2,...,ep in E such that P = E1E2...EP. Now, since
rank /J = rank E, (i= l,2,...,p), we have that N^ = N£i and Rp = R v Thus jiMex and
/! 'J'i:p. Hence both Rp n E and Lp n E are non-empty. Since ft was chosen arbitrarily, it
follows that E covers PFn_v

Now let (j), yeE, and let aeR^nLT Since E generates a we have that a = ele2...ep

for some <:, ,E2, . . . , EP in E. But E^OL and Epi?a. Thus §0lzi and y^ep. Hence <j>ex=t1

and Epy = £p. So a = <pele2...epy, i.e. <j)slE2...sl,yePFn_1. Since E1 ;e2 , . . . ,epe£ ' , we have
that (</>, y) e n(E). Since </) and y were chosen arbitrarily, it follows that n{E) is the
universal relation on E.

3. Sufficient conditions and minimum order generating sets when F is a finite field

Throughout this section we shall take F to be the finite field with q elements.

Theorem 3.1. Let V be an n-dimensional vector space over a finite field F. Lei Singn

he the semigroup of singular endomorphisms of V and let PFn _ l be the set of elements in
Singn with rank n—\. Let E be a subset of the idempotents of PFn_i. Then E generates
Sing,, if and only if n(E') is the universal relation on E and E covers PFn_l.

Proof. We have already shown that if E generates Singn then n(E) is universal on E
and E covers / ) F n _ , .

To show the converse it will suffice to show that E generates E, the set of all
idempotents in PFn-u for (by [3]) we have that E generates Singn.

Let a e £ . Since E covers PFn_u there exist 4>,y in E such that 4>&e and y&e. Since
n(E) is universal on £', we have that (4>,y)en(E). Hence there exist E 1 , E 2 , . . . , £ P in E
such that a = 4>El£2...Epy has rank n — 1. Now, Na = N^ and Ra = R r Thus <*M<p and

Hence a.0ie and <xif£, i.e. a.tfz. Now, since F is finite, Sing, is finite and so
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certainly Hc is finite. So a belongs to a finite group. Thus, for some integer /c^l , a* is
the identity of that group, i.e. ak = e. Since a is a product of elements of E, we have that
E generates e. But this holds for all elements of E and so E' generates E as required.

The next three lemmas will be used in the proof of Theorem 3.5.

Lemma 3.2. If\F\ = q, then the number of non-zero H?-classes ^-classes'] in PF°_l is

Proof. By Lemma 2.2, we know that there is a bijection between the elements of a
sparse cover of PF^_1 and the i£-classes [^-classes] of PF°_V Thus there is a bijection
between the J?-classes and ^-classes of PF°_t. Since F is finite it follows that PF°_1 is
finite and so there are only finitely many .£?-classes [^-classes] in PF°_X. Consequently
there are the same number of if-classes as ^-classes in PF°_1.

From the comments of Notation 1.8, we know that there is a bijection between the
one-dimensional subspaces of V and the non-zero S£-classes of PF°_1. Now, the number
of non-zero vectors in V is q" — 1. However, for each x in V and for all non-zero scalars
X in F, we have <x) = <Ax>. Hence there are (q" — l)/(q — l) one-dimensional subspaces in
V.

Lemma 3.3. / / | F | = 4, then the number of idempotents in any non-zero jSf-c/ass [jM-
class] ofPF^t isq"'1.

Proof. The number of idempotents in a given i?-class L is the number of ^-classes
containing an idempotent in L, i.e. the number of ^-classes which intersect L in a
group. If the elements in L have range <r> then this is just Q = |{<n>:<n | r> ^0} | . Since
the number of one-dimensional subspaces of V is (q"—l)/(q — l), we have that

l)-|{<n>:<n|r> = 0}|.

But {<i
{<n>:ne

required.

i > :
(r)

<n r> = 0} = «n>
= (q"-l-l)/(c

:ne<r>^}.
f—1). Thus

Since
Q = (q"

dim <r>x

— l)/(i? — 1)
= n-l. we

)/(ci

have
— \) = q'

that
- 1 as

Lemma 3.4. If F is a finite field and E is a sparse cover for PF°_i, then n(E') is the
universal relation on E'.

Proof. Let <j>,y be any two elements of E' and suppose that $%{E')r\y\n{E^\~l is
empty. Since each J5f-class of PF°_X contains q"'1 idempotents and E is a sparse cover
of PF°- i , we know that there are exactly q"'1 elements £,• of E such that </>£;=/= 0 in
PF°_! (by Lemma 1.9 and Lemma 1.10). Hence \(t>n{E')\^qn~l. Similarly, since each 01-
class of PF°_! contains q"'1 idempotents, we have that there exist exactly q"~l

elements ej of £' such that e'^^O in PF°_t. Thus I ^ I X F ) ] ' 1 ^ " - 1 . Now, since we
have assumed that <j>n(E)r\y[n(E')~]~l is empty, we have
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Thus q"~1(q — 2)^ — l, which is impossible since q^2. Consequently,
cpn(E') n y[n(Ery\~1 contains some element, e say. Thus (<p,e)en{E') and (e,y)en(E').
Since n(E') is transitive, it follows that (<p, y) e n(E').

We now have:

Theorem 3.5. Let V be an n-dimensional vector space over a finite field F. Let Singn

denote the semigroup of singular endomorphisms of V and let PFn _ j be the set of elements
of Singn 'with rank n—\. Then there exists a subset E' of the idempotents of PFn_1 such
that E' is a sparse cover for PFn_l and E' generates Singn. Further, any sparse cover for
PF n _ ! generates Singn.

Proof. This is immediate from Lemma 2.2, Theorem 3.1 and Lemma 3.4.

(If F is an arbitrary field, the above theorem no longer holds. A counter-example to a
generalisation of Theorem 3.5 may be found in [2], as may a proof of the following
weaker result.

Theorem 3.6. Let V be an n-dimensional vector space over an arbitrary field F. Let
Singn denote the semigroup of singular endomorphisms o /V and let PFn_t be the set of
elements of Singn with rank n—l. Then there exists a subset E' of the idempotents of
PFn_l such that E' is a sparse cover for PFn_1 and E' generates Singn.)

Corollary 3.7. Let V be an n-dimensional vector space over a finite field F of order q.
Let Singn be the semigroup of singular endomorphisms o/V and let E be the idempotents of
Singn of rank n—l. Then

Proof. This is immediate from Lemma 2.4, Lemma 3.2 and Theorem 3.5.
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