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ISOMORPHISMS BETWEEN RADICAL WEIGHTED
CONVOLUTION ALGEBRAS

by F. GHAHRAMANI

(Received 20th July 1982)

In [4] we have shown that any two semi-simple weighted convolution algebras L^coj)
and I}(a>2) are isomorphic. In this paper, given any two radical weighted convolution
algebras ^((Oj) and I}(a>2) we find necessary and sufficient conditions, in terms of a^
and co2, for L1(co1) and I}(co2) to be isomorphic.

We call a continuous and positive function a> on the non-negative real numbers R + a
weight function if co(s +1)̂ co(s)co{t) for every s,teJ?+, and if <u(0) = l. The weighted
convolution algebra I}((o) is the (complex) Banach algebra of all equivalence classes of
Lebesgue measurable functions / such that ||/|| = j'o>|/(r)|a)(r)dt<oo) under pointwise
addition, scalar multiplication of functions, and convolution product:

{f*g)(x)=]f(x-t)g(t)dt (f,geLl(co), a.e. xeR+).
o

The elementary properties of the algebras I}(co) are given in [3]. We use the theory
developed in [1], [2] and [4], and adopt the notation of [4].

We shall repeatedly use Titchmarsh's convolution theorem, which asserts that, if /i^O
and v#0 are any two locally finite measures, then /z*v#0, or in its equivalent form
a(n * v) = a(/i) + a(v), where for every n^O, a(/z) is the infimum of the support of fi (see
[1] for a proof).

If 6 is an algebra isomorphism from ^(oi^) onto l}((o2) then it is continuous [5;
Remark 3(a)].

In this paper all of the algebras I}(co) are radical, or equivalently lim,^oo(w(t)1/' = 0.
In the following proposition, M(co) is as defined in [4].

Proposition 1. Suppose 9 is an isomorphism from ^{(o^ onto l}(co2). Then the formula
Q(M)(f) = 0(n*9~1(f)) (M6M(«i)» fel}(co2)) defines a continuous isomorphism
B:M(co1)^M(co2) which extends 0.

Proof. For every neM^), let rM:L1(to2)^L1(co2) be defined by
(f e I}(a>2)). Then 7J, is obviously linear and we have7J,

-1W * g)=e(n *e-1(f* g))=e^ * e~»(/) * e~ \g))
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Thus, T,, is a multiplier on L1(co2)- By an identification of the multiplier algebra of I}(co2)
with M((o2) [4; Theorem 1.4], there exists a measure, say B([i), in M(a>2) such that 7J,(/)
= B(n)*f (fel}((o2)). We prove that the map n->B([i) is an extension of 9 to an
isomorphism from M ĉoj) onto M(co2). This map is obviously linear. Let fi, veM(cu1)

Then

which together with Titchmarsh's convolution theorem implies B(fi * v) = B(fi) * B(v).
Let B(n) = 0. Then for every f e(l}(coj\{0})

whence [i*9~1(f) = 0, since 9 is an isomorphism. Hence by Titchmarsh's convolution
theorem \x = 0. Thus 6 is injective.

To show that B is onto, let /zeM(a)2), then f->9~1(n*9(f)) is a multiplier on ^((Oj),
whence there exists veMfaij) such that B'i(fi*6(f)) = v* f ( / e L 1 ^ ) ) . If we apply B to
both sides of this equality we obtain fi * 9{f) = #(v) * 6{f) (/eL^cOi)). Another
application of the Titchmarsh's convolution theorem implies [i = B(v). It is easily verified
that B extends 9.

We also note that (£)-1=(0-1).

Lemma 1. Suppose 6 is an isomorphism from ^{(o^ onto I}(co2) and B is its extension
as described in Proposition 1. Then there exists a constant Ag>0, such that

(xeR+),

where dx is the unit mass concentrated at x.

Proof. We consider the function fi:R+-+R+ defined by P(x) = u[B(5x)]. For every
x,yeR+, by Titchmarsh's convolution theorem we have,

ftx + y) = a[ff(ax+,)] = *19(6X)*B(S,)]

(1)

Next we prove that jS is continuous from the right at every xeR+. It suffices to do
this for x = 0. Let xn>0 and xB->0. Then 8Xn

 s° > 80. (For the definition of the topology
bso and the topology a which follows, see [4].) Since B is an isomorphism from M(co1)
onto M(co2) we have

S(5X)-^B(SO) = 5O, (2)
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whence

BiSJ-^ So. (3)

[4; Lemma 1.2]. This implies f}(xn) = uB(8xJ->0, for otherwise there exists a positive
number b such that for infinitely many values of n, a.B(PxJ > b. Then if / is a continuous
function with supp/<=[0, b] and /(0) = l we get j J f(t) dB(SxJ(t) = 0 for infinitely many
values of n, while $ f(t)d8o(t) = f(0) = l, and this contradicts (3). Hence ft is continuous
from the right, whence there exists Ag^.O such that <x(B(5x)) = /?(x) = Aex for every xeR+.

Next we prove that Ae>0. If Ag = 0, then a(B(8x)) = 0 for every xeR+. We prove that
this implies <x(0(/)) = O for every /GL^COJ) having a compact support and with a(/)>0.
Suppose /eI}(a>i), with a(/) = a, supp / c [a, b] where 0<a<f><oo. Then if g=/*<5_a,
we have gEL 1 ^ ) , <x(g) = 0 and suppgc[0, b —a]. Therefore, !?(«!)*# is dense in ^(coj
[1; Theorem 2]. Since 0 is an isomorphism between ^{(o^) and L}((o2), I^((o2) * 9(g) is
dense in I}(<o2), whence «(%)) = 0. We have f=g*Sa. Hence 0(/) = 8(g) * B{8a). Thus,

To obtain a contradiction we show that there exists fellico^ having a compact
support with <x(/)>0 and with <x(0(/))>O.

There exists K ^ 1 and M > 0 such that

(„ , * , , ,4,

[2; Theorem 4.1]. Since for each <5>0, ( l / a ^ n ) ) 1 " 1 - ^ as n->oo, by [2; Theorem 3.2.II]
there exists / in ^((Oj) with <x(f) = K, with supp/c[K, K +1], and such that

\\r-\\KcoAKn) (neJV). (5)

For this /, by (4) and (5) we have

and so by [2; Theorem 3.6], a#( / )^ l . From this contradiction we conclude that Ae>0
and the lemma is proved.

The following proposition strengthens the statement of our Lemma 1.

Proposition 2. Suppose 8 is an isomorphism from I}(coi) onto l}(a>2) and B is its
extension as described in Proposition 1. Then there exists a constant AB>0, such that
ot.{B(ii)) = Aeot.(n), for every

Proof. By Lemma 1 there exists Ae > 0 such that

(xeR+).
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Suppose
JV

where x x < . . . <xN and a: j^O, i=l,...,N. Then

and we have

«B(dXi) = Aex1<...< ccB(3Xs) = AexN.

Hence,

B (1)

For a general ^ E M ( C O 1 ) , we first prove that <x(B(n))^.Ae<x(fi). Let (^i)cM(o)1) be a net
such that nt

 s° > /^ a(/z;)^a(/i) and such that each /i, is a finite linear combination of
point masses [4; Lemma 1.3]. Since B is an isomorphism we have Bifii)-^2* B(n), whence
B(Hi)-^> B(n), [4; Lemma 1.2]. If a(B(n)) < Ae<x(ii), then we choose b such that
ccB(n) < b < Aeoi.(n) and we let g be a continuous function with suppg<=[a#(/4 b] and
with JS>g(x)d90i)(x)9tO. Since .4ea(/i) g «0(/O, we have Jg>g(x)d0(ji,)(x) = O. Then

0 # J g(x) dfl(A*)(x) = lim J g(x) d9(A*()W = 0.
0 0

From this contradiction we conclude

B (2)

Now, let / e L 1 ^ ! ) have compact support and let <x(f) = a. Then h=f *d-ael}(co1),
and a(/i) = 0. Thus, I}(col)*h is dense in 1/(0)!) [1; Theorem 2]. Hence, I}{co2)*9(h) is
dense in L 1 ^ ) - Therefore, a0(/i)=O. We have 0(/) = 0 (A * <5fl) = 0(/i) * B(5a). Hence,

= 0 + Ae<x = X,a(fc). (3)

Now, suppose / e C L ^ i A W ) , a(/) = c. Let / ^ / X i c c + i], f2 = fXy + i,*»- T h e n / =
fi+fi- Therefore, 0(f) = d(f1) + 6(f2). By the conclusion of the previous paragraph we
have a0(/,) = Aoc, and by (2) we have a0(/2)^-4n(r+ l)>/lnr. Therefore

a(0(/)) = min {aC^/J), a(0(/2))} = Aec = Aez(f). (4)

Finally, if /ie(M(co1)\{0}), then for /eCLHoi^MO}) by (4) we have

<x(0"(/x)) + a(0(/)) = a(0(/x * /)) = A^i * f) = Aeoc(n) + A9z(f). (5)
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Cancelling a6(f) = Aeix(f) from both sides of (5) we obtain <x#(/z) = Aea(n), and the proof
is complete.

Corollary 1. / / 6 is an isomorphism from ^(co^ onto I}(co2)
 and 0~l is its inverse,

then Ae-l = l/Ae.

Proof. We have a(B(B)~\5x)) = a.(Sx)=x, and by Proposition 2 we have a(B(B)~\SX))
= Aga((B)~1(8x)) = AgAg-1x, and the result follows.

Since Ae > 0, we also have:

Corollary 2. The function aB is strictly increasing in the sense that if a(fi) < <x(v), then

We need the following two lemmas for the proof of our main theorem.

Lemma 2. Suppose that ft and v are any two locally finite measures on R + . Then /J.*V
has a non-zero mass at a(/i * v) if and only if \i has a non-zero mass at <x(n) and v has a
non-zero mass at a(v).

Proof. We have (fi * v)({<x{(i * v)}) = n({ot(fj)})v({ot(v)}), and the lemma is proved.

Lemma 3. Suppose 9 is an isomorphism from l}((Oi) onto l}((02)
 an& @ IS I f s extension

as described in Propositon 1. Then for every xeR+, B(5X) has a non-zero mass at <x(E(5x)).

Proof. Let xeR+ and suppose that B(5X) has a zero mass at <x(B(3x)). Then, we first
prove that B{5y) has a zero mass at <x(B{5y)), for every y>0 . If y>x, then @(dy)
= B(8x)*B(Sy-x), whence by Lemma 2, B(8y) has a zero mass at <x(B(Sy)). On the other
hand, if 0<y<x, let n be a positive integer such that x<ny. Then ${dny)
= B(5ny-x)*B(8x), and again Lemma 2 implies that B(5ny) has a zero mass at x(B(5ny)).
Since E(5ny) = {B(5y))*

n, another application of Lemma 2 implies that B(Sy) has a zero
mass at a.(B(8y)).

Next we prove that this implies B(fi) has a zero mass at u(B(n)), for every fxeM^coj)
having a compact support and with a(/i)>0. Let ^eM(co1) with suppler [a, ft],
0<a<fc<oo. Then v = /i*/S_a/2eM(<a1). We have fi = v*5a/2, whence B(fi) = B(v)* B(5a/2),
and the discussion in the above paragraph together with Lemma 2 implies that B(n) has
a zero mass at cc(B(n)).

If XeMfja^) does not have compact support and <x(/l) = /c>0, then we decompose k
into A=Xl+k2, with supp^cf jc , fc+1], <x(Xl) = k, and a(A2)^fc+l, so that B(k{) has a
zero mass at 0$^)). Since a(B(k2))^Ae(k + l)>Aek = <x(E(k1)), the measure B(X)=9~(kl)
+ B(k2), has a zero mass at <x(B(k)) = <x(B(klj).

Now, <x((By1(81)) = Ae-,>0. Hence ^1 = &(^)~1(51) has a zero mass at «((#(#)"'X^))
= a(^i) = 1. From this contradiction we conclude that B(5X) has a non-zero mass at
a(B(8x)) for every xeR+.

https://doi.org/10.1017/S0013091500004417 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004417


348 F. GHAvHRAMANI

Theorem 1. A necessary and sufficient condition for ^{co^) and I}(a>2) to be
isomorphic is the existence of positive numbers a, b, m and M such that,

<O\.{x)

Proof. Suppose that there exist a>0, £>>0, m>0 and M>0 for which (1) is fulfilled.
Define ^ ( c o i ) - ^ ( G J J by

(9f)(x) = l/abx'°f(x/a) ( / e U K ) , a.e. xeR+). (2)

Then 6 is an isomorphism from ^(co^ onto I}{co2).
Conversely, let 9 be an isomorphism from I}{cox) onto I}(co2)

 a n ^ let B be its
extension. For simplicity we write a for Ae which is in fact a(?(^1)). For every rational
xeR+, by Proposition 2 and Lemma 3 we have

8(5x) = k(x)Sax + fix, (3)

where a(/xx)^ax, (ix({ax}) = 0, and k(x) ^0. Now, suppose x,yeR+ are any two
rationals. Then

( y y . (4)

Also,

B(Sx+y) = B(5X) * B(8y) = {k(x)5ax+nx) * (k(y)Say + vy)

= k(x)k(y)5ax+ay + k(x)5ax *ny + k{y)5ay *nx+nx* ny, (5)

where the measure k(x)5ax * fiy + k{y)8ay * nx •+ nx * fiy has a zero mass at ax + ay, by
Lemma 3. Comparing equations (4) and (5) we get

k(x + y) = k(x)k(y). (6)

Therefore, there exists b>0, such that for every rational xeR+, we have |k(x)| = bx.
From (3), for every rational xeR+, we get

= \Hx)\\\5ax\\M<a2)=bxco2(ax). (7)

Now,
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On the other hand, by Corollary 1 and Lemma 3 we have,

OT^H'toSx + v,, (9)

where l(x) ¥= 0, a(vx) ̂  x and v̂  has a zero mass at x. Arguing as we did in the previous
paragraph, we find c>0 such that \l(x)\ = cx, for every rational xeR+. We prove c = l/b,
or equivalents |fe(l)||/(l)| = l. We have

(10)

and,

(9)-1(«5a) = /(l)51 + v1, (11)

where af/ij^a, /i1({a}) = 0 and o^vj^l, v1({l}) = 0. Let e>0. Since the measure fi1

introduced in (10) has a zero mass at a and is regular, there exists rj>0, and a
decomposition /x1=/i'1+/i'][, with s u p p l e [a, a + t]~], supp fj.'{ c: [a + r\, oo) and
| | U e - Then from (10) and (11) we get,

+ ( 9 ) - V i ) . (12)

The measure (6*)̂  1(Aii) has a zero mass at 1, since

Also the measure fe(l)vt has a zero mass at 1, since Vj already had this property. The
measure (0)^1(//'1) might have a non-zero mass at 1. Suppose

(13)

where <x(l)^l, A({l}) = 0, From (12) and (13) we obtain

^-fcUMWi+Otfi+*)+*(!>! + (0 ) - 1 K) . (14)

On equating the coefficients of (^ in both sides of (14) we obtain

l = /c(l)/(l)+p. (15)

On the other hand, by (13) we have,

I K I U I M U H P K ( I ) , (16)
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and,

From (16) and (17) we obtain

Since e was arbitrary (15) and (18) imply

l=/c(l)/(l). (19)

Thus, c = l/b, whence l(x) = l/bx, for every rational x e R+ and by (9) for every rational
xeR+, we have

Combining (8) and (20) we obtain

for every rational xeR+. Now, continuity of tOj and « 2 implies that (21) holds for every
XER+, and the proof is complete.

Corollary 3. Suppose 6 is an automorphism of l}{co), then a{G(f)) = <x(f) (f el}(co)).

Proof. By Theorem 1 there exist a>0, b>0, m>0, and M > 0 such that
m%[w{ax)l<x>{x)~]bx -SLM (xeR+). The proof of Theorem 1 shows that a can be chosen to
be equal to Ae. If a> 1, then

m ̂  ——- bx ^ — bx = co((a - \)x)bx,
co(x) co(x)

whence mllx^(co((a— l)x))1/xb. Now we let x->oo to obtain 1^0, a contradiction.
Similarly, the inequality [a>(ax)/a>(x)]bx^M, rules out the possibility a<\. Hence
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