Propagation of Highly Efficient Star Formation in the North American Nebula (NGC 7000)

Hideyuki Toujima¹, Toshihiro Handa¹, Toshihiro Omodaka¹ Takumi Nagayama², Hideyuki Kobayashi², and Yasuhiro Koyama³

¹Depart. Astron. & Phys., Kagoshima Univ., Korimoto 1-21-35, Kagoshima 890-0065, Japan email: handa@sci.kagoshima-u.ac.jp

²National Astronomical Observatory of Japan, ³National Institute of Information and Communications Technology

Abstract. We mapped the molecular cloud associated with the North American Nebula in the NH₃ lines and the H₂O maser using the Kashima 34-m telescope. The line ratio shows the molecular gas is cold. For the clumps and subclumps in the cloud we also estimate the star forming efficiency (SFE). The east end of the cloud shows the highest SEF, 0.62, and the other end is the lowest, 0.06. The 3 dimensional structure derived using the published H α map suggests the east end is in the HII region and it should be a reason why the SFE is high there.

Keywords. ISM: individual (North American Nebula) — ISM: molecules — radio lines: ISM

We mapped the molecular cloud L935 in the NH₃ (1,1), (2,2), and (3,3) lines and searched the H₂O maser with the 1.6' beam (Toujima *et al.* 2011). The NH₃ distribution is elongated NE-SW and its eastern end looks intruding into the HII region. We found two clumps and the eastern clump, or clump A, is composed of 3 subclumps. The sizes and masses of the clumps are about 1 pc and $100 - 400M_{\odot}$, respectively, and those of 3 subclumps are about 0.2 - 0.3 pc and $10 - 20M_{\odot}$, respectively. Each clump and subclump shows the similar $T_{\rm rot}$ of NH₃ ranging 11 - 15 K

However, they have different starformation activities. T-Tauri type stars strongly concentrate to the subclump at the eastern end. We found a H₂O maser source only in clump A. As a result, the star formation efficiency is estimated to be as high as 0.36 - 0.62 for clump A, although it is lower than 0.06 for the other clump, or clump B.

Detail investigation of H α emission velocity maps (Fountain *et al.* 1983), we concluded that this NH₃ cloud deeply intrudes the HII region actually (fig.1). The high star formation efficiency should be

Figure 1. A schematic view of the cloud.

triggered by the pressure and/or shock due to the HII region.

References

Fountain, W. F., Gray, G. A., & O'Dell, C. R. 1983, *ApJ*, 269, 164 Toujima, H., *et al.* 2011, *PASJ*, 63, 1259