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In a series of papers [6], [7], [8], [10], Munn has considered the problem of constructing
all irreducible representations of a semigroup by matrices over a field. In [10], he showed how
to construct all the irreducible representations of an arbitrary inverse semigroup from those of
associated Brandt semigroups. In this paper, we generalize the method of [10] to give a con-
struction for the irreducible representations of an arbitrary semigroup from those of certain
associated semigroups.

For many types of semigroups, including regular semigroups, periodic semigroups and
0-simple semigroups with non-zero idempotents, the associated semigroups are completely
0-simple. In this case, by means of Clifford's result [1] on the representations of a completely
0-simple semigroup, we can give an explicit method of construction for all irreducible repre-
sentations.

I should like to express my sincere gratitude to Dr W. D. Munn, who read the first rough
draft of these results and who encouraged me to prepare them for publication.

1. ^-semigroups. In general, a semigroup need have neither a zero nor an identity. How-
ever, given any semigroup S, we may embed S in a semigroup S° which has a zero and which is
constructed from S in the following way. If S already has a zero and contains at least two
members, then S=S°; otherwise S° is the semigroup formed from S by adjoining a new
symbol 0 and defining a0=0=0a for each a e S° = S u {0}. The phrase " S=S° " means
that S is a semigroup which has a zero and at least two members.

In a similar way, we can embed a semigroup S in a semigroup S1 that has an identity.
Because of the simple nature of the embedding of a semigroup S in the corresponding

semigroup S°, many theorems about semigroups that have no zero may be deduced from
corresponding theorems for semigroups that have a zero. In particular, there will be no loss
of generality if, in this paper, we consider only semigroups that have a zero.

A homomorphism 0 of a semigroup S=S° onto a semigroup 5 is said to be O-restricted
if ad=00 implies a=0; the corresponding congruence on S is also said to be O-restricted.

PROPOSITION 1. Let S = S° be a semigroup. Then

p = {(a, b)eSx S:for alls, teS1, sat = 0 if and only ifsbt = 0}

is a O-restricted congruence on S. If x is any O-restricted congruence on S, then t £ p.

Proof. The relation p is clearly an equivalence on S. Let (a, b)e p,xe S. Then, for any
s, teS1, sat = 0 if and only if sbt = 0. Hence, a fortiori, saxt = 0 if and only if sbxt = O;
thus (ax, bx)ep. Similarly (xa, xb)ep and so p is a congruence on S.

Let a e S with (a, 0) e p. Then, for any s, t e S1, sat=0; in particular, a=0. Hence
(a, 0) e p implies fl=0 so that p is a O-restricted congruence on S.

https://doi.org/10.1017/S0017089500000033 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000033


2 D. B. McALISTER

Finally, let T be any O-restricted congruence on S, and let (a, b) e T. Then, by the regu-
larity of T with respect to multiplication, {sat, sbt) e T for all s, t e S1. Hence, in particular,
for all s, t e S1, sat=0 if and only if sbt=O. This means that (a, b)e p; hence t £/) .

The fact that p is the maximum O-restricted congruence on S may be deduced from the
results of Preston [11] on subsets of a semigroup that are congruence classes. A proof is given
here for completeness.

The congruence p is of importance because, in many cases, a semigroup S=S° has an
image of some particular type under a O-restricted homomorphism if and only if S/p is of that
type. In particular, we have the following result.

PROPOSITION 2. Let % be a class of semigroups that is closed under homomorphic images.
Then a semigroup S = S° has an image in $C under a O-restricted homomorphism if and only if

Proof. If S/p e 3C, then S has a O-restricted homomorphic image in SC. Conversely, let T
be a O-restricted congruence on <S such that S\x e 9C. Then, since T C p; it follows, from the
induced homomorphism theorem, that S/p is a homomorphic image of S/r. Hence, by
hypothesis, S/p e 3C.

Proposition 2 has several interesting corollaries. For example, let S = S° be a regular
semigroup. Then, using Proposition 2, we can show that S has an image under a O-restricted
homomorphism that is an inverse semigroup if and only if, for any idempotents e,f g, h of S,
gefh = 0 implies gfeh = 0.

Munn [10] has shown that the following condition is important in the theory of matrix
representations of a semigroup S = S°.

C t : For any a, x, beS, if axb = 0, then ax = 0 or xb = 0.

He has also shown that the next condition plays an important part in the theory, if S is an
inverse semigroup.

M2: If M and N are nonzero ideals of S, then M nN # {0}.

We shall see that, for arbitrary semigroups, condition

C2: If a, beSandaSb = {0}, then a = 0orb = 0,

is more natural. The connection between C2 and M2 is given by the following proposition.

PROPOSITION 3. Let S = S° be a semigroup. Then S obeys C2 if and only if it obeys M2

and

C'2: IfaeSandaSa={0},thena = 0.

Proof. Suppose first that S obeys C2; then, clearly, S obeys C2. Let M and N be nonzero
ideals of 5, and let a, b be nonzero elements of M and iV respectively. Then aSb £ MnN
and, by C2) aSb ^ {0}. Hence S obeys M2.

Conversely, suppose that S obeys M2 and C2. Given nonzero ideals M and N, let
aeMnN\{0}. Then, by C2, axa / 0 for some xeS so that, since axaeM. N,M.N? {0}.
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In particular, given any nonzero elements a,beS, S1aS1. S^S1 # {0}. But

S^S1. S^S1 = S^SbS1 u S^

so that aSb # {0} or ab # 0. If ab j= 0, then, similarly, aSab # {0} or a . ab #0 . Thus, in
any case, aSb # {0}. Hence S obeys C2.

COROLLARY. Let S = S° be a regular semigroup. Then S obeys C2 if and only if it obeys
M2.

We shall make use of Proposition 2 to give a short proof that Ct and C2 are necessary
and sufficient for a semigroup S = S° to have a O-restricted congruence x such that S/r is
completely 0-simple. Since a completely 0-simple semigroup is regular, it follows from
Theorem 1 of [9] and the corollary to Proposition 3 that these conditions are necessary.
Another proof that Cj and C2 are both necessary and sufficient for the existence of a 0-
restricted congruence T, with S/r completely 0-simple, has been given by Lallement [4].

A semigroup S = S° is said to be weakly regular if and only if, for each nonzero member a
of S, there exists x e S such that ax = ax.ax ^ 0.

Weakly regular semigroups have been called £-inversive, by Clifford and Preston [2],
and 0-inversive, by Lallement and Petrich [5].

The proof of the theorem makes use of the following result which is an immediate corol-
lary to Theorem 3 of [5].

PROPOSITION 4. Let S = S° be a semigroup that obeys C2. Then S is completely 0-simple
if and only if it is weakly regular and obeys the following weak cancellation law:

C3: If a, b, x, ye S, then the relations ax = bx ^ 0 and ya = yb ^ 0

together imply that a = b.

THEOREM 1. Let S = S° be a semigroup that obeys C^ Then there is a O-restricted con-
gruence a on S such that S/o obeys C3 and such that, if T is any O-restricted congruence on Sfor
which S/T obeys C3, then i r £ t ,

Proof. We show first that S/p obeys C3. Let a,b,x,yeS be such that none of the ele-
ments ax, bx, ya, yb is zero. Suppose, further, that (ax, bx) ep and (ya, yb) ep. Then sat = 0,
for s, teS1, implies sa = 0 or at = 0. For, if s, teS, this is immediate from Ct while, if, for
example, t$S, then sat = sa. If sa = 0, then seS and sax = 0; thus, since (ax, bx)ep,
sbx = 0. Hence, by C^ since bx ¥= 0, sb = 0; thus sbt = 0. Similarly, at = 0 implies sbt = 0
and so (a, b)ep. Thus S/p obeys C3.

Let T be the set of O-restricted congruences T on S such that S/t obeys C3; T ^ • since
peT. Let ff = fl {T: zeT). Then it is immediate that a is a O-restricted congruence on 5.
It is also straightforward to verify that S/a obeys C3. Thus, by its definition, a is the smallest
O-restricted congruence T on 5 such that S/t obeys C3.

COROLLARY. Let S = S° be a semigroup. Then there is a O-restricted congruence z on S
such that 5/T is completely 0-simple if and only if S obeys C t and C2.
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Proof. We have already pointed out that conditions Cx and C2 are necessary. To show
that the conditions are sufficient, we need only show that S/p is completely 0-simple.

Let aeS\{0}; then, by C2, there exists xeS such that axa # 0. If sat = 0 then, as in the
proof of Theorem 1, either sa = 0 or at = 0. In either case, saxat = 0. Conversely, if saxat =0,
then also saxa = 0 or axat = 0. Since axa ^ 0, these imply respectively that sa = 0 and at = 0;
hence, in either case, sat = 0. Thus (a, axa)ep and so S/p is regular.

Further, since S obeys C2 and p is a O-restricted congruence, it is easy to see that S\p
obeys C2. By the proof of Theorem 1, S/p obeys C3. Hence S/p obeys the conditions of
Proposition 4 and so is completely 0-simple.

Let S = S° be a semigroup satisfying Ct and let a be the finest O-restricted congruence
T on S such that Sjx obeys C3 (Theorem 1). Then we shall denote S/a by S*.

Definition. A semigroup S = S° is called an ^-semigroup if it satisfies Cx and C2 and
is such that S* is completely 0-simple.

PROPOSITION 5. Let S = Su be a weakly regular semigroup that obeys Ct and C2. Then
5 is an ^(-semigroup.

Proof. It is easy to verify that, if T is any O-restricted congruence on S, then S/T is weakly
regular. In particular, since 5 obeys Cj and C2, S* is weakly regular and obeys C2. Since
S* obeys C3, it is thus immediate, from Proposition 4, that S* is completely 0-simple. Thus
S is an ^-semigroup.

COROLLARY 1. Let S = S° be a periodic semigroup that satisfies Ct and C2; then S is an
M-semigroup. In particular, any finite semigroup S = S° that satisfies Ct and C2 is an M-
semigroup.

Proof. Let S be a periodic semigroup that obeys Ct and C2. Let aeS\{0}. By C2,
there exists x eS such that axa # 0. By induction on n, it follows from Ct that

(ax)" = ax.ax ax ?*0

for any positive integer n. Hence, for some positive integer n, (ax)n is a nonzero idempotent
of S. Thus, since (ax)n = a.(xa)"~ix, S is weakly regular. Hence the result is immediate
from Proposition 5.

COROLLARY 2. Let S = S° be a semigroup that satisfies Ct and C2 and that obeys the
minimal conditions ML and MR on principal left and right ideals respectively. Then S is an
^(-semigroup.

Proof. Green [3, Theorem 4] has shown that ML and MR together imply the minimal
condition Mj on two-sided principal ideals. Hence S has a 0-minimal principal ideal M.
Since S obeys C2, M2 i=- {0}; thus M is 0-simple. Since S obeys ML and MR, M must contain
a 0-minimal left ideal and a 0-minimal right ideal. Hence by [2, Corollary 2.50], M is com-
pletely 0-simple; thus it is regular.
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Let aeS\{0} and let xeM\{0}. Then, by C2, there exists yeS such that ayx ^ 0. Since
xeM, so does ayx and hence, since M is regular, there exists zeM such that

ayz = ayx. z. ayx.

Let u = yxz; then au is a nonzero idempotent of S. Hence S is weakly regular.
Another important class of .//-semigroups is the class of all 0-simple semigroups that

obey Ct and which contain nonzero idempotents. For, suppose that S = S° is such a semi-
group. Then S* is also 0-simple and contains a nonzero idempotent. Now, if e, f are non-
zero idempotents of S*, and ef=fe # 0, then

e.ef=ef=e.f^0 and ef.e=fe.e=f.e=^O.

Hence, by C3, ef=f; similarly, fe = e so that e = / . Thus S* is a 0-simple semigroup that
contains a primitive idempotent. But, by [2, §2.7], this means that S* is completely 0-simple.
Thus S satisfies C2 and is an .//-semigroup.

In this paper, we shall determine each irreducible O-restricted representation T of an
arbitrary semigroup S = S° modulo a representation of M*, where M is a certain ideal of S,
dependent on T, which obeys Cj and C2. It follows that, if M is an .//-semigroup, then the
irreducible O-restricted representations of S are known modulo those of completely 0-simple
semigroups and ultimately, by Clifford's result [1], modulo groups.

Munn [9] showed that, if S = S° is an inverse semigroup that obeys Cj and M2, then
S* = M* for any nonzero ideal M of S. This does not hold in general; it need not even hold
for an .//-semigroup, as the following simple example shows.

Example. Let S = 5° be a completely 0-simple semigroup with no divisors of zero.
Suppose further that S is not a group with zero. Let S1 be the semigroup formed by adjoining
an identity to S. Then S1 has no divisors of zero and so S1 obeys Ct and C2.

Now S is an ideal of S1 and is completely 0-simple, hence clearly S* = S. On the other
hand S1 has an identity, so that S1* is a group with zero.

If we consider the special case of weakly regular semigroups satisfying Ct and C2 and
in which the idempotents commute, it can be shown that S* is a Brandt semigroup and that,
in this case, there is an exact parallel with the results obtained by Munn [9], [10] for inverse
semigroups. In particular, as for inverse semigroups, the finest O-restricted congruence a on
S such that S/a obeys C3 has the following simple form (cf. [9, Theorem 2.7]): for a,beS,

(a,b)eo if and only if a = 0 = b or ax = bx =£0 for some xeS.

We end this section by giving a characterisation, for an arbitrary semigroup S = S° that
obeys C1; of the O-restricted congruence a on S whose properties were described in Theorem
1. The method of proof is similar to that used by Clifford [11] to describe the minimum
cancellative congruence on a semigroup. As we do not need to make use of the construction,
we omit the proof.

Let 5 = 5° be a semigroup. Then, given any relation x on S, we can construct new rela-
tions, from T, in the following ways.

•tW = {(a,b)eS x S: for some s,teSl, (at,bt)e-c and (sa,sb)er, where none of
sa, sb, at, bt is zero} u {(0,0)};
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xC* = {(a,b)eS x S: for some .s.feS1, u,veS, a = snt,b = svt where (u,v)ex};
x ox = {(a,b)eS x S1: for some ceS, (a,c)ex, (c,b)ex};

x9 = x W u TC* U (T O T) and x6n = (T0" " ^fl.

If y is the identity congruence on S, we write J&1 = 0".

THEOREM 2. Let S = S° be a semigroup that obeys Cx. Let x be any O-restricted con-
gruence on S. Then the least congruence co on S, containing x, such that S/co obeys C3 is
xB = U x9"; xB is a O-restricted congruence on S.

n

In particular, if a is the least O-restricted congruence co on S such that S/co obeys C3, then
a = B = U 0". If, further, S is an Jl-semigroup, then S\a is the maximum completely 0-simple

n

^-restricted homomorphic image of S.

2. Representations over a field; introduction. Let $ be a field, and let n be a positive
integer; then we denote by (<&)„ the algebra of all n x n matrices over <J>. The n x n identity
is denoted by /„.

A representation T of a semigroup S, of degree n over a field O, is a homomorphism of S
into the multiplicative semigroup of ($)„. If T is a representation of a semigroup S = S°
of degree n over a field $ then, by convention, we consider F(0) to be the n x n zero matrix,
which we shall also denote by 0. There is no loss of generality if we restrict T in this way;
see [10, pp. 167-168].

If S is a semigroup, and S1 ^ S°, then we may extend any representation r of S to a
representation of 5° by defining F(0) to be the zero matrix. Consequently, it is sufficient to
consider semigroups S = 5°.

Let T be a representation of a semigroup S = S°, of degree n over a field 3>. Then we
define

r(T) = least positive integer s such that, for some xeS, T(x) has rank s;
M = M(T) = { x e S : rank T(x) ^ r(r)}, where rank T(x) is the usual matrix rank of T(x).

M(T) and V(T) are clearly ideals of S, and there is a one-to-one correspondence between
the representations r of S that vanish on an ideal V (i.e. such that V = V(T)) and the 0-
restricted representations of the Rees quotient semigroup SfV. (A representation T of a semi-
group S = S° is said to be O-restricted if T is a O-restricted homomorphism.) It is thus suffi-
cient to consider O-restricted representations of semigroups; this we do.

Munn [10, § 1], has essentially proved the following result. v

LEMMA 1. Let T be a O-restricted representation of a semigroup S = S°. Then

(i) M is an ideal of S that obeys Clt

(ii) T(M) obeys C3.
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A representation F of a semigroup S = S°, of degree n over a field O, is said to be
irreducible if T(S) is an irreducible matrix set, that is, if there is no fixed, nonsingular, n x n
matrix C such that, for each xeS,

CT(x)C~1 has the block form
fr,(x) 0 I
L A F2(x)J'

where 0 denotes the zero r x (n—r) matrix, for some 1 ̂  r £ n. Otherwise, F is reducible.
Let F be a representation of a semigroup 5 = S°, of degree n over a field <£>, and let T

be a subset of S. Then we denote by [F(JT)] the subspace of ($)„ generated by F(r) . If T is an
ideal of S, then [F(r)] is an ideal of the subalgebra [F(S)] of (<&)„. Further F(T) is an irreducible
matrix set if and only if the same is true of [F(T)].

We now consider irreducible representations. The next two lemmas are classical; proofs
may be found in [2, Chapter 5].

LEMMA 2. An irreducible subalgebra of (<!>)„ is a simple algebra over O.

LEMMA 3. (Schur's Lemma) Let $4 be an irreducible subalgebra of (<&)„. If C is a constant
nonzero matrix that commutes with each member of si, then C is nonsingular.

Using Lemmas 2, 3, Munn [7] proves the following result.

LEMMA 4. Let T be a ^-restricted irreducible representation of S = S°, of degree n over a
field O. Let T(T) be an irreducible subset of T(S). Then there exist finite sets eu...,ereT,
au... ,are<I> such that

LEMMA 5. Let T be a ^-restricted irreducible representation of S = S°. Then S obeys C2.

Proof. Let a, b be nonzero elements of S; then S^S1, S1bS1 are nonzero ideals of S.
If aS'b = {0}, then S'aS1. S'bS1 = {0}; hence UXS 1 ^ 1 ) ] . [T^ 'M 1 ) ] = {0}.

By Lemma 2, [F(S)] is a simple algebra; hence

[TXS'aS1)] = |T(S)] = [ H S ^ S 1 ) ] .

Thus the hypothesis, aS^ = {0}, implies that [F(5)]. [F(S)] = {0}. But, by Lemma 4,
Ine [F(S)]( so this is impossible. Hence aSlb ^ {0}; that is, aSb ^ {0} or ab ^ 0. Suppose
that ab ^ 0 ; then, as above, aSlab # {0} and so aSab ¥= {0} or a.ab ^ 0 . In either case
aSb # {0}; thus S obeys C2.

3. Representations of a 0-simple semigroup. Let S = S° be a 0-simple semigroup, and let
F be a non-null representation of S, of degree n over a field G>. Then, clearly, F is a O-restricted
representation and M(T) = S. Hence, by Lemma 1, S obeys Cj . By means of a proof similar
to that of Lemma 5, we can show that any 0-simple semigroup obeys C2. Hence we have the
following proposition, which may be used to give a sufficient condition for the existence of
non-null representations of a 0-simple semigroup; we shall consider this point in the next
section.
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PROPOSITION 6. Let S = S° be a 0-simple semigroup. Then S obeys C2. Thus S has a
completely 0-simple homomorphic image if and only if it obeys C t .

THEOREM 3. Let S = S° be a 0-simple semigroup, and let S obey Cj . Let S* denote the
maximum non-null homomorphic image of S which obeys C3; 5* is clearly 0-simple. Let F
be a non-null representation ofS, of degree n over afield $ . Then F induces a non-null represen-
tation F* ofS*, of degree n over 5>, according to the rule: for each xeS*,

where x-* x is the natural homomorphism of S onto S*.

Conversely, ifT* is a non-null representation ofS*, of degree n over <B, then the mapping F
of S onto F*(5*), defined by, for each xeS,

± \*,j — j. {A,J ,

is a non-null representation of S.

Proof. Since S = M(F) = M, T(S) = F(M); hence, by Lemma 1, F(5) obeys C3. Thus
T(S) is a homomorphic image of S*, and it follows, from the induced homomorphism theorem,
that the mapping F* of S* onto F(S), defined by (1), is a representation of S*, of degree n
over $ .

The converse is immediate, since the composition of homomorphisms is a homomorphism.

COROLLARY 1. Let S = S° be a 0-simple Jl-semigroup. Then the non-null representations
of S are those of its maximum completely 0-simple homomorphic image S*.

COROLLARY 2. Let S = S° be a 0-simple semigroup with identity. Then S has a non-null
representation if and only if it has no divisors of zero. In this case, the non-null representations of
S are those of its maximum group-with-zero homomorphic image S*.

Proof. Suppose that F is a non-null representation of S. Then £ obeys Cu and is an
.//-semigroup. Thus S* is a completely 0-simple semigroup with identity; that is, S* is a
group-with-zero. Hence S has no divisors of zero. The remainder of the result is now
immediate from Corollary 1.

Clifford fl] has given a construction for all non-null representations of a completely
0-simple semigroup. Taken with Corollary 1 and Theorem 3, this provides a construction for
all representations of a 0-simple .//-semigroup. It should be noted however that not every
0-simple semigroup is an .//-semigroup. For example, let S be the multiplicative semigroup
of all 2 x 2 matrices over the reals, of the form

[••b
where a and b are positive real numbers; then S is a simple cancellative semigroup [2, Chapter
5, §5, Example 7(b)]. Thus 5° is a 0-simple semigroup that obeys C t and C3. But 5° has
no nonzero idempotents and so is not completely 0-simple.
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Theorem 3 shows that, for any 0-simple semigroup S = S°, there is a one-to-one corres-
pondence between the representations of S and those of S*. It is an easy matter to prove that
this correspondence preserves equivalence, decomposition and reduction of representations.
For the definitions of equivalence and decomposition of representations, see, for example,
[2, Chapter 5].

4. Irreducible representations of an arbitrary semigroup. The main result of this section
gives a method of construction for all O-restricted irreducible representations of an arbitrary
semigroup S = 5°, from those of certain associated semigroups. By Lemma 5, if such a
representation exists, then S satisfies C2 and, by Lemma 6 below, so also does any nonzero
ideal of S. Further, if S has the property that each nonzero ideal of S that satisfies Cj is an
^-semigroup, then each of these associated semigroups is completely 0-simple. In this case,
we have an explicit construction for the irreducible O-restricted representations of 5.

THEOREM 4. Let S = S° be a semigroup which obeys C2. Let T be a O-restricted irreducible
representation ofS, of degree n over afield <&. Then T induces a O-restricted irreducible repre-
sentation r * of M*, where M = M(F), and there are finite sets of elements eu...,ereM,
a l s . . . ,are<I> such that, for each xeS,

r(x) = X>,r*(i*), (2)
i

where x-*xis the natural homomorphism M -* M*.

Conversely, let M be a nonzero ideal of S that obeys Cl s and let T* be a O-restricted
irreducible representation of M*, of degree n over <D. Then, for any finite sets eu...,ereM,
a l t . . . , ar6<D such that

tair*(ed = In> (3)
i

the mapping T of S into (<D)n, defined by (2), is a O-restricted irreducible representation of S, of
degree n over d>. The representation is independent of the particular choice of elements et, â
satisfying (3).

Let Tx and T2 be O-restricted irreducible representations of S = 5°, defined, as above, from
ideals Mx and M2 of S. Then I \ and T2 are equivalent if and onlv if they are equivalent on
Mx n M2.

Proof. Let M and T satisfy the hypothesis of the first part of the theorem. By Lemma
1, T(M) obeys C3. Hence the mapping T* defined by the rule

= T(x),

for each xeM*, where x -> jc is the natural homomorphism of M onto M*, is a O-restricted
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representation of M* over <b, of the same degree as F. Since M is an ideal of S, and F(S) is an
irreducible matrix set, it follows from Lemma 2 that

[r*(M*)] = [F(M)] = \T(S)].

Hence F* is an irreducible representation of M*.
From Lemma 4, since F* is irreducible, there exist eu..., ereM* and <xu ..., a P e0 such

that

Choose eteMsuch that et -* e, for each 1 ^ / ^ r. Then, for each xeS,

r(x) = /nr(x) = (tatr*(e,)\. r(x).

But r*(e,) = r(e,) for each 1 g / ^ r ; hence, since M is an ideal of S,

T(x) = £a,nednx) = t«,r(e(x) = £«,r*(ejc).
I i i

This completes the proof of the first part.
The proof of the converse follows exactly as in the case of principal irreducible represen-

tations; cf. [7, Theorem 1].
Finally, it is clear that the criterion for equivalence is necessary. Suppose that F t and

F2 are equivalent on Mt nM2. By C2, Mt r\M2 is a nonzero ideal of 5 and hence

[F.iM, nM2)]

is a nonzero ideal of T^S). But, by Lemma 2, this means that [T1(M1 nM2)] = [TX(S)].
Thus, by Lemma 4, we can choose eu ... ,ersMx nM2 and au... , a P e 0 such that

I

Since F t and F2 are equivalent on Mx r\M2, there exists a nonsingular matrix A such that, for

r

Hence £afr2(e,-) = /„; thus, for each xeS,
I

I I

That is, F t and F2 are equivalent.
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Note 1. It can readily be shown that, if, in the above theorem, 5 is a regular semigroup, a
periodic semigroup, a semigroup satisfying ML and MR, or a 0-simple semigroup containing a
nonzero idempotent, then M is an ^-semigroup (note Lemma 6); that is, M* is completely
0-simple. In this case the O-restricted irreducible representations of S can be determined
explicitly by means of Clifford's theory of representations of a completely 0-simple semigroup
[1].

Note 2. Let S = 5° be a semigroup satisfying C2 that has a unique minimal nonzero
ideal. Then, by the last part of Theorem 4, the irreducible O-restricted representations of S
are determined, to within equivalence, by those of the unique minimal nonzero of S. That is,
in the terminology of [7], they are the principal irreducible O-restricted representations of S.

We shall end the paper by giving a sufficient condition for the existence of a O-restricted
representation of a semigroup S = S°, that obeys C2. Before giving this criterion, we shall
prove some results about conditions Ct and C2.

LEMMA 6. Let S = S° be a semigroup that obeys C2. Let Lbe a nonzero ideal ofS. Then
L obeys C2.

Proof. Let m, n be nonzero members of L. Then, by C2, there exists xeS such that
mxm i=- 0. Again, by C2, there exists yeS such that mxm.y.n ^ 0. Let u = xmy; since L
is an ideal of S,ueL. Then mun # 0 and so L obeys C2.

LEMMA 7. Let S = S° be a semigroup that obeys C2. Then the set of all ideals of S that
obey Ct has a unique maximal member L.

Proof. Let L = U {La : aeA} be the union of all ideals of S that obey Cv If L ^ {0},
let aeL\{0}, and suppose that sa ^ 0 and at # 0 for s, teS; then aeLx, for some cceA. Since,
by Lemma 6, La obeys C2, there exist m,neLa such that msa =£ 0, atn i= 0. Since Lx is an ideal
that obeys Cu it follows that msatn ^ 0; hence sat # 0. Thus L obeys C^

THEOREM 5. Let S = S° be a semigroup that obeys Ct and C2, and let Tbe a nonzero ideal
of S. If a and x denote, respectively, the maximum O-restricted congruences on S and T, then

5/<T ££ Tjz.

Proof. Since S obeys Cx and C2, it follows, from Lemma 6, that the same is true of T.
From the definitions of a and x, it is clear that, for a,beT, if (a,b)6a then {a,b)sx. Con-
versely, let (a, b ) e x and let sat = 0, where s, t e 5J\0. Since T is an ideal of S and S obeys C2,
there exist m,nsTsuch that neither of ms, tn is zero. Then msatn = 0 and so, since (a,b)ex,
msbtn = 0. Since S obeys C^ msbtn — 0 implies msbt = 0 or sbtn — 0. But neither of ms, tn
is zero so that each of these equations implies sbt = 0. Similarly, sbt = 0 implies sat = 0;
hence (a,b)ea. Thus x = a n(T x T).

Let 6 denote the natural homomorphism of S onto S/a. Then, since x = a n (T x T),

Tjx £ TO.

But, by the proof of the corollary to Theorem 1, SO = Sja is completely 0-simple. Thus, since
T is a nonzero ideal of S, T6 = SO. Hence we have the result.
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Let S = S° be a semigroup that obeys C2, and let M be an ideal of 5 that obeys Cx.
Then a sufficient condition for S1 to have a O-restricted representation, over a field <D, defined
from M as in Theorem 4, is that Af/p should have a O-restricted irreducible representation over
O. In fact, by Theorem 5, it is sufficient that L/p should have a O-restricted irreducible repre-
sentation over $ . By the proof of the corollary to Theorem 1, L\p is completely 0-simple;
hence we can use Clifford's results [1] to give necessary and sufficient conditions for Ljp to
have an irreducible O-restricted representation.

Clifford proves the following. Let Jtt°(G; I, A; P) be a regular Rees matrix semigroup
over a group with zero G°. Let F be a representation of G of degree n over a field <b. Then
T can be extended to a representation of V(lo(G; I,A;P) if and only if the A x / block matrix
Q over $ , whose (A, »)th block is the n x n matrix r(pXi) — T(pxlpu), has finite rank over O.
Further, every representation of Ut°((7; I,A;P) is the extension of some representation of G;
in particular, the irreducible representations are the extensions of irreducible representations
of G.

Let aeX\{0}; if a2 # 0 , then (cf. the proof of the corollary to Theorem 1) {a,a*)ep and
(a,a6)ep, so that (a,a2)ep. Thus Ljp is a completely 0-simple semigroup in which each
element is either idempotent or nilpotent. Hence [2] Lip is isomorphic to a regular Rees
matrix semigroup over a group-with-zero G°; further, since each element of Ljp is either
idempotent or nilpotent, it can be verified by direct calculation that G has only one element.

Suppose that Ljp = ITC°({e}; I, A; P), where {e} is a one element group. Let O be a
field and let Q be the A x / matrix over <J> where Qu = 1,0, — 1 according as pxt is greater
than, is equal to, is less thanpXiPn', {e}° is partially ordered by e > 0. If Q has finite rank
over 3>, then we say that S has finite rank over $ ; if L = {0}, then rank S is zero.

Since {e} has only one member, every irreducible representation of {e} over <& is of degree
one. Hence, by Clifford's results, mentioned above, L[p has an irreducible representation
over <£> if and only if Q has finite rank.

The above results are gathered together in the following proposition.

PROPOSITION 7. Let S = S° be a semigroup that obeys C2, and let <D be afield. If S has a
O-restricted representation over O, then S has nonzero rank over <D. Conversely, ifS has finite
nonzero rank over <D, then S has a O-restricted representation over $ .

Finally, we point out that, if S = S° is an inverse semigroup or a weakly regular semi-
group in which the idempotents commute, it can be shown that the criterion of Proposition 7
is not only sufficient but is also necessary; cf. [10] for the inverse case. In this case it takes the
form: S has a O-restricted representation if and only if Ljp is finite with at least two members.
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