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Abstract

For any ring S we define and describe its characteristic ring, x(S). It plays the réle of the
usual characteristic even in rings whose additive structure, (S, +), is complicated. The ring x(S)
is an invariant of (S, +) and also reflects certain non-additive properties of S. If R is a left
faithful ring without identity element, we show how to use x(R) to embed R in a ring R! with
identity. This unital overring of R inherits many ring properties of R; for instance, if R is
artinian, noetherian, semiprime Goldie, regular, biregular or a V-ring, so too is R!. In the case
of regularity (or generalizations thereof), R! satisfies a universal property with respect to the
adjunction of an identity
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The usual characteristic of a ring does not carry much information when the
ring is not a domain. If S is a ring with 1, the subring maxepi(v, S), where
v:Z — S, is proposed as the characteristic ring, k(S), of S. It is an invariant
of the additive structure of S and its ring structure is known. It is here
completely described in terms of (S, +), but it reflects more than the additive
structure since, for example, it is regular (n-regular) if .S is. Some properties
of x(S) are described and it is seen that it can reasonably be defined even for
rings without 1.
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It was observed as long ago as 1932 (Dorroh’s Theorem) that any non-
unital ring R may be embedded in a ring with identity. This is done by
adjoining a copy of Z, the ring of integers, to R. This does not preserve all
the nice properties which R might have, nor is it minimal in any of various
senses; and so over the decades many embeddings have been invented to
serve diverse purposes. For example, if R is regular (or some generalization
of regular, such as n-regular) one would like to embed R into a regular ring (or
the generalization). There are other sorts of properties (semiprime, artinian,
domain, Ore domain) which one may wish to preserve in going from R to
some ring with 1, say R!, all the while without adjoining anything more than
necessary. It turns out that there is one construction, using x(R), which will
give all the main results as well as some new ones, although there is not yet
one proof by which to do it. In the case of the generalized sorts of regularity,
the ring formed by adding x(R) satisfies a universal property with respect to
the adjunction of 1.

1. The characteristic ring

The basis for what follows is what could well be called the characteristic
ring of a ring § with 1 (the expression was first used in [2] but the germ
of the idea is in [8] and [9]). In order to describe it, it is first necessary
to recall what is meant by an epimorphism of rings with 1: ¢: S — T is
called an epimorphism of rings if for any ring U and any pair of homo-
morphisms o, 8: T — U, a¢ = B¢ implies a = f. Such homomorphisms
are not necessarily surjective as Z — Q x Z/(2), z — (z,Z), which is epic,
shows. If f: S — T there is always a maximal epic extension of f(S) in T,
denoted maxepi(f, T). The claim is that for the canonical homomorphism
v:Z — S, maxepi(v, S) := k(S) acts like the characteristic of S. Indeed, if
S is a division ring then x(S) is the prime field of S. On the other hand
k(Q x Z/(2)) = Q x Z/(2), revealing the mixture of characteristics of that
ring. The ring x(S) is always central [17, Proposition 1.3] and the structure
of all epimorphs of Z is known (in fact of all epimorphs of an arbitrary
Dedekind domain). (See [1] and [16] for the case of Z and [3] and [5] for
the generalization.)

ProrosITION 1.1 [3). A ring with 1,5, is an epimorph of Z if and only if it
has one of the following forms.

(A) S = Z/I, for some ideal I of Z.

(B) S = D x Z/(p{") x --- x Z/(p*), where the p; are primes, the n; > 1
and D is a ring, with Z C D C Q, which is divisible by the py, ..., ps.
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(C) There is an infinite set of primes {p;}ien and, for i €N, integers n; > 1
and a ring D, Z C D C Q, with D divisible by each of the p;, and S is the
subring of 172, Z/(p}) consisting of sequences of the form (u;), where there is
an element a/b € D such that for almost all i, u; has the form /b € Z/ 7).
(One can think of sequences of the product which are eventually “constant” and
“in” D.)

Note that in cases (B) and (C) the ring S is determined by a function
g: P — NU {oo}, where g(p) = n if the factor Z/(p") appears and g(p) =0
if D is p-divisible but no factor Z/(p") appears for any n > 0, and, finally,
g(p) = oo otherwise. (See [5].)

As we know, even in the case of domains, the characteristic ring can change
under homomorphisms; nevertheless a few observations are possible. The
first is immediate from the definition of x(S) as a maximal epimorphic ex-
tension.

LEMMA 1.2, Let ¢: S — T be a homomorphism of rings with 1. Then
&(x(S)) is a subring of k(T ).

In what follows, for any abelian group G, ¢(G) denotes its torsion subgroup,
while for any p € P, ¢,(G) is its p-torsion part. In the case of a ring, these
are all ideals. For any ring S, annz S denotes {z € Z: zS = 0}.

ProrosiTioN 1.3. Let K and L be epimorphs of Z where K is a unital
subring of L. Then

(i) annz K = annz L,

(ii) ifannz K = annz L = O then K and L are defined by functions gk, 81 :
P — NU{oo}. For each p € P, if gk(p) < oo then gx(p) = gL(p). If
gk (p) = oo, gL(p) may take on any value. Conversely, if L is given by gi,
take any subset Uy of Xo(L) = {p|gL(p) < oo}, and define gx by

gL(p) ifpely,
00 otherwise.

8k(p) = {

Then gk defines an epimorph of Z which is a subring of L.

ProoF. Assume K C L. The first part is clear since annz K = annz(1) =
annz L. If annzK = 0 and p € P with 0 < gx(p) < oo then #,(K) # 0,
and so #,(L) # 0. Hence 0 < g.(p) < oo. Moreover, there is an idempotent
e, € L, epL = tp(L), and an idempotent f, of K with f,K = t,(K). Then
fp is a non-zero idempotent in the ring ¢,(L) which has only one, e,, which
generates it as a ring. Thus ¢,(K) = t,(L), and gx(p) = gr(p). If gx(p) =0,
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K is p-divisible and so 1 € K has infinite p-height and hence L is p-divisible
and g.(p) = 0.
If gx(p) = 0o, gL(p) can have any value. (Consider, for example, Z[1 /2] x
Z/(2) - Z[1/2,1/3] x Z/(2) x Z/(3), (1,0) — (1,0,1) and (0,1) — (0,1,0).)
The converse is clear: for if (ap,,...,d) € K (either a finite sequence or an
eventually “constant” sequence), this element can be sent to (b,,,...,d) € L
where

B { ay, if gi € Uy N {p|0 < gr(p) < o0},
9 g, the image of d in the g;,-component, otherwise.

Finally, we can see something of what happens to the characteristic ring
under a ring homomorphism

PropoOSITION 1.4. Let ¢: S — T be a homomorphism of rings with 1. Then
annz T D annzS. Further, if anngz T = O then x(S) and x(T) are given by
functions gs and gr, respectively. In this case, for p € P, gr(p) < gs(p).

ProOOF. The first part is clear. Assume that annz 7 = 0. If gg(p) < oo then
there is an idempotent ¢, (which could be 0) giving #,(S) = ¢,S and 1 — ¢,
has infinite p-height. If x € 1,(T), x = ¢(1 — e,)x + ¢(e,)x. Since ¢(1 — ¢p)
has infinite p-height, ¢(1 — e,)x = 0. Thus ¢(¢,(S)) = 1,(T). It follows that
8r(p) < 8s(p). If gs(p) = oo, gr(p) can take on any value.

Of course if R does not have 1 then x(R) is not defined but we shall see
that it is nevertheless possible to see what it “should” be. To this end we first
analyze the relationship between the characteristic ring of a ring with 1, S,
and its additive structure, (S, +).

PROPOSITION 1.5. Let S be a ring with 1. Let P be the set of prime integers.
There are two cases.

(i) annz S = I # 0; in this case k(S) = Z/I.

(ii) annz S = 0. A function f: P — N U {oo} is defined as follows: if for
p €P, annz 1,(S) = (p¥), k > 0 and S = SP) @ 1,(S) for some subgroup S®
which is p-divisible, then f(p) := k; otherwise f(p) := oc. Put {p € P|0 <
f(p) < oo} :=X, and {p € P|0 < f(p) < o0} :=Xy. Then

(@) if X, = {p1,...,D} is finite then k(S) = DxZ/(plf(”‘)) X oo xZ/(p,{("")),
where ZC D C Q and D = Z[1/p|p € Xy]-

(b) if X, is infinite then x(S) is the set of all sequences {u;} from
12, Z/(p,.f ®y which are eventually of the form u; = a/b, where a/b € D =
Z[1/pIp € Xo].
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Conversely, k(S) has one of the forms of (1.1) and these show the structure
of (S, +) as follows: if we have form (A) then anngz(S) = I and if forms (B)
or (C), annz(S) = 0 and we get the function f by f(p:) = n; for the primes
appearing in the product and f(p) = 0 if p does not appear in the product but
D is p-divisible, otherwise f(p) = oo.

ProoF. (i) If annz(S) = I # O then the image of Z in S is Z/I, which is
an artinian ring, and such rings have no proper epimorphic extensions [16,
5.4). Conversely, if x(S) = Z/1, for some I, then clearly annz S = I.

(i1) The case where annz S = 0.

Suppose that k() is of the form (B) or (C) as in (1.1). Then the idem-
potents of x(S) split S exactly as in the statement of this theorem. Indeed
if we take the function g for x(S) then if g(p) = k < oo it follows that
anngz t,(S) = (p¥), since this factor of x(S) is given by a central idempotent
e such that 1 — e has infinite p-height. In other words, if x(S) is defined by
the function g then g = f.

In the other directions, set X, = {pi,...,D,...}, which may be finite or
infinite. For each k there is a splitting
(*) S§=804,(8)® - ®,(S)

for some S, which is py,...,p,-divisible; the splitting is as a ring. To see
that this is so, suppose that S;_; has been chosen and let s € ¢, (S). Then if
we write f(k) for f(p;) we have s = plf“) = ~p,{(_k1_1)r for some r € S, where
r=ri+e+re_ + With r; € 1,,(S) and ¢ € S;_,. Thenif m = p/™ ... p/*=
we have s=mr=mri +---+ mr_y + mt € 5,_,. Hence t,, (S) € Sk_;. But
mS = Si_, and S®) = p/®§ so if we put S, = mp[®'S, then S, C S,
5 (S)NSy =0and Sk =S, @ tpk(S).

Now let T be the epimorph of Z, defined by the function f, which we wish
to show isomorphic to x(S). A homomorphism ¢: T — .S can be defined as
follows: let t = (@,,a,,...), with last entry b/c € D if X, finite or otherwise
with the sequence eventually, say after the kth term, of the form b/¢. Define
@(t) :==ae, + --- + are, + bs where e; is the idempotent giving #,,(S) in the
splitting (*) and s is the element of Sy which solves cs =1 —(e; +--- + ¢).
This is possible since the prime factors of ¢ are among p,,...,p; and S; is
divisible by all these primes. It is clear that ¢ is a ring homomorphism and
if ¢(t) = 0, then @€, = --- = Gye; = 0 giving @, = 0,...,d; = 0; from this
bes = b(1 — (e +--- +e)) =0 and bS, = 0. But S; is not torsion, so b = 0.

It remains to show that ¢(7) = maxepi(v,S) = x(S). But as already
observed, the function g which gives rise to x(S) is the same as f, and this
shows that x(S) = ¢(T).
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2. The basic construction

Any ring R, which need not have a 1, has either annz R # Oorannz R =0
and then it is possible to define a function f: P — N U {oo} just as in the
statement of (1.5). hence associated to each ring R is an epimorph of Z,
which is either Z/I, for some ideal I # 0, or is given by the function f. Call
this ring x(R) as well.

LEMMA 2.1. The ring R is a k(R) — k(R) bimodule.

ProOOF. If annz R = I # O then x(R) = Z/I and the action is obvious.
In the other case, the action is based on the structure of (R,+). Let z =
(215...5 2k, .- . ), where the sequence is finite ending in b/c € D or it is infinite
and eventually (say after k terms) of the form b/¢ where b/c € D. If r€ R
then we write r = r;{ + --- 4+ r, + s, where r; € t,(R), for i = 1,...,k and
s € R;. Here R; comes from the splitting of R as in () in the proof of (1.5).
Then rz = zr ;= z;ry + - - - + z; 1y + bt, where the natural Z/ (p,.f (”’))-structure
on t,(R), for i = 1,...,k, is used and ¢ € Ry solves ct = s. The remaining
details are easy to verify.

This allows us to adjoin x(R) to R in a direct way: R* := R x k(R),
with arithmetic (r,z) + (7', 2’) := (r + ',z + 2’') and (r, z)("', 2') = (rr +
z'r + zr',zz'). This ring would serve many of our purposes but it might
be bigger than necessary. For example if p € X|, it may be that #,(R) is
already generated by a central idempotent, in which case the one contributed
by x(R) is superfluous. We shall follow the lead of Robson [14] and look
inside End(RpR), at least in the case where R is left faithful, that is, if r€ R is
such that 7R = 0, then r = 0. When R is left faithful, R embeds in End(Rg).
Our proposed method of adjoining 1 is as follows.

DEFINITION 2.2. Let R be left faithful. Put k(End(Rg)) = K. Then R! is
defined to be R + K, as a subring of End(Rg).

ProPoSITION 2.3. The characteristic ring x(R*) = k(R). If R is left faithful,
k(End(Rg)) = k(R!) = k(R), and R! is a homomorphic image of R*.

ProoF. These statements say that the two ways of adjoining 1 do not do
much damage to the additive structure of R.

The first part for R* is clear. For R! we construct the function g: P —
N U {oo} and see that it coincides with the function f for R. Note also
that annz R = annz R! since if zR = 0 and z € Z, then z1 = 0 in R! and
conversely. Choose p € P. If f(p) = i # oo then R = t,(R) ® R®, R®P
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p-divisible, and any f € End(Rg) sends f,(R) to itself and R® to itself.
Hence there is a central idempotent e, € End(Rg) with e,(R?)) = 0 and e,
is the identity on #,(R). Now if for y € R!, pky = 0 for some k > 1 then
YR C t,(R) and so p’y = 0. Hence anngz t,(R!) = (p’). Further, if y € t,(R!)
then e,y = y giving t,(R') = e;R'. Now if 0 # s € (1 — ¢,)R!, define ;s
by (1s)(r) = 1s(r), and this makes sense since (1 — ¢,)R is p-divisible and
p-torsion free. The conclusion is that g(p) = f(p). If now f(p) = oo suppose
that R' = t,(R!) @ U where annz#,(R') = (p') and U is p-divisible. Then
there is an idempotent e, giving the splitting. Now %(1 — ep) makes sense in
R! and so (1 — ¢,)R is p-divisible. Moreover, #,(R) = t,(R') N R = ¢,R and
R =¢,R® (1 — ¢,)R, which contradicts the assumption that f(p) = oo.

The result for End(Rg) is implicit in the above.

Finally, define {: R* — R! by {(r,z) = r + z. This is clearly well-defined
and surjective.

The kernel of the homomorphism { is L := {(r,z)] for all s € R,rs =
—zs}, in other words, dividing by L gets rid of any superfluity, that is, those
elements of x(R) whose action is already present in R. If R already had an
identity element e then L would be generated by (e, —1) and R*/L = R.

We next look at some basic properties of R* and R!. The centre of a ring
S will be denoted by Z(S) and its right singular ideal by X,(S). The first
observation is obvious.

LEMMA 2.4. The centre Z(R*) = {(r,s)|r € Z(R)} and, if R is left faithful,
Z(RYY={r+s|re Z(R)}.

PROPOSITION 2.5. If R is left faithful, the ideal R of R! is dense as a right
ideal. Further

(i) Z,(R) = 0 if and only if Z,(R') = 0,

(ii) R and R' have the same right uniform dimension,

(iii) R is prime (semiprime) if and only if R! is prime (semiprime),

(iv) Qrmax(R) = Qrmax(R"),

(v) R is a semiprime Goldie ring if and only if R! is semiprime Goldie, and,
in this case, Qrci/(R) = Qrei(R).

PrOOF. Robson {14, Proposition 1.2] has observed, in a more general set-
ting, that R is an essential right ideal of R'. The stronger property of density
is also easy to check. If r+ z,# + z/ € R, r + z # 0, then for some s € R,
(r + z)(s) # 0 and r's + z’s € R. The remainder of the proposition follows
immediately.
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Note that R need not be right essential in R*. For example if R = 2Z then
Kk(R) = Z and (2, —2) has no non-zero multiple in R.

3. Finiteness conditions
In this section we examine finiteness conditions on R, R* and R!.

ProPosITION 3.1. (i) If R is (right or left) noetherian, so are R* and R'.
(i1) If R is (right or left) artinian and R has no additive subgroup which is
a quasicyclic group, then R* and R' are artinian.

ProokF. (i) If R is (right or left) noetherian, it suffices to show that x(R) is
noetherian. Of the rings of (1.1), the first two types are noetherian. Suppose
xk(R) has the third form (that is, X, is infinite). Then ¢(R), which is an ideal,
is an infinite direct sum of non-zero ideals, which is impossible.

(i1) If R is (right or left) artinian, again we see that x(R) cannot be of the
third type. If annz R = I # 0 then x(R) = Z/I is artinian. Moreover, if
annz R = 0, ¢(R) has only finitely many non-zero components and x(R) =
D x Z/(p{®)y x .- x Z/(p/®) as in (1.1). We need to show that D = Q,
and this follows immediately from [7, Theorem 73.1].

If R is artinian and left faithful, then R has no additive subgroups which
are quasicyclic [7, Lemma 72.3] so the proposition applies in this case. In
fact, Fuchs [7, Theorem 73.2] shows that an artinian ring R can be embedded
in an artinian ring with identity if and only if R has no additive subgroups
which are quasicyclic. Note that for Z,«, the zero ring on a quasicyclic group,
K(Zpw) = Z.

At this point it is appropriate to mention Krull dimension. Of the three
kinds of rings which appear as x(R), the first is artinian and hence of Krull
dimension 0, the second is not artinian but the torsion part is artinian and
so is every proper factor of the torsion free part; it is of Krull dimension 1,
the third type does not have finite uniform dimension and so does not have
Krull dimension [11, Proposition 1.4].

ProrosITION 3.2. Let R # 0 be left faithful and have Krull dimension.
Then so does R' and K-dimR = K-dimR!.

ProoF. If K-dimR = 0, this is the result for artinian rings. If K-dim R =
a > 0, then R has finite uniform dimension and so x(R) is artinian with
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K-dim O or is of type (ii) with K-dim 1, as remarked above. Hence K-dim R! =
max(K-dim(R!/R), K-dim R) = o [11, Lemma 1.1].

4. Regularity and generalizations

There are many results in the literature of the following form: let R be a
ring, not necessarily with 1, which satisfies condition (#), where (#) is some
generalization of (von Neumann) regularity; then R can be embedded in a
ring R! with 1 which also satisfies (#). We will show, at least when R is left
faithful (a condition which sometimes comes free with (#)), that these all can
be achieved with our ring R!. It will be shown at the end of this section that
for all these sorts of regularity, R! satisfies a universal property with respect
to adjoining 1. We begin with a very general relative of regularity.

LEMMA 4.1. Let R be such that every ideal is idempotent, that is, if I is an
ideal then I> = I. Then k(R) is regular.

ProoF. (i) If annz R = (m) # O then m must be square-free and x(R) =
Z/(m) is regular.

(ii) We need to show that the function f which defines x(R) has f(p) < 1
for all p € P, for then x(R) will be regular. Pick a prime p. Consider pR.
Since pR = p?R? = p’R, pR is p-divisible. Further, pt,(R) = p*t,(R) for
all k > 1. This means that pt,(R) is both p-torsion and p-divisible. Let
x € pty(R). For some integer n > 1, p"x = 0. Since pt,(R) = p"t,(R),
xpty(R) = 0. Hence (pt,(R))> = 0 and so, since pt,(R) is idempotent,
ptp(R) =0.

The following result unifies the known facts that regular rings [8] and
rings with all ideals idempotent [6] can be appropriately embedded in rings
with 1.

PROPOSITION 4.2. Let R be regular, strongly regular or have all ideals idem-
potent. Then R! is likewise.

PrOOF. In each case x{R) is commutative regular and so satisfies all of
the conditions. All that needs to be done is to verify that if (C) is one of the
conditions and R is an ideal in a ring S where R and S/R satisfy (C), then so
does S. For regular rings this is [10, Lemma 1.3] and a similar proof works
for strong regularity.

Finally it is easy to check that the class of rings all of whose ideals are
idempotent is closed under extensions.
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There remain three important cases which need separate treatment: 7-
regular, biregular and right V-rings. The first is already in Fuchs and Ran-
gawamy [9); the ring constructed there is precisely R*. In this case there is
no analogue of the “universal” regular ring of Fuchs and Halperin [8] which,
incidentally, maps onto x(R) for all regular rings R.

PROPOSITION 4.3 [9]). Let R be n-regular. Then R can be embedded in a
n-regular ring if and only if R* is n-regular which is if and only if, for each
prime p, annz t,(R) # 0 and R/t(R) is p-divisible. In this case R' is also
n-regular.

PRrROOF. The necessity is [9, Lemma 2]. The ring constructed in [9, Theo-
rem 2] is what we have called R* and n-regularity is preserved under homo-
morphic images.

The fact that a biregular ring can be embedded in a biregular ring with
1 was established by Vrabec in [18]. Here the proof is simplified and we
observe that the adjunction of 1 can be achieved via x(R).

PROPOSITION 4.4. Suppose we have a ring S with identity element contain-
ing an ideal R which, as a ring, is biregular. Suppose S also has a central
regular subring, Z, such that S = Z + R. Then S is biregular.

PRrROOF. Since biregular rings with 1 are precisely the rings whose Pierce
sheaves have simple stalks [4, Propositions 2.13 and 2.19], it suffices to show
that for every maximal ideal A/ of B, the boolean algebra of central idem-
potents of S, MS is a maximal ideal of S. (However, that this is sufficient
can be seen directly, without reference to the sheaf structure: S is clearly
semiprime and consider, for a € S, SaS @ lann SasS; if this is not S it is
contained in a maximal ideal N = (NN B)S. Write a = ae, e € NN B;
then 1 — e € lann SaS C N, which is impossible.) Suppose, then, that M is
maximal in B. Suppose K is an ideal of S with MS C K. If MSNR # KNR,
then, since R is biregular, there is e € (BN K)\MS. Thus 1 —ee M C K
and so K = S§. Now consider the case where MS N K = KN R. Since
MSCK, MS+RC K+ R If MSNR # R, since R is biregular there
is e € (BNR)\MS. Hence 1 — e € M, forcing MS + R = S. This contra-
dicts the fact that MS + R Cc K + R, so R C MS. It follows that there is
az € (ZnNnK)\MS and so, since Z is regular, an e € (BN K)\MS. Then
1-ee MS CK and, finally, K = S.

COROLLARY 4.5. If R is biregular so are R* and R'.
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ProoF. We need only remark that x(R) is regular by (4.1). Then (4.4)
gives the result.

Recall that a ring S is a right V-ring if every simple right S-module is
injective. That is, if M is module such that MS # 0 and 0 and M are its
only submodules, then M is injective. If S is a ring with 1 then it is a right
V-ring if and only if every unital S-module M satisfies J(M) = 0 where
J(M) =N{N|N is a maximal submodule of M} [13, Theorem 2.1]. If, now,
R is any ring such that 4R = A for any right ideal A4, then R is an right
V-ring if and only if any right ideal 4 of R, with 4 # R, is an intersection of
maximal modular right ideals (Villmayor [12, 2.24]). Our first observation
is about x(R). Recall that a commutative ring is regular if and only if it is a
V-ring (this is due to Kaplansky [15, Theorem 6]).

LEMMA 4.6. If R is a right V-ring such that AR = A for all right ideals A
of R, then k(R) is regular.

PROOF. As in (4.1) we show that forall pe P, f(p) < 1.

Take p € P. Then pR = R would show that f(p) = 0. Otherwise it will
turn out that pR is p-divisible. If not, there is a maximal modular ideal A/
such that p2R C M and pR ¢ M. Then pR+ M = R, and multiplication by p
gives the contradiction p2R+pM = pR and pR C M. Staying in the situation
where pR # R, consider #,(R). Suppose x € ¢,(R) and px # 0; then there is
k > 2 such that p*~!x # 0 but p*x = 0. Let T be the right ideal generated
by p*¥~1x. There is a maximal modular ideal M # R such that p*~'x ¢ M.
Then T+ M = R. Thus pM = pR and so p¥~'x = p(p*~2x) e pM C M.
This contradiction shows that pt,(R) = 0. Finally, for r € R, pr = ps for
some s, and so p(r — ps) = 0. Hence r = ps + (r — ps) € pR® 1,(R). In
summary, in this case f(p) = 1.

LEMMA 4.7. Suppose that R is an ideal in a right V-ring S with identity
element. Then for any right ideal A of R, AR = A.

PRrROOF. Let A be a right ideal of R and suppose that AR # A. Since the
S-module S/AR satisfies J(S/AR) = 0, there is a maximal S submodule T
of Swith ARC T but A ¢ T. Then AS + T = S and so multiplying by R we
obtain AR+ TR =R. Thus RC T and so A C T. This contradiction shows
that AR = A.

PROPOSITION 4.8. Suppose that S is a ring with 1 and R an ideal of S such

that AR = A for all right ideals A of R; suppose further that R and S/R are
right V-rings. Then S is a right V-ring.
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PROOF. Let I be a right ideal of S and suppose that a € S\I/. We must
show that there is a maximal right ideal M of S'suchthat / C M anda ¢ M.
We first consider the case where a € I + R. Then a = b + r where b € I and
r€ R\I. If J is a right ideal of S with I C J,thena ¢ J if and only if r ¢ J.
Thus we may assume that a € R. Let N be a maximal modular right ideal
of Rsuchthat  "NRC Nanda¢ N. Lete € Rbesuchthater—re N
for all r € R. Define ¢: S — R/Nby ¢(s) =r+euifs=r+u, r € R.
It is straightforward to check that ¢ is a well-defined right S-map; R/N is
naturally a simple right S-module because NR = N. The kernel of ¢ is the
desired maximal right ideal of S. Further, if s = r + u, r € R, is in I, then
e(r+u)e N. Hence I C ker¢ since er —rc N for all r € R.

There remains the case where a ¢ I + R. But since S/R is a V-ring and
a+ R ¢ (I+ R)/R there is a maximal right ideal M of S suchthat [+ RC M
anda¢ M.

PROPOSITION 4.9. For a ring R, R* is a right V-ring if and only if R is a
right V-ring and for every right ideal A of R, AR = A. In this case, R! is also
a right V-ring.

Proor. Suppose first that R* is a right V-ring. By (4.7), AR = 4 for all
right ideals 4 of R. Let 4 be a right ideal of R. It is also a right ideal of
R* so there are maximal right ideals {M,} such that 4 = (| M,. It suffices to
show that for any o with M, N R # R, N, = M, N R is maximal modular in
R. It is clearly maximal. Further, M, + R = R* sothercaree € R, ae M,
with 1 =a+eandsoe—e2=aec N,and forallr€ R, r —er = ar € N,.

The converse is immediate from (4.6) and (4.8).

It can now be shown that in the context of (generalized) regularity, our
way of adjoining 1 satisfies a universal property.

THEOREM 4.10. Let g: R — S be a monomorphism where

(i) S is a ring with 1,

(ii) the identity of S is contained in a n-regular subring of S,

(iii) g(R) is an ideal of S,

(iv) if s € S is such that sg(R) =0, thens = 0.
Then there is a unique homomorphism g: R' — S such that gn = g where
n: R — R is the usual embedding: n(r) € End Ry is defined by n(r)(t) = rt.

ProoOF. We first check that R and § have the same characteristic ring. If

nR = 0 for some n > 0, then (nS)g(R) = 0 and so nS = 0. Thus k(R) = x(S)
in this case.
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Now suppose that k(R) is given by fz and that fr(p) = k # occ. Then
annz(t,(R)) = (p*) and R = t,(R) ® R® where R® is p-divisible. Let
s € t,(S). Then p*sg(R) = 0 and so p*s = 0. Hence annz(2,(S)) = (p¥).
Also, (£,(S)Np*S)g(R) C t,(g(R)) Np*¥g(R) = 0 because R®) = p*R, and so
t,(S) N p*S = 0. Since p* is contained in some n-regular subring of S, there
isn > 1 and s € S such that p?"ks = p"™_ Thus, pk — p**+ls' € 1,(S)Np*S =0
for some s’ € S, and so p* = p*+1s’. It follows that p*S is p-divisible. Now
if s € S, pks = p**'t for some ¢ € pS and so s = (s — pt) + pt € 1,(S) + p*S.
Hence S = 1,(S) ® p*S where p*S is p-divisible. Note that the case k = 0 is
included with the appropriate adjustment of notation.

Conversely, suppose that x(S) is given by fs and that fs(p) = n # co. Thus
S = 1,(S) ® S® where S® is p-divisible. Then ps = 1 — e, for some s € S?),
where e, is the central idempotent giving ,(S). Put R®) = (1 —¢e,)g(R).
Then sR®) C R®) since R® is an ideal of S. But psR® = (1 —¢,)R¥) = R®)
and so sR¥) = R®), which shows that R®) is p-divisible, and clearly g(R) =
R®) & t,(g(R)).

We have shown that ©(R) = x(S). Let ¢: S — End Rg be defined by
#(s)(r) = g~ (sg(r)). Clearly ¢(s) € End Rg. Since we know (by (1.2)) that
¢(x(S)) C k(End(RR)) = x(R), the above shows that ¢(x(S)) = k(End(RR)).
Define g: R! — S by g(¢(t)+n(r)) = t+g(r) where t € k(S), r € R. We check
that g is well defined. If ¢(¢) + n(r) = ¢(t,) + n(ry), then ($(¢) + n(r))(a) =
(¢(t))+7n(r)))(a) foralla € R. Thus g~ 1(t1g(a))+ra = g~'(t,g(a))+ra and
sotg(a)+g(ra) =t g(a)+ g(ra) forall « € R. Hence (t+g(r))g(a) = (4 +
g(r))g(a)foralla € Rand so t+g(r) = t; +g(r;). Now it is straightforward
to check that g is a ring homomorphism and it obviously satisfies gz = g.

Finally we check that Z is unique. Suppose that #,k: R! — S are ring ho-
momorphisms such that kn = hn = g. If x € R!, r € R then since 7(R) is an
ideal of R! there exists a € R such that xz(r) = n{a). Now h(x)g(r) =
h(x)hn(r) = h(xn(r)) = h(n(a)) = g(a) and k(x)g(r) = k(x)kn(r) =
k(xn(r)) = k(n(a)) = g(a). Then (h(x) — k(x))g(R) = 0 and, finally,
h(x) = k(x) for all x € R!.

COROLLARY 4.11. Let S be a ring with identity and g: R — S a monomor-
phism, where R is left faithful and g(R) is an ideal of S, essential as an
ideal. If R and S are both regular (biregular, have all ideals idempotent, -
regular, respectively) then there is a unique homomorphism g: R' — S such
that gn = g.

Note that the condition that sg(R) = 0 implies s = 0 (or, in the corollary,
that R be left faithful) cannot be omitted: consider 2Z/(4) — Z/(4).
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5. Algebras over Dedekind domains

The point of view throughout has been to view rings as Z-algebras. How-
ever (1.1) is true for epimorphs of any Dedekind domain D if, instead of
prime elements, we take maximal ideals. Since every proper homomorphic
image of D is artinian, all the arguments above will hold just as well in this
more general setting.
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