J. Appl. Prob. **51**, 890–893 (2014) Printed in England © Applied Probability Trust 2014

ASYMPTOTIC BEHAVIOUR OF THE TIME-FRACTIONAL TELEGRAPH EQUATION

VICENTE VERGARA,* Universidad de Tarapacá

Abstract

We obtain the long-time behaviour to the variance of the distribution process associated with the solution of the telegraph equation. To this end, we use a version of the Karamata–Feller Tauberian theorem.

Keywords: Telegraph equation; fractional derivative; Mittag–Leffler function; Tauberian theorem

2010 Mathematics Subject Classification: Primary 60G22

Secondary 45K05; 45M05

1. Introduction and preliminaries

Let $\alpha \in (0, 1]$ and $\mu, \nu > 0$ be constants. We consider the time-fractional telegraph equation

$$\partial_t^{2\alpha}(u - u_0 - tu_1) + \mu \partial_t^{\alpha}(u - u_0) - \nu \partial_x^2 u = 0, \qquad t > 0, \ x \in \mathbb{R},$$
(1.1)

where $u_0 = u(0, x)$ plays the role of the initial datum for u, and $u_1 = u_t(0, x)$ means the initial condition of the derivative of u whenever it exists for $\frac{1}{2} < \alpha \le 1$. In general, (1.1) can be solved using e.g. the abstract theory of Volterra equations; see the monograph of Prüss [6].

Equation (1.1) is introduced in [4] subject to the conditions that $u_0 = \delta(x)$ and $u_1 = 0$; we adopt these conditions as well. The solution u_α of (1.1) exhibits interesting properties, one of them being that u_α can be viewed as the probability density function whose distribution process, denoted by X_α , coincides with u_α at time *t* (cf. [4]). Furthermore, they show that, for $\alpha = \frac{1}{2}$, the variance of $X_{1/2}$ increases like $t^{1/2}$ as $t \to \infty$, which is more slowly than the variance of X_1 ($\alpha = 1$), which increases like *t* as $t \to \infty$. In this paper we aim to establish this property for all $\alpha \in (0, 1]$. Moreover, we prove that the variance of X_γ increases more slowly than the variance of X_α if and only if $0 < \gamma < \alpha \le 1$. See Theorem 2.1 below.

The term $\partial_t^{\beta} v$ denotes the classical Riemann–Liouville fractional derivative of the (sufficiently smooth) function v of order $\beta > 0$, which is defined by

$$\partial_t^\beta v = \frac{\mathrm{d}}{\mathrm{d}t}(g_{1-\beta} * v),$$

where g_{α} denotes the standard kernel

$$g_{\alpha}(t) = rac{t^{lpha - 1}}{\Gamma(lpha)}, \qquad t > 0, \ \alpha > 0.$$

Here $\Gamma(\alpha)$ stands for the gamma function; $g_{\alpha} * v$ denotes the convolution on the positive half-line $\mathbb{R}_+ := [0, \infty)$ with respect to the time variable, that is, $(g_{\alpha} * v)(t) = \int_0^t g_{\alpha}(t-s)v(s) \, ds, t \ge 0$.

* Postal address: Universidad de Tarapacá, Instituto de Alta Investigación, Antofagasta N. 1520, Arica, Chile. Email address: vvergaraa@uta.cl

Received 8 October 2013; revision received 17 November 2013.

Let us recall some properties of the standard kernel: $(g_{\alpha} * g_{\beta})(t) = g_{\alpha+\beta}(t), \alpha, \beta > 0$, for all $t \ge 0$, and $\partial_t^{\beta} g_{\beta}(t) = 0$ for all t > 0; see, e.g. [5].

The solution of the scalar equation (1.1) can be computed explicitly in terms of the Mittag– Leffler function

$$E_{\alpha,\beta}(x) := \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(\alpha k + \beta)}, \qquad \alpha, \beta > 0, \ x \in \mathbb{C}.$$

For a general presentation of fractional calculus and applications, we refer the reader to [3], [5], and [7].

In particular, in [4, Section 5] the variance of X_{α} is given by $\mathbb{E}X_{\alpha}^2$ since the mean value of the processes $X_{\alpha}(t)$, t > 0 is 0. The variance $\mathbb{E}X_{\alpha}^2$ is explicitly obtained, that is,

$$\mathbb{E}X_{\alpha}^{2}(t) = 2\nu t^{2\alpha} E_{\alpha,2\alpha+1}(-\mu t^{\alpha}).$$
(1.2)

We use (1.2) to obtain our results.

The following result is a version of the Karamata–Feller Tauberian theorem (cf. [8]), which establishes that the asymptotic behaviour of a function w(t) as $t \to \infty$ can be determined, under suitable conditions, by looking at the behaviour of its Laplace transform $\hat{w}(z)$ as $z \to 0$, and vice versa. See the monograph [1] for a more general version and proofs.

Theorem 1.1. Let $L: (0, \infty) \to (0, \infty)$ be a function that is slowly varying at ∞ , that is, for every fixed x > 0, we have $L(tx)/L(t) \to 1$ as $t \to \infty$. Let $\beta > 0$, and let $w: (0, \infty) \to \mathbb{R}$ be a monotone function whose Laplace transform $\hat{w}(z)$ exists for all $z \in \mathbb{C}_+ := \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\}$. Then

$$\hat{w}(z) \sim \frac{1}{z^{\beta}} L\left(\frac{1}{z}\right) \quad as \ z \to 0 \quad if \ and \ only \ if \quad w(t) \sim \frac{t^{\beta-1}}{\Gamma(\beta)} L(t) \quad as \ t \to \infty.$$

Here the approaches are on the positive real axis and the notation $f(t) \sim g(t)$ as $t \to t_*$ means that $\lim_{t\to t_*} f(t)/g(t) = 1$.

2. Main result and proof

Theorem 2.1. (i) Let $\alpha \in (0, 1]$. Then

$$\mathbb{E}X_{\alpha}^{2}(t) \sim \frac{2\nu}{\mu} \frac{t^{\alpha}}{\Gamma(\alpha+1)} \quad as \ t \to \infty.$$

(ii) Let $\alpha, \gamma \in (0, 1]$. Then there exists M > 0 such that, for all t > M, we have

$$\mathbb{E}X_{\gamma}^{2}(t) < \mathbb{E}X_{\alpha}^{2}(t)$$
 if and only if $\gamma < \alpha$.

Proof. Define $v(t) = 2vt^{2\alpha}E_{\alpha,2\alpha+1}(-\mu t^{\alpha})$ on \mathbb{R}_+ . Note that the Laplace transform of v(t) is given by

$$\hat{v}(z) = \frac{2\nu}{z^{2\alpha+1} + \mu z^{\alpha+1}};$$

see, e.g. [3]. This in turn implies that v is the unique solution of

$$\partial_t^{2\alpha} v + \mu \partial_t^{\alpha} v = 2v, \qquad t > 0, \ v(0) = 0.$$
 (2.1)

Equation (2.1) can be written as a Volterra equation by convolving (2.1) with the kernel $g_{2\alpha}$, that is,

$$v(t) + \mu(g_{\alpha} * v)(t) = 2\nu g_{2\alpha+1}(t), \qquad t > 0.$$
(2.2)

Now, in order to write the solution of (2.2) by means of the variation of parameters formula for Volterra equations (cf. [2] and [6]), let us introduce the relaxation function s_{μ} on \mathbb{R}_{+} as the solution of the Volterra equation

$$s_{\mu}(t) + \mu(g_{\alpha} * s_{\mu})(t) = 1, \quad t \ge 0.$$
 (2.3)

Observe that the unique solution of (2.3) is given by the Mittag–Leffler function, that is,

$$s_{\mu}(t) = \sum_{k=0}^{\infty} \frac{(-\mu t^{\alpha})^k}{\Gamma(\alpha k+1)} = E_{\alpha,1}(-\mu t^{\alpha}).$$

It is well known that s_{μ} is strictly positive and decreasing on $(0, \infty)$ (cf. [3] and [7]).

The solution of (2.2) can now be represented as

$$v(t) = \frac{d}{dt} \int_0^t s_{\mu}(t-s) 2\nu g_{2\alpha+1}(s) \, ds = 2\nu (s_{\mu} * g_{2\alpha})(t), \qquad t \ge 0.$$

The second term in this equality is the variation of parameters formula for (2.2).

Since s_{μ} depends on α , set $s_{\mu,\alpha}(t) = s_{\mu}(t)$.

(i) Observe that v(t) is strictly positive on \mathbb{R}_+ . For $\alpha \ge \frac{1}{2}$, we have $\dot{v}(t) = 2v(s_{\mu,\alpha} * g_{2\alpha-1})(t) > 0$ for all t > 0, meanwhile, for $\alpha < \frac{1}{2}$, we obtain $\dot{v}(t) = 2v(\dot{s}_{\mu,\alpha} * g_{2\alpha})(t) + 2vg_{2\alpha}(t)$. From (2.3) we obtain

$$\dot{v}(t) = 2v(\dot{s}_{\mu,\alpha} * g_{2\alpha})(t) + 2vg_{2\alpha}(t) = \frac{2v}{\mu}([-\dot{s}_{\mu,\alpha}] * g_{\alpha})(t) > 0, \qquad t > 0.$$

Therefore, v is a monotone increasing function on $(0, \infty)$ for all $\alpha \in (0, 1]$. On the other hand, $\hat{v}(z) \sim 2\nu/(\mu z^{\alpha+1})$ as $z \to 0$. Next, define L(t) = 1 for all t > 0. Hence, the statement follows from Theorem 1.1.

(ii) Define $w(t) = 2\nu t^{2\gamma} E_{\gamma,2\gamma+1}(-\mu t^{\gamma})$. Then w(t) can be written, by means of the variation of parameters formula for Volterra equations, for the corresponding solution of (2.2) as follows:

$$w(t) = 2\nu(s_{\mu,\gamma} * g_{2\gamma})(t), \qquad t \ge 0.$$

Since v and w are strictly positive and increasing functions on $(0, \infty)$, it follows from (i) that there exists an M > 0 such that

$$w(t) \le \frac{2\nu}{\mu} \frac{t^{\gamma}}{\Gamma(\gamma+1)} < v(t)$$

holds for all t > M.

This completes the proof.

Acknowledgement

The author was partially supported by the FONDECYT grant 1110033.

References

- [1] FELLER, W. (1971). An Introduction to Probability Theory and its Applications, Vol. II, 2nd edn. John Wiley, New York.
- [2] GRIPENBERG, G., LONDEN, S.-O. AND STAFFANS, O. (1990). Volterra Integral and Functional Equations (Encyclopedia Math. Appl. 34). Cambridge University Press.
- [3] KILBAS, A. A., SRIVASTAVA, H. M. AND TRUJILLO, J. J. (2006). Theory and Applications of Fractional Differential Equations (North-Holland Math. Studies 204). Elsevier, Amsterdam.
- [4] ORSINGHER, E. AND BEGHIN, L. (2004). Time-fractional telegraph equations and telegraph processes with Brownian time. *Prob. Theory Relat. Fields* 128, 141–160.
- [5] PODLUBNY, I. (1999). Fractional Differential Equations (Math. Sci. Eng. 198). Academic Press, San Diego, CA.
- [6] PRÜSS, J. (1993). Evolutionary Integral Equations and Applications. Birkhäuser, Basel.
- [7] SAMKO, S.-G., KILBAS, A. A. AND MARICHEV, O. I. (1993). Fractional Integrals and Derivatives. Gordon and Breach, Yverdon.
- [8] VERGARA, V. AND ZACHER, R. (2013). Optimal decay estimates for time-fractional and other non-local subdiffusion equations via energy methods. Submitted.