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SUMMARY

One of the most pressing issues in facing emerging and re-emerging respiratory infections is how

to bring them under control with current public health measures. Approaches such as the

Wells–Riley equation, competing-risks model, and Von Foerster equation are used to prioritize

control-measure efforts. Here we formulate how to integrate those three different types of

functional relationship to construct easy-to-use and easy-to-interpret critical-control lines that

help determine optimally the intervention strategies for containing airborne infections. We show

that a combination of assigned effective public health interventions and enhanced engineering

control measures would have a high probability for containing airborne infection. We suggest

that integrated analysis to enhance modelling the impact of potential control measures against

airborne infections presents an opportunity to assess risks and benefits. We demonstrate the

approach with examples of optimal control measures to prioritize respiratory infections of severe

acute respiratory syndrome (SARS), influenza, measles, and chickenpox.

INTRODUCTION

The control of infectious diseases is often a compro-

mise between the desire for large-scale implemen-

tation of control measures and what is logically or

economically feasible. Therefore, it is important that

control measures are optimally prioritized in order

to minimize the adverse population-level impact of a

disease. An integrated-scale mathematical model of

infectious disease spread is therefore a necessary tool

for determining optimal control strategies, because a

vast range of policies can be rapidly tested by simu-

lation. Recently developed control-measure modelling

approaches concerning the containment of airborne

infections, including engineering controls with res-

piratory protection and public health interventions,

can be derived from an integrated-scale analysis

generated from three different types of functional

relationship: the Wells–Riley mathematical model,

competing-risks model, and Von Foerster equation,

both the key epidemiological determinants involved

and the functional connections between them, often

exhibit properties not apparent in any single model

alone.

Fraser et al. [1] derived a Von Foerster equation-

based criteria for outbreak control in which they

adopted two key properties of transmission of the

basic reproduction number (R0) and the proportion of

asymptomatic infectious that arise prior to the onset

of symptoms (h) to analyse the general properties of

directly transmitted agents that determine the likely

success of certain public health measures for con-

taining early-stage outbreaks. They indicated that R0

and h are both strong predictors for successfully de-

scribing the impact of the simple public health control

measures against the infectious diseases. Therefore,
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a valuable added dimension to public health inven-

tions could be provided by systematically quantifying

transmissibility and the proportion of asymptomatic

infection of infectious diseases. Fraser et al. [1] and

Anderson et al. [2] have also given some insights

that with a combination of certain efficacious con-

trol measures, we could decide whether such public

health measures would work effectively if applied with

a given efficacy to control the spread of specific

pathogens with defined biological and epidemiologi-

cal properties.

Here a competing-risks theory [3–5] is employed to

account for the impact of different enhanced measure

efficacies from both engineering controls and respir-

atory protection on the airborne infection risk. The

competing-risks model is a probabilistic model by

which the dynamics of interplay among different

enhanced engineering control-measure strategies can

be described. The basic assumption of the probabil-

istic calculations on the competing-risks model was

based on an underlying Poisson model, i.e. different

control efficacies act independently of each other. The

selected optimal control measures include environ-

mental controls by ventilation and air filtration, as

well as respiratory protection. The inclusion of com-

peting risks in the model recognized the fact that an

individual might gain substantial benefits in risk

reduction of airborne infection from many different

control measures including technological controls

at the source (by surgical masking and treatment

booths), environmental controls (by ventilation, air

filtration and ultraviolet germicidal irradiation), and

receptor controls (by respiratory protection via res-

pirators) [6–11].

We employ the Wells–Riley mathematical model

of airborne infection [9, 12] to estimate the exposure

concentrations in indoor environments where cases

of inhalation of airborne infection occurred based on

reported epidemiological data and epidemic curves,

and R0 and its variability in a shared indoor air space.

The aim of this paper is to present an integrated-

scale model that can help predict whether simple

control measures, including engineering controls and

public health interventions or some specific combi-

nations, can succeed in containing epidemic growth

of airborne infections if applied efficaciously for an

early-stage outbreak. To focus the analysis, simu-

lations are based on the highly disseminated epidemic

of airborne infections in Taiwan including SARS in

a nosocomial setting, and influenza, chickenpox, and

measles in an aircraft cabin setting.

MATERIALS AND METHODS

Epidemic data

Owing to well-recorded epidemiological data from

reported cases among influenza, chickenpox, measles,

and SARS associated with epidemic curves (numbers

of cases by date/week of symptom onset) (Fig. 1a–d),

we could estimate the quantum generation rate for

respiratory infections in the absence of interventions

and control efforts based on infected probability esti-

mated from the Wells–Riley equation. Infectivity

data of influenza and chickenpox were adopted from

the Center for Disease Control of Taiwan based on a

weekly case numbers from January 2003 to December

2005. Infectivity data of measles were adopted from

Lee et al. [13] based on weekly case numbers at Li-Tse

in an elementary school setting during the 1988–1989

measles epidemic in Taiwan. Epidemiology of SARS

reported from Taipei Municipal Ho-Ping Hospital

during 29 April–8 May 2003 was adopted in this

study.

We used a real ventilation scenario to simulate the

control efforts. We used a Monte Carlo simulation to

quantify our uncertainty concerning infection prob-

ability and quantum generation rate. We used the

Kolmogorov–Smirnov (KS) statistics to optimize the

goodness-of-fit distributions. We employed Crystal

Ball software (version 2000.2; Decisioneering Inc.,

Denver, CO, USA) to analyse data and to estimate

distribution parameters.

Quantitative respiratory infections

Based on the epidemic curves for cases reported

among influenza, measles, chickenpox, and SARS

(Fig. 1a–d), the probabilities of infection (P) for

influenza, measles, chickenpox, and SARS could be

estimated based on statistical criteria, comparisons

of distribution parameters, and visual interpretation

of histograms and resulted in the log-normal (LN)

distribution optimizing the KS statistics. Results give

P=LN(0.0063, 1.23), LN(0.0002, 2.66), LN(0.00043,

1.22), and LN(0.0089, 1.92), respectively, for influ-

enza, SARS, chickenpox, and measles.

The probability distribution of quantum gener-

ation rates (q, quanta hx1) could be calculated

from the Wells–Riley equation [9, 14] based on the

source data (see Table for the detailed symbol defi-

nitions) with estimated P distributions : (i) influenza

at an elementary school setting: n=50, V=600 m3,

t=6 h, p=0.38 m3 hx1, and f=0.00076 (based on
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Fig. 1. Quantitative epidemic curves for reported case numbers and the probability density functions of basic reproduction
number (R0) derived from the Wells–Riley equation based on the estimated probability of infection (P) and the adopted input

parameters (see Table) for influenza (a, e), measles (b, f ), chickenpox (c, g), and SARS (d, h).
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Q=20 m3 hx1 mx2 and floor area=200 m2, as given

by the Construction and Planning Agency, Ministry

of Interior, ROC); (ii) SARS at Taipei Municipal

Ho-Ping Hospital : n=20832, V=145602 m3, t=6 h,

p=1.375 m3 hx1, and f=0.0247 (based on Q=5

ACH, a standard regulation level of hospital emerg-

ency room given by the Construction and Planning

Agency, Ministry of Interior, ROC); (iii) chickenpox

at a kindergarten setting: n=360, V=1656 m3,

t=5 h, p=0.32 m3 hx1, and f=0.00076; and (iv)

measles at an elementary school setting: n=50,

V=600 m3, t=6 h, p=0.38 m3 hx1, and f=0.00076.

After optimizing the KS statistics, LN distribution

was the best fit for quantum generation rates,

demonstrating that measles has the highest quantum

generation rate [LN(108.16 quanta hx1, 1.94)] fol-

lowed by influenza [LN(76.18, 1.23)], chickenpox

[LN(36.44, 1.39)], and SARS [LN(28.94, 2.66)].

We consider two highly infectious environmental

settings (i) nosocomial : National Taiwan University

(NTU) Hospital for SARS and (ii) aircraft cabin:

Boeing 737, for influenza, chickenpox, and measles

(Table), to assess the public health impact of control

measures against airborne infections. We used re-

ported epidemic curves (Fig. 1a–d ) together with

the Wells–Riley equation-based R0 model [9, 14] to

quantify the uncertainty of R0 attributable to the

large variance of infected probabilities and estimated

quantum generation rates of selected airborne infec-

tion (Table). Figure 1(e–h) illustrates the probability

density functions of the optimized LN distributions

of R0, i.e. Monte Carlo simulation results show

LN(11.70, 1.20), LN(15.14, 1.71), LN(5.97, 1.76), and

LN(2.65, 2.55) for influenza, measles, chickenpox,

and SARS, respectively, indicating that measles

has the highest R0 value (geometric mean=15.14)

followed by influenza (11.70), chickenpox (5.97), and

SARS (2.65).

Integrated-scale analysis

We adopted the Von Foerster equation-based control

model [1] to analyse the impact of the combination

of public health interventions such as isolation, con-

tact tracing, vaccination, and hand washing. Fraser

et al. [1] demonstrated how the two key parameters

R0 and h can be used to predict whether control

policies involving isolation and contact tracing will

lead to outbreak containment. Accordingly, follow-

ing the parameter estimates for R0 and h, we can

construct the R0–h critical-control line from the

control-measure efficacy and R0 estimates determined

from the Wells–Riley equation. Based on the R0–h

critical-control line, for each scenario, if a given

Table. Input parameters used in the Wells–Riley mathematical model to estimate the basic reproduction number

(R0) in a hospital setting for SARS and an aircraft setting for influenza, measles, and chickenpox

Parameter

Aircraft*

NTU hospital
Influenza Chickenpox Measles SARS

Air exchange rate (hx1) h 5 5 5 5
People in ventilated airspace n 54 54 54 300

Volume of shared airspace (m3 ) V 168 168 168 7465.5
Total exposure time (h) t 6 6 6 24
Breathing rate (m3 hx1) p 0.48# 0.48# 0.48# 0.48#

Fraction of indoor air as
exhaled breath ( f=np/Q)

f 0.0306$ 0.0306$ 0.0306$ 0.00386·

Number of infectors I 1 1 1 1

Estimated quantum generation
rate (quanta hx1)

q LN(68.67, 1.52)$k LN(59.07, 1.99)k LN(106.75, 1.93)k LN(28.94, 2.66)k

* Adopted from Rudnick & Milton [9].
# Adopted from ICRP [22].
$ Based on Q=0.3 ACH, a mean value adopted from Rudnick & Milton [9].

· Based on Q=5 ACH (Construction and Planning Agency, Ministry of Interior, ROC).
k Log-normal (LN) distribution with a geometric mean and a geometric standard deviation that is calculated by

q=
xn ln (1xP)

If+ 1x Vf
npt (1x exp (xnpt=Vf ))

h i at I=1 [14].
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infectious agent is below the R0–h curve, the outbreak

is always controlled eventually, whereas above the

curve, additional control measures would be required

to control the spread. Here we derive three control

efficacies (e1, e2, and e3) of public health intervention-

based R0–h critical-control line from the methodology

that originally appeared in Fraser et al. [1]. The

resulting equation is given as (see Appendix 1 for

details) :

R0

(1xe1)(1xe2)(1xe3)+e1(1xe2)(1xe3)h

+e2(1xe1)(1xe3)h+e3(1xe1)(1xe2)h

+[e1e2(1xe3)+e1e3(1xe2)+e2e3(1xe1)]

r[h=(2xh)]+e1e2e3(h=(3x2h))

8>>><
>>>:

9>>>=
>>>;
=1:

(1)

Parameter estimates for h are determined by the

specific biological characteristics of the aetiological

agents, defined as h=(incubation periodxlatent

period)/infectious period. We can calculate the dis-

tribution of h using the Monte Carlo simulation to

quantify the uncertainty concerning h attributable

to a large variance of incubation period, latent period,

and infectious period for a specific airborne infection.

Owing to the previous excellent research work, we

could obtain the ranged values of incubation, latent,

and infectious periods, respectively, as 1–4, 1–3, and

4–8 days for influenza, 8–13, 6–9, and 6–7 days for

measles, 13–17, 8–12, and 10–11 days for chickenpox

[15], and 2–12, 12–14, and 12–14 days for SARS [2].

We adopted the concept of a competing-risks

model [3–5] to account for prioritizing the impact of

different enhanced engineering control measures

against respiratory infections. We link the competing-

risks model and Wells–Riley equation to estimate the

reduction of potential infectious force of R0. Based on

the competing-risks model, we derive an optimal R0

by incorporating the effectiveness of engineering

control measures such as ultraviolet germicidal

irradiation (UVGI) [16], recirculated high-efficiency

particulate air (HEPA) filter, air exchange rate, and

respiratory protection into a Wells–Riley-based R0

model [9, 14]. The optimal R0 could be calculated by

(see Appendix 2 for details) :

R0=(nx1)

�
1x exp x

Iqtp(1xgs)

Q+Qrgr+huV

� ��

r(1x exp (x(h+hrgr+hu))t)

��
, (2)

Where Qr is the air-flow rate through a recircu-

lated HEPA filter (m3 hx1), gs is the efficiency of a

respiratory protection device used by a susceptible

person (dimensionless), gr is the single-pass removal

efficiency for infectious droplet nuclei passing through

the recirculated HEPA filter (dimensionless), h is the

air exchange rate (hx1 ), hr is the air exchange rate

through a recirculated HEPA filter (hx1 ), and hu is

the inactivation rate of infectious droplet nuclei due

to UVGI (hx1).

RESULTS

R0xh control model

We incorporate probability distribution into Monte

Carlo simulation to obtain 5th–95th percentiles as

90% confidence intervals (CI) for R0xh distri-

butions. The resulting 90% CIs of h and R0 indicate

that SARS has the relatively smallest range of h and

R0 (0.0001<h<0.11 and 0.57<R0<12.45) compared

to the other three airborne infections: influenza

(0.19<h<0.44, 7.35<R0<14.93) ; measles (0.15<
h<0.44, 5.58<R0<34.52) ; chickenpox (0.26<h

<0.64, 4.45<R0<11.79), respectively (solid line

rectangles in Figure 2). We considered 100% ef-

fective isolation of symptomatic patients (eI=1),

45% effectiveness of hand washing (eW=0.45) [17],

and ranged values of effective vaccination (eV)

adopted from published empirical data for influenza

(eV=70–90%) [18], chickenpox (eV=73–95%)

[19], and measles (eV=32–89%) [20]. For SARS, we

considered 100% effective isolation along with

ranged values of effective contact tracing (eV=
30–80%).

We calculated the percentage of the uncontrol-

lable ratio which varied with the control efficacies,

demonstrating 93.5–97.9%, 0–1.2%, 96.7–98.7%,

and 96.5–98.9% for influenza, SARS, chickenpox,

and measles, respectively. Comparing R0xh control

lines for influenza, measles, chickenpox, and SARS

(solid line rectangles in Fig. 2), it is clear that SARS

is the easiest of the four airborne infections to

control because of its low R0 and h values. Our

analysis indicates that effective isolation of sympto-

matic patients with low-efficacy contact tracing is

sufficient to control a SARS outbreak (Fig. 2d ). On

the other hand, influenza, measles, and chickenpox

are predicted to be very difficult to control even with

100% effective isolation along with 89–95% effective

vaccination. Therefore, additional control measures

have to be incorporated into public health inter-

ventions.
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Control measure effects

We could reduce theR0 value from no control scenario

by incorporating the engineering control measures

such as enhancing the efficiencies of recirculation air

filter capacity and air exchange rate as well as the

respiratory protection by using personal masks. We

employed the present optimal R0 equation together

with the adopted engineering control measures of

enhancing air exchange rate (h=15 hx1 for influenza,

chickenpox, measles, and for SARS [21, 22]), HEPA

filtration capacity (Qrgr=10.92 m3 hx1) [23], personal

masking (gs=0.58) [8], and UVGI system (average

inactivation rate hu=12¡1.3 hx1) [24] to estimate

the optimal R0. Our results demonstrate that for

airborne infections like influenza, chickenpox, and

measles spread in an aircraft setting, engineering

controls guarantee the provision of a reliable control

strategy to decrease the transmission potential and

spread rate of an epidemic in that the efficacies range

from 60% to 80%. SARS, on the other hand, is

predicted to have 60% efficacy with enhanced ACH

and personal masking in a hospital setting.

We further investigated the control efforts of some

combinations of engineering control measures with

public health interventions in containing the epidemic

growth of influenza, chickenpox, and measles. For

chickenpox and measles, the 100% effective isolation

and two different vaccine efficacies of 73% and 32%

with additional engineering control measures, the

uncontrollable ratios are dramatically decreased

from 97% to 99% with no engineering control im-

plemented to 0–6% and 6–15%, respectively (dotted

rectangles in Fig. 2a, b). For influenza, on the other

hand, if we apply 100% effective isolation with

two different vaccine efficacies of 70% and 90%

combined with four engineering control measures

of enhanced ACH, HEPA filtration capacity, UVGI

system, and personal masking, the resulting predicted

uncontrollable ratios range from 0% to 6% and are
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Fig. 2. Criteria for outbreak control of the R0–h control line that separates epidemic growth (above the line) from outbreak

control (below the line) for (a) chickenpox, (b) measles, (c) influenza, and (d ) SARS. The dotted and solid-line rectangles
(a–d ) represent the initial and engineering control measures applied 90% CIs of R0xh values, respectively. We further
examine combination control efforts of the effectiveness of three public health interventions including isolation, vaccination

and hand washing for (a) chickenpox, (b) measles, (c) influenza; and isolation, contact tracing, and hand washing for (d )
SARS.
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much lower than that of 94–98% with no engineering

control measures involved (dotted rectangles in

Fig. 2c).

Taking influenza as an example (Fig. 2c), the esti-

mated uncontrollable ratios range from 28% to 31%

compared with 40–51% with no hand washing in-

volved based on the effectiveness of hand washing

eW=45%. The result indicates that the percentage

reduction in incidence of influenza would be relatively

modest. Even if we incorporated additional public

health interventions we would still be unable to fully

control influenza.

Sensitivity analysis

We conducted a number of sensitivity analyses in

terms of uncontrollable ratio of the effectiveness

of the interventions combined with different control

measures of implementation (Fig. 3). The engineering

control measures include HEPA filter, surgical

masking, enhanced ACH (15 ACH), and an unevenly

distributed UVGI. We found that among different

engineering control measures, UVGI singly is the

optimal strategy combined with effective isolation and

vaccination interventions for containing influenza,

measles, and chickenpox. Compliance with wearing

a surgical mask with 100% isolation and low-efficacy

contact tracing could totally contain a SARS out-

break. A combination of 100% isolation plus all

control measures of implementation of HEPA filter,

surgical masking, and enhanced air exchange rate

greatly enhances the control efforts. We also dis-

covered that public health interventions have no

significant effect when R0>10.

DISCUSSION

In this paper we present an integrated-scale analysis

framework that describes and quantifies the impact

of various airborne infection control-measure efforts

in nosocomial and aircraft cabin environment set-

tings. This integrated-scale analysis facilitates three

different types of models, the Von Foerster equation-

based model, competing-risks model, and Wells–

Riley mathematical model, to quantitatively define

the relative impact of different control practices and

determine optimal criteria for control and eradication

for four priority airborne infections of SARS in hos-

pital, and measles, influenza, and chickenpox during

commercial air travel. This approach allows rapid

mathematical prediction and comparison of the effec-

tive control measures by combining engineering con-

trol and non-engineering public health intervention

1.00

Fig. 3. Sensitivity analyses of the effectiveness of the inter-

ventions combined with different control measures based on
the uncontrollable ratio. The numbers show the uncontrol-
lable ratio of using various engineering control measures

(i.e. HEPA filter, surgical mask, enhanced ACH (15 ACH),
and UVGI) for (a) influenza (eI=100% for isolation,
eV=80% for vaccine, eW=45% for hand washing), (b)

measles (eI=100%, eV=73%, eW=45%), and (c) chick-
enpox (eI=100%, eV=84.3%, eW=45%). Top rows are
eI+engineering measures, middle rows are eI+eV+
engineering measures, and bottom rows are eI+eV+ew+
engineering measures.
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policies followed by easy-to-use and easy-to-interpret

critical-control lines avoiding cumbersome and in-

tensive computational simulations.

A substantial increase in effectiveness of the com-

bined control strategies depends not only on clinical

epidemiological information of pathogen load and

symptoms but also on reliable estimates of disease

transmission. As an emerging/re-remerging respirat-

ory infection begins to spread in an indoor environ-

ment setting, epidemiologists can rapidly identify the

mode and disease transmission rate, providing crucial

input for containment strategies. We could estimate

the optimal R0 representing disease transmission rate

based on a Wells–Riley mathematical model in terms

of prioritization of enhanced engineering control

measures determined by a competing-risks model

associated with h estimate that determined from his-

torical clinical symptoms information to construct

an optimal critical-control criteria. By using this

approach, we found that if enhanced engineering

controls could reduce R0 to<0.71 for chickenpox and

<1.17 for influenza in an aircraft setting, public

health interventions such as isolation, vaccination,

and hand hygiene with such a prepared engineering

control measure would have a high probability of

containing the respiratory infections. Effective iso-

lation of symptomatic patients with low-efficacy

contact tracing is sufficient for combating SARS

transmission in a nosocomial setting based on a geo-

metric mean R0 of 2.65.

Infectious diseases will continue to emerge and

re-emerge, leading to unpredictable epidemics and

difficult challenges to public health. Although new

antibiotics that inhibit different bacterial targets and

enormous technological resources are urgently needed

to develop vaccines and diagnostic tools to ensure

effective management of emerging infectious diseases,

useful insight can also be gained from the powerful

quantitative mathematical models that help optimally

determine the intervention strategies. The key benefit

of the models such as those presented here is the

logical straightforward and relative simplicity of

the results. We suggest that even simplified models

are useful in assessing alternate strategies to provide

scientifically grounded decisions on clinical diagnosis

and detection, and containment in populations and

the environment.

In conclusion, our results highlight the fact that

that recently developed control-measure modelling

approaches are readily amenable to an integrated-

scale analysis to provide a practical template that

describes the impact of respiratory infection-control

measures. This integration is of particular importance

to manage emerging diseases in situations where

empirical data are not yet available to explore a

variety of alternative control measures.

APPENDIX 1

Von Foerster equation-based three-efficacy R0xh control model

We deliberately manipulate the mathematical derivations to arrive at the critical-control line that originally

appeared in Fraser et al. [1], expressed by the following algebraic equationZ O

0
b(t)[1xe1+e1S(t)][1xe2+e2S(t)]dt=1: (A1)

We extend equation (A1) to a three-efficacy-based equation asZ O

0
b(t)[1xe1+e1S(t)][1xe2+e2S(t)][1xe3+e3S(t)] dt=1: (A2)

We incorporate the definitions of b(t)=R0e
xt, S(t)=exnt, h=1/(n+1) into equation (A2), resulting in

Z O

0
R0

[(1xe1)(1xe2)(1xe3)]e
xt+[e1(1xe2)(1xe3)+e2(1xe1)(1xe3)+e3(1xe1)(1xe2)]e

x(�+1)t

+[e1e2(1xe3)+e1e3(1xe2)+e2e3(1xe1)] e
x(2n+1)t+(e1e2e3)e

x(3n+1)t

( )
dt

=R0

ext

xt
(1xe1)(1xe2)(1xe3)x

ext

n+1
[e1(1xe2)(1xe3)+e2(1xe1)(1xe3)+e3(1xe1)(1xe2)]

+
x1

2n+1
ex(2n+1)t[e1e2(1xe3)+e1e3(1xe2)+e2e3(1xe1)]+

x1

3n+1
(e1e2e3)

0
BB@

1
CCA
O

0

=1

(A3)
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We rearrange the definitions between n and h as: n=(1/h)x1 and incorporate it into equation (A3) to arrive at

equation (1) as

R0

(1xe1)(1xe2)(1xe3)+e1(1xe2)(1xe3)h+e2(1xe1)(1xe3)h+

e3(1xe1)(1xe2)h+[e1e2(1xe3)+e1e3(1xe2)+e2e3(1xe1)]

[h=(2xh)]+e1e2e3(h=(3x2h))

8><
>:

9>=
>;=1:

APPENDIX 2

Competing-risks model links the Wells–Riley equation

Based on the competing-risks model [3–5], the generation probability of infectious agent within t hours will beZ t

0
lexlt exCtdt=

l

l+C
1x exp (x(l+C)t)½ �; (A4)

where C is the cleared rate combined with air-exchange rate (i.e. C=h+hrgr+hu) of decreasing the risk of

infectious agents, l is the generation rate of increasing the risk of infectious agents : l=p(1 – gs)/V, and the

infectious agent dose D is : D=Iqt.

Thus, the probability that at least one of D infectious agent generation with a Poisson distribution will be

P=1x exp xD
l

l+C
(1x exp (x(l+C)t))

� �
: (A5)

We simplify equation (A5) for l�C,

P=1x exp xD
l

C
(1x exp (xCt))

� �
: (A6)

We incorporate the definitions of C, l, and D associated with the definitions of Q=Vrh and Qr=Vrhr into

equation (A6) as

P=1x exp x
Iqtp(1xgs)

Q+Qrgr+huV

� �
(1x exp (x(h+hrgr+hu)t))

� �� �
: (A7)

Equation (2) therefore could be derived by incorporating equation (A7) into the relationships between the

infection probability P=Dn/S and R0=SrP=(nx1)rP as

R0= nx1ð Þ 1x exp x
Iqtp(1xgs)

Q+Qrgr+huV

� �
(1x exp (x(h+hrgr+hu)t))

� �� �
,

where Dn is the number of cases and S is the number of susceptibles.
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