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Abstract 28 

The human gut microbiome represents an extended “second genome” harbouring about 1015 microbes 29 

containing >100 times the number of genes as the host. States of health and disease are largely mediated by 30 

host-microbial metabolic interplay, and the microbiome composition also underlies the differential  31 

responses to chemotherapeutic agents between people. Chemical information will be the key in order to 32 

tackle this complexity and discover specific gut microbiome metabolism for creating more personalised 33 

interventions. Additionally, rising antibiotic resistance and growing awareness of gut microbiome effects is 34 

creating a need for non-microbicidal therapeutic interventions. We classify chemical interventions for the 35 

gut microbiome into categories like molecular decoys, bacterial conjugation inhibitors, colonization 36 

resistance-stimulating molecules, “prebiotics” to promote the growth of beneficial microbes and inhibitors 37 

of specific gut microbial enzymes. Moreover, small molecule probes including click chemistry probes, 38 

artificial substrates for assaying gut bacterial enzymes and receptor agonists/antagonists which engage host  39 

receptors interacting with the microbiome, are some other promising developments in the expanding 40 

chemical toolkit for probing and modulating the gut microbiome. This review explicitly excludes ‘biologics’ 41 

such as probiotics, bacteriophages, and CRISPR to concentrate on chemistry and chemical tools like 42 

chemoproteomics in the gut-microbiome context.  43 

 44 

Keywords: Gut microbiome, chemistry, prebiotics, conjugation inhibitors, chemical probes   45 
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1. Introduction 47 

There are about 1013-1015 symbiotic microbes residing inside of and on the surface of a human being which 48 

collectively constitute the human microbiome1. The microbiome plays a significant role in lifelong host 49 

health2 and underlies a considerable proportion of the individual differences in drug metabolism3. Therefore, 50 

modulating the human microbiomes has triggered the interest of both academia and industry, and several 51 

interventions have been designed to either preserve or rebuild the function of the microbiome. In the period 52 

2015-18, over 80 microbiome modulators entered the preclinical phase, while 15 were in phase I trials, 5 in 53 

phase II and 6 in phase III, according to the Pharmaprojects 2018 Microbiome Whitepaper4. The same report 54 

details that as of 2018, 10 modulators were in the pipeline for metabolic disorders, 21 for gastrointestinal 55 

disorders and 24 for infectious diseases. 56 

 57 

The gut (gastrointestinal system) harbours the most extensive human microbiome, which is critical for host 58 

metabolic and immune functions5. Further, a healthy microbiome also prevents pathogens from colonizing 59 

the gut, a phenomenon known as colonization resistance (CR)6. The gut also contains the largest surface 60 

where immune system activity occurs inside the human body7 and the development of the immune system 61 

itself is a delicate dance of balancing the host versus the gut microbes8. The gut connects to various distal 62 

organs via two-way signalling and therefore, the gut microbiome (GM) maintains far more than just gut 63 

health9. GM dysfunction is implicated in the development of infections, gastrointestinal cancers as well as 64 

liver, respiratory, neurological, cardiac, metabolic, and autoimmune diseases10.  65 

 66 

Antibiotics in particular cause deleterious changes to the function of the GM11 and therefore 67 

preserving/restoring those functions is important. The antimicrobial resistance (AMR) crisis has also led to 68 

a search for less indiscriminate therapeutics which are GM-friendly12. Kang et al showed that gut bacteria 69 

such as Clostridium scindens and Clostridium sordellii which perform 7α-dehydroxylation of bile salts, also 70 

produced endogenous narrow-spectrum antibiotics derived from tryptophan, such as turbomycin A and 1-71 
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acetyl-β-carboline which inhibit Clostridioides difficile13. Indole-3-propionic acid (IPA), another tryptophan 72 

metabolite which is produced by Clostridium sporogenes, inhibits a variety of mycobacteria, including drug-73 

resistant Mycobacterium tuberculosis14. IPA inhibited M. tuberculosis both in vitro and when administered 74 

in mice models via oral and intravenous routes (where it showed a seven-fold bacterial load reduction in the 75 

spleen14, 15). GM-derived IPA can bind and powerfully induce the aryl hydrocarbon receptor or AhR (a major 76 

regulator of both innate and adaptive immunity) and therefore modulate the susceptibility to M. 77 

tuberculosis14. The recovery of IPA in the serum14 and the existence of the gut-lung9 and gut-spleen16 axes 78 

explains how the GM can influence both lung and immune function remotely.   79 

 80 

Endogenous narrow-spectrum peptide antibiotics with more complicated structures like bacteriocins also 81 

exist17 and could become available for research  via solid phase peptide synthesis since synthetic methods 82 

for cyclic peptides are  rapidly improving18. Drug delivery targeted to different gut compartments19 is already 83 

a burgeoning field. Therefore, chemically synthesised narrow-spectrum antibiotics could in the near future 84 

be delivered to specific gut compartments for directly or indirectly influencing the susceptibility and host-85 

colonisation ability of major pathogens such as M. tuberculosis14 and C. difficile13 as well as  modulating 86 

host immunity, to prevent infections or aid recovery from infections.   87 

 88 

Direct chemical manipulation of the GM has been the most challenging to perform in the absence of prior 89 

knowledge of the targets. However, in a pioneering study, Chen et al. devised an in vitro screening protocol 90 

and were able to use the cyclic D,L-α-peptides they identified via screening, to change a GM induced by a 91 

Western diet into one reflecting a low-fat diet20. This not only ameliorated atherosclerosis in mice, but 92 

adjusted the levels of pro-inflammatory cytokines, short-chain fatty acids (SCFA) and bile acids to healthy 93 

levels, while improving gut barrier integrity and T-cell function. They described their approach as “directed 94 

remodelling”, implying a deliberate manipulation of the GM in a predetermined manner from one state to 95 

another. 96 

 97 

https://doi.org/10.1017/gmb.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2025.4


Accepted Manuscript 

6 
 

Research is moving away from largely cataloguing microbial strains to examining and understanding the 98 

molecular basis of the GM’s influence on human health2. Therefore, we argue that chemistry and chemical 99 

information will play an important part in unravelling GM interactions and manipulating the GM to promote 100 

health. With this in mind, we focus on the roles of chemistry and chemoproteomics, while excluding 101 

‘biologics’ strategies such as probiotics, bacteriophages, and CRISPR. Narrow spectrum antibiotics and 102 

directed chemical remodelling are only two recent examples of the potential of chemistry in the GM story. 103 

Whether preparing prebiotics, inhibiting bacterial conjugation in the gut, stimulating colonization resistance, 104 

probing GM-host interactions, or altering the GM composition to promote host health, the versatile toolkit 105 

of chemistry offers abundant opportunities to explore and modulate the GM.  106 

 107 

2. Molecules which preserve/restore the gut microbiome  108 

These are classified based on their mode of action as shown in Fig 1A and some example chemical structures 109 

are shown in Fig 1B.  110 

 111 

2.1 Prebiotics: Prebiotics are selectively fermented ingredients that trigger specific changes in the 112 

microbiome composition and activity to promote host health21. Safely administering live microbes and 113 

establishing their colonization in the gut is difficult and faces regulatory hurdles, making small molecule 114 

interventions more attractive22. Small molecules, especially endogenous metabolites can accumulate to high 115 

concentrations with negligible toxicity, remain stable in the systemic circulation and obey the principles of 116 

pharmacokinetics. The major prebiotics are human milk oligosaccharides (HMOs), inulins (1 in Fig 1B), 117 

fructose oligosaccharides (FOS), xylooligosaccharides (XOS), mannan oligosaccharides (MOS) and 118 

galactooligosaccharides (GOS), which are polymers/oligomers of glucose, fructose, mannose, fucose, 119 

galactose, sialic acid, xylose, uronic acid, and arabinofuranose units linked together with β2, β3 and β4 120 

linkages23.  121 

 122 

https://doi.org/10.1017/gmb.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2025.4


Accepted Manuscript 

7 
 

Developments in chemical synthesis are bringing the goal of complex carbohydrate assembly closer. 123 

Difficulties arise mainly from 1) the need to selectively protect and deprotect monosaccharides, and 2) regio- 124 

and stereoselectivity. Improved glycosylation strategies have been reported, which enables glycosyl donors 125 

to react in a specific order, yielding a single oligosaccharide product24. Automated glycan assembly (AGA) 126 

currently enables access to a maximum length of 100, while convergent block coupling of 30- and 31-mer 127 

oligosaccharide fragments made by AGA was used to make a multiple-branched 151-mer polymannoside25. 128 

 129 

Enzymatic and chemoenzymatic processes offer better region- and stereoselectivity, along with fewer steps 130 

in the synthesis which makes them faster and more cost effective26. For example, the HMO 2'-fucosyllactose 131 

(2’FL) has been synthesized in engineered Escherichia coli strains27. One-pot multi-enzyme (OPME) 132 

synthesis has been reported which employs glycosyltransferases to synthesize sialyl- and fucosyl-133 

derivatives28. Sialylated HMOs with high region- and stereoselectivity have been synthesized using a 134 

chemoenzymatic strategy, whereby automated solid phase synthesis of the glycan backbone was followed 135 

by α-(2,3)-sialyltransferase treatment29. Interest in sustainable chemical feedstocks has led to method 136 

development for the conversion of lignocellulose biomass into valuable prebiotics such as XOS30.   137 

 138 
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 139 

Fig 1. A) Functional classification of molecules to preserve/restore the gut microbiome; B) 140 

Chemical diversity of molecules with microbiome preserving/restoring functions; 1 = General 141 

structure of inulins (endogenous prebiotic), 2 = resiquimod or R848 (synthetic stimulant of 142 

colonization resistance); 3 = tanzawaic acid B or TZA-B (natural product colonization inhibitor); 4 143 
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= a mannoside (mannose-containing decoy for urinary pathogens which preserves the gut 144 

microbiota).  145 

 146 

Prebiotics can have synergistic interactions with approved drugs. Konjac MOS from the plant 147 

Amorphophallus konjac are prebiotics containing β-D-mannose and β-D-glucose residues linked by 1-4 148 

linkages31. The combined administration of the drug metformin and konjac MOS mitigates insulin resistance 149 

and glucose tolerance, while also improving islet and hepatic tissue function32. The beneficial effects were 150 

correlated with the reduced abundance of the Rikenellaceae family and the Clostridiales order, with an 151 

increased relative abundance of Bifidobacterium pseudolongum, Akkermansia muciniphila and OTU05945 152 

of family S24−732. Further studies focussing on prebiotic-drug interactions could lead to more targeted 153 

application of prebiotics in combination with approved drugs to mitigate the impact of specific diseases.    154 

 155 

2.2 Stimulants of colonization resistance (CR): CR is a mechanism by which the gut microbiota protects 156 

itself against the incursion and establishment of largely harmful microorganisms. This protection can be 157 

accomplished by several routes, such as antimicrobial secretion, nutrient limitation, stimulation of gut 158 

barrier integrity and the action of bacteriophages6. Disturbances to the gut resulting from the use of 159 

antibiotics, other drugs or inflammation can reduce CR, allowing enteric pathogens such as C. difficile, 160 

Salmonella enterica serovar Typhimurium, E. coli, Shigella flexneri, Campylobacter jejuni, Vibrio 161 

cholerae, Yersinia enterocolitica, and Listeria monocytogenes, to colonize the niches vacated by 162 

microbiome disruption33. Both endogenous molecules such as SCFA and tryptophan metabolites produced 163 

by the gut microbiome and exogenous synthetic small molecules can restore CR function. Synthetic 164 

molecules are beginning to be used in efforts to stimulate CR following disturbances to the GM, for example, 165 

after antibiotic administration. For example, vancomycin-resistant enterococci (VRE) flourishes when CR 166 

is compromised following antibiotic treatment. A synthetic molecule, resiquimod or R848 (2 in Fig 1B), 167 

binds to a Toll-like receptor 7 (TLR-7) that stimulates innate immune defences, leading to the restoration 168 
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of CR against VRE by triggering the expression of the antimicrobial peptide Reg3γ34. R848 can be taken 169 

orally and induces the secretion of the interleukins IL-23 and IL-22.  170 

 171 

2.3 Bacterial conjugation inhibitors (COINs): Antibiotic resistance is spread by several mechanisms 172 

including horizontal gene transfer mediated by plasmids. Analysis of Bacteroidetes strains sharing the 173 

intestinal niches of specific individual humans, demonstrated the extensive occurrence of horizontal gene 174 

transfer among those strains. In this case, the genetic elements exchanged coded for orphan DNA 175 

methylases, fimbriae synthesis proteins, novel metabolic enzymes, antibiotics, and proposed type VI 176 

secretion systems (T6SS)35. More recent studies have recorded extensive plasmid exchange in the gut 177 

environment using CRISPR-Cas spacer acquisition analysis in an E. coli strain36. Unlike earlier studies 178 

which relied on phenotypic markers or post-transfer replication to detect mobile genetic elements, the spacer 179 

acquisition analysis reveals plasmid transfer in real time, and the results showed that the IncX plasmid type 180 

was most frequently transferred36. Therefore, inhibiting bacterial conjugation in a bacteria-dense 181 

environment could enable the host to mitigate antibiotic resistant infections. In general, resident bacteria in 182 

the healthy GM may be able to suppress the evolution of antibiotic resistance in vivo. However, the wide 183 

distribution of plasmid-borne resistance in the environment is well-known and exposure to them might be 184 

common. Moreover, gut inflammation boosts plasmid transfer between pathogenic and commensal 185 

Enterobacteriaceae37. Therefore, inhibiting plasmid transfer in the gut is expected to promote host health 186 

and COINs are unlikely to disturb the GM composition unlike conventional antibiotics. We describe a few 187 

known COINS, but some need to be further specifically tested in the gut environment.  188 

 189 

Early studies to identify COINs unearthed many unspecific molecules which affected DNA replication or 190 

growth38. Plant phenolics seems to be a good source of COINS and have yielded two molecules which 191 

specifically inhibited bacterial conjugation, namely rottlerin and 8-cinnamoyl-5,7-dihydroxy-2,2,6-192 

trimethylchromene39. Screening of a library of over 12,000 NPs (NatChem library) based on high throughput 193 

whole cell-based assays enabled the discrimination between true COINS and false “hits” which merely 194 
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affected cell growth, leading to the discovery of the COIN dehydrocrepnynic acid (DHCA)40. DHCA 195 

belongs to the chemical family of unsaturated fatty acids (UFAs), which is generally a good source of 196 

COINS. DHCA is derived from a tropical seed and its supply is limited. However, it was used as the starting 197 

point for the synthesis of other COINS, particularly 2-hexadecynoic acid (2-HDA) and other 2-alkynoic 198 

fatty acids (2-AFAs) which specifically inhibited the transfer of a range of plasmids, including the common 199 

and highly infective IncF, in various bacteria41. 2-HAD was later reported to prevent bacterial conjugation 200 

in the mouse gut42. A series of UFA NPs called tanzawaic acids were discovered (tanzawaic acid B or TZA-201 

B is depicted as (3 in Fig 1B); they mainly inhibited conjugation by the IncW and IncFII-based plasmids. 202 

Other plasmids classified under the IncFI, IncI, IncL/M, IncX and IncH incompatibility groups were less 203 

affected, while IncN and IncP plasmids were unaffected43.  204 

 205 

Conjugation is driven by the type 4 secretion system (T4SS) whose architecture is conserved in most 206 

bacteria, and contains the pilus, the core channel complex, the inner membrane platform and the ATPases 207 

that provide energy for substrate transport and pilus biogenesis44. Nicking the DNA to relax the plasmid, 208 

DNA transfer to the secretion channel, the transfer of pilin molecules during pilus biogenesis, and pilus 209 

biogenesis are performed by four distinct ATP-ase enzymes, among which carboxylic acid COINS were 210 

shown to target the last step (TrwD protein). Based on structural and computational data, the UFAs and 211 

AFAs were suggested to bind at the end of the N-terminal domain as well as the beginning of the linker 212 

region that connects the N-terminal and C-terminal domains, likely hindering the swapping movements of 213 

the domains needed for the catalytic cycle45.  214 

 215 

2.4 Molecular decoys: These are molecules which bind enteric pathogens and stimulate their elimination 216 

from their gastrointestinal tract. This binding is thought to “fool” pathogens by mimicking receptors used 217 

by them to attach to the gut epithelia in the lower gastrointestinal tract. The global burden of disease caused 218 

by enteric pathogens is substantial and cases may number in the hundreds of millions annually. HMOs act 219 

as soluble decoys for receptors and block the binding of enteric pathogens. Rotavirus infection is prevented 220 
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most effectively by the HMO 2’FL, although several other HMOs also have similar inhibitory effects46. 221 

Campylobacter jejuni infects the mammalian gut and causes diarrhoea and sometimes also motor neuron 222 

paralysis. The infection is initiated by the bacterium binding to the fucosylated intestinal H(O) antigen (Fuc 223 

alpha 1, 2Gal beta 1, 4GlcNAc). However, FOS in human milk can act as decoys, binding to the pathogen 224 

instead and preventing infection47.  225 

 226 

Uropathogenic E. coli (UPEC) uses the extracellular appendages called Type 1 pili to colonize the intestine 227 

by binding a mannosylated host receptor; the Type 1 pili are also essential for colonization and infection in 228 

the bladder. Mannosides (4 in Fig 1B) are small-molecule drugs bearing mannose group(s) which act as 229 

decoys by mimicking the mannosylated receptor and can clear both bladder and intestinal UPEC upon oral 230 

administration in mouse models, leaving the GM largely intact48. The decoy approach has been further 231 

extended to combat cholera, and in this case also employs nanotechnology. The V. cholerae toxin binds to 232 

the host receptor monosialotetrahexosylganglioside (GM1), and coating GM1 on the surface of polymeric 233 

nanoparticles was enough to reduce cyclic-AMP production in epithelia and fluid responses to live V. 234 

cholerae in both cell cultures and a mouse infection model49. The modulation of disease via molecular 235 

mimicry extends to non-sugar molecules, such as metalloenzymes allows for the manipulation of the gut 236 

chemical environment using synthetic catalysts. A metalloporphyrin mimic of the enzyme superoxide 237 

dismutase could reduce lipid peroxidation levels and thereby shielded epithelial cells from damage in rats 238 

injected with the common antigen bacterial lipopolysaccharide (LPS)49.  239 

 240 

3. Chemical probes of the gut microbiome  241 

The majority of recent chemistry-oriented studies did not deal with direct chemical manipulation of the GM 242 

but focussed on probing the GM using bio-orthogonal strategies such as alkyne-cycloazide addition, 243 

Staudinger ligation and tetrazine ligation to create “chemical reporters”50. Bacterial surface glycans, 244 

peptidoglycans, lipopolysaccharides, capsular polysaccharides, glycoproteins, lipids, and other molecules 245 
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such as bile acids have been labelled50. In addition to such surface targeting, protein function may be probed 246 

by ABPP (activity-based protein profiling), which involves small molecules reacting with mechanistically 247 

related enzymes51. In ABPP, the probe usually contains a reactive group and a tag. Microbiota-metabolite 248 

interactions as well microbiome composition and dynamics can be interrogated via ABPP, while 249 

chemoproteomics advances have made the detection of covalent probe-tagged proteins following ABPP 250 

routine50.  251 

 252 

3.1 Fluorophores: The most common tools for probing the GM are fluorophores, which may be attached 253 

to different types of other chemical entities. Commensal anaerobic bacteria including B. fragilis when fed  254 

azide-labelled sugars, which subsequently conjugated with alkyne-fluorophores via click chemistry,  255 

facilitate the imaging of bacteria in live mice52. Three different bacterial surface molecules from the GM,  256 

which interact with the host immune system, namely LPS, capsular polysaccharide (CPS) and peptidoglycan  257 

(PGN) can be tracked53, helping to dissect host-microbe interactions. Azide-bearing amino acids when fed 258 

to complex gut microbial communities showed that newly synthesized proteins could be visualized in situ53. 259 

Two D-Amino acid based fluorescent probes, TADA and Cy5ADA (5,6 in Fig 2), which get incorporated 260 

into bacterial peptidoglycan have been instrumental in enabling live monitoring of GM growth and division 261 

patterns in mice54. Probes based on D-amino acids are also being used to track the viabilities of bacteria in 262 

faecal transplants by using sequential tagging55. In this approach, the bacteria are treated with a probe before 263 

the transplantation and then the recipient mice are fed a second probe following the transplantation. 264 

Therefore, the bacteria surviving the process show the emission for both probes, enabling the identification 265 

of viable bacteria in the transplant55.  266 

 267 
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 268 

Fig 2. Examples of chemical probes used to interrogate the GM - D-amino acid based 269 

fluorescent probes = TADA (5) and Cy5ADA (6); a multifunctional probe showing different parts 270 

shaded in distinct colours = amine directed probe based on sulpho-N-hydroxysuccinimide (7); 271 

photoactive unnatural amino acid probes = DiZPK (8) and ACPK (9); a cysteine-targeted probe = 272 

Biotin-Gly-CMK (10); bioluminescent bile acid-luciferin conjugates for Bile Salt Hydrolase (BSH) 273 

activity = series of compounds with H or OH at the positions R1 and R2 (11).  274 
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 275 

3.2 Multifunctional selective probes: Direct extraction from human faecal samples and release under mild 276 

conditions is possible using multifunctional chemo selective probes56, allowing for the analysis of 277 

femtomole levels of metabolites with enhanced sensitivity. Probe 7 in Fig 2 is anchored at one end to 278 

magnetic beads, linked by a spacer to a novel p-nitrocinnamyloxycarbonyl biorthogonal cleavage site, while 279 

the reactive site features an amine-selective sulpho-N-hydroxysuccinimide (sulpho-NHS) “warhead”, which 280 

reacts with metabolic amines56. Since 2011, it has been possible to monitor enteric pathogens via the 281 

incorporation of the photoactive unnatural amino acids DiZPK and ACPK (8,9 in Fig 2) into specific 282 

pathogen proteins, which react to form cross links revealing the interactions between the modified protein 283 

and its client proteins57. This approach is enabling the direct identification of proteins involved in 284 

pathogenesis and acid-stress defence mechanisms, which is quite challenging to perform with conventional 285 

methods.  286 

 287 

3.3 Simple reactive probes: Sphinganines are bioactive components of foods, but the GM also modifies 288 

them. The use of alkyne-tagged sphinganines allows for the identification sphinganine-utilising GM strains 289 

based on labelling followed by a cell sorting workflow58. The subsequent sequencing of the sorted bacteria 290 

revealed that this metabolism is nearly exclusively performed by members of the Bacteroides58. An activity-291 

based probe, Biotin-Gly-CMK (10 in Fig 2), has been used to differentiate between mice models harbouring 292 

“normal” human GM and “Inflammatory Bowel Disease” (IBD) affected human GM, whereby a novel 293 

cysteine-reactive probe tagged several proteases and hydrolases in the IBD model, but not in the healthy 294 

controls59.  295 

 296 

An elegant recent study by Nie et al. using a click chemistry strategy isolated and identified a previously 297 

unknown bile acid 3-succinylated Cholic Acid (3-sucCA) correlated with reduced progression of metabolic 298 

dysfunction associated steatohepatitis (MASH) in humans60. Using this discovery, the authors were able to 299 
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characterise an annotated β-lactamase in the GM member Bacteroides uniformis as the enzyme catalysing 300 

the 3-succinylation of CA59.     301 

 302 

3.4 Bioluminescent probes: Luciferin-based bioluminescent probes (11 in Fig 2) have been employed to 303 

detect Bile Salt Hydrolase (BSH) activity in a wide variety of sample environments including purified 304 

enzymes, bacterial cells, faecal slurries as well as non-invasive imaging in mice and humans61. BSH activity 305 

releases luciferin from the conjugated bile acid and can be further assayed using luciferase. These bile acid-306 

luciferin probes were useful in demonstrating the stimulatory effect of prebiotics on BSH activity and as 307 

diagnostic tests which non-invasively detect the clinical IBD status in human patients61.  308 

 309 

4. Modulating specific enzyme functions in the gut microbiome 310 

Targeting specific enzymes among the thousands of proteins actively produced by the gut microbes is a 311 

viable strategy for microbiome modulation.  312 

 313 

4.1 Choline metabolism: A ‘chemically guided functional profiling’ could be a strategy to uncover the 314 

presence of novel enzymes in the GM and subsequently, to modulate their function to achieve therapeutic 315 

effects. The conversion of choline into trimethylamine (TMA) by anaerobic gut bacteria is correlated with 316 

disease conditions in humans, and more specifically, the production of TMA in both isolated bacteria and 317 

complex communities can be inhibited by betaine aldehyde (12 in Fig 3)62. The identified target is GM 318 

choline TMA-lyase (CutC) and this opens up the scope for the development of other inhibitors.  319 

 320 

4.2 Bile salt metabolism: Bile salts have major effects on the physiology and virulence of C. difficile. When 321 

patients are restored to a C. difficile-resistant state, it is observed that the production of deoxycholate from 322 

cholate by 7α-dehydroxylating gut bacteria occurs63. Broad spectrum antibiotics block the production of 323 

secondary bile acids and kill the 7α-dehydroxylating bacteria, thereby enabling C. difficile to colonize the 324 
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gut63. BSH enzymes expressed by the GM and bile salt metabolism affects the immune and metabolic 325 

processes via engaging host receptors. Therefore, inhibiting BSH enzymes would enable the dissection of 326 

the role of bile salts in host-microbe interactions. Screening a library of compounds, Adhikari et al, zeroed 327 

in on a covalent suicide inhibitor containing an α-fluoromethyl ketone moiety (13 in Fig 3) which reacts 328 

with the active site cysteine of BSH enzymes, as way to globally modulate BSH and understand their 329 

physiological roles64.  330 

 331 

4.3 Glucuronidase inhibitors: β-Glucuronidase (GUS) enzymes harboured by gut microbes can cause 332 

severe toxicity reactions to certain pharmaceuticals including cancer drugs, and therefore, GUs inhibitors 333 

have been developed (14,15 in Fig 3) to ameliorate these toxic side effects. Pellock et al. reported the 334 

discovery of piperazine-based GUS inhibitors by combining chemical biology, protein structural data and 335 

mass spectrometry with cell-based assays65. Their GUS inhibitors interrupt the catalytic cycle of the enzyme 336 

and are substrate-dependent, binding to the catalytic intermediate by means of a piperazine-linked 337 

glucuronide. The inhibitor-glucuronide conjugates were detected by LC-MS66. 338 

 339 

 340 
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Fig 3. Specific enzyme inhibition can be a strategy to selectively manipulate the gut microbiome, 341 

and some inhibitors of gut bacterial enzymes are shown. 12 = betaine aldehyde, inhibits choline 342 

TMA-lyase (CutC); 13 = fluoromethyl ketone suicide inhibitor of Bile Salt Hydrolase (BSH); 14, 15 343 

= piperazine-containing β-glucuronidase inhibitors; 16 = acarbose, inhibits starch and pullulan 344 

utilization; 17 = M4284 mannoside, inhibits FimH in uropathogenic E. coli.  345 

 346 

4.4 Carbohydrate metabolism: The prospects for chemical precision editing of the GM are improving due 347 

to an expansion in the knowledge of its metabolism. GM diversity is promoted by the metabolism of 348 

complex plant polysaccharides. Selective manipulation of polysaccharide metabolism without microbicidal 349 

effects has been achieved using a small molecule inhibitor, acarbose (16 in Fig 3), which abolished the 350 

ability of B. thetaiotaomicron and B. fragilis to utilize potato starch and pullulan by interfering with the 351 

Starch Utilization System67. Shifting the GM metabolic activity selectively in this non-lethal fashion 352 

alleviated colitis. Until recently, it was not known if single bacterial species or a small community is needed 353 

to drive the degradation of any highly complex polysaccharide. The most complex polysaccharide 354 

characterized in the gut environment is rhamnogalacturonan-II, which is depolymerized by Bacteroides 355 

thetaiotaomicron with the cleavage of 20 out of its 21 distinct glycosidic bonds68. Further analysis revealed 356 

several previously unknown bacterial enzymes were responsible for the degradation of 357 

rhamnogalacturonan-II.  358 

  359 

4.5 Miscellaneous inhibitors: Zhu et al., showed that dysbiosis-linked gut inflammation caused by the 360 

expansion of facultative anaerobic Proteobacteria could be blocked via tungstate administration, which 361 

inhibits molybdenum-cofactor respiratory chain enzymes69. GM composition was undisturbed when 362 

tungstate was administered under homeostatic conditions. Recurrent infections of the urinary tract caused 363 

by UPEC occur in 30-50% of patients even after antibiotic treatment. This persistence is linked to the type 364 

1 pilus adhesin, FimH, which binds mannose and aids the colonization of the bladder surface. Type 1 pili 365 

were also shown to aid UPEC colonization in the gut and the administration the high affinity FimH inhibitor 366 
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mannoside M4284 (17 in Fig 3) reduced gut colonization and urinary tract infection caused by genetically 367 

distinct UPEC isolates, without disrupting the GM composition70.  368 

 369 

5. Chemoproteomics tools for GM studies  370 

Over 1900 uncultured gut microbes were discovered in 201971, showing enormous potential for finding 371 

metabolic diversity in the GM. Metagenomics projects including the Human Microbiome Project show that 372 

identification of the biochemical functions of genes encoding metabolic enzymes in the human gut 373 

microbiome accurately is fraught with difficulty. In a survey of 139 stool metagenomes, only around 30% 374 

of them could be assigned a GO (Gene Ontology) or EC (Enzyme Commission) annotation; of these 375 

annotations, 50% have previously unknown functions72. Even in the case of enzymes/pathways that could 376 

be annotated, the gut microbiota contains many uncharacterized gene products detected in genomics/ 377 

metagenomics analysis. Therefore, chemical information-based analyses (including analysis of chemical 378 

structure, chemical reactivity, and potential biological interaction partners) which predict potential GM 379 

metabolism, and chemoproteomics methods are better placed to elucidate those “unknown” metabolic 380 

functions rather than purely metagenomics. Examples of the chemical information-based include the design 381 

of gut-targeted drugs73 and predictions of potential drug/xenobiotic metabolism in the GM74. Herein, 382 

however we focus on some chemoproteomics/metabolomic tools developed for specific metabolite groups.   383 

 384 

5.1 Enzyme-based sulphated metabolome analysis: Sulphated compounds are derived from gut microbial 385 

transformation of dietary material and relate to disease states. Using an arylsulfatase enzyme to hydrolyse 386 

sulphated compounds and mass spectrometry-based metabolite analysis, Correia et al have characterized 387 

and validated 235 sulphated metabolites in a single study, which were the products of gut microbiota and 388 

subsequent host transformations and discovered eleven previously unknown sulphated metabolites75. The 389 

metabolites reported in this study could form the basis of classification of human subjects as harbouring 390 
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high or low sulphate metabolizing microbiota for future cohort studies. Further, the arylsulfatase-based 391 

method may be useful for discovering novel sulphated metabolites. 392 

 393 

5.2 Bile salt hydrolase and bile acid-based chemoproteomics: As mentioned before, bile acids are 394 

secreted by the liver and further converted into secondary bile acids by the action of the GM. The latter 395 

participate in several processes including the metabolism of glucose and lipids, and immune homeostasis. 396 

The key reaction of secondary bile acid biosynthesis is catalysed by bile salt hydrolases (BSH). BSH are 397 

bacterial cysteine hydrolases whose activity precedes other kinds of bile acid transformations76. Parasar et 398 

al., developed a strategy based on the covalent labelling of the active site cysteine using a substrate 399 

analogue77. When the substrate analogue is covalently bound, biorthogonal click chemistry could be applied 400 

to attach either a fluorescent contrast agent or a biotin affinity tag to the enzyme-bound analogue. In the 401 

first case, in situ imaging could be performed following gel electrophoresis, and in the second, affinity 402 

purification using streptavidin (the samples were subsequently analysed using proteomics).  403 

While the expression of metagenomic fragments in well-studied model microbes showed that at least three 404 

distinct phyla possess BSH activities in the GM78, genome-based strategies suffer from the issues of 405 

potential toxicity, incomplete coverage, incomplete BGC expression, unintended changes in enzyme levels 406 

and tissue localization, all of which led to deviations from the physiologically relevant states of the BSH 407 

enzymes. By comparison, the covalent modification of the active sites of BSH enzymes coupled with 408 

proteomics has avoided many of the pitfalls of the genome-based methods and enabled the direct 409 

identification of these enzymes. 410 

 411 

While bile acids (BA) promote CR, little was known about the target proteins affected in the gut pathogens 412 

inhibited by BA action. Photoaffinity probes based on chenodeoxycholic acid (CDCA) were able to 413 

crosslink many host and pathogen proteins in Salmonella enterica serovar Typhimurium infection models, 414 

of which direct protein inhibition by CDCA probes was reported for HilD, a key regulator of Salmonella 415 
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pathogenesis and virulence79.  Chemical proteomics and photoaffinity labelling based on lithocholic acid 416 

(LCA) were also used to identify a previously unknown BA-binding transcriptional factor called BapR in 417 

C. difficile80.      418 

 419 

5.3 Direct lysine-acylation chemoproteomics: In a 2022 report, abundant post-translational lysine-420 

acylation by RACS (reactive acyl-CoA species) was discovered, whereby the acyl motifs found on several 421 

differentially expressed proteins corresponded to the metabolism of specific carboxylic acids in syntrophic 422 

bacteria81. The importance of cross-feeding in the gut environment, the abundance of SCFA and the ability 423 

to analyse the proteome for post-translational modifications without highly biased pre-enrichment, direct 424 

analysis of lysine acylation in the GM has good potential to shed light on metabolomic aspects.  425 

 426 

5.4 Vitamin affinity probe chemoproteomics: Bacteroidetes are one of the four major GM phyla; their 427 

genomes usually encode several B12-dependent enzymes, although they lack the ability of de novo cobamide 428 

synthesis82. It is therefore likely that they could harbour B12 transport proteins different at the sequence level 429 

from canonical E. coli counterparts. The use of B12-based affinity probes and subsequent application of 430 

chemoproteomics in Bacteroides thetaiotaomicron samples revealed the presence of proteins without 431 

previously unknown functions; one of these, BtuH2 was shown to capture and transport B12 directly in vitro 432 

and responsible for gut fitness of these bacteria in gnotobiotic mice83.    433 

 434 

6. Modulating host receptors 435 

The intestinal surface senses bacterial surface molecules and GM metabolites through several types of cell-436 

surface receptors and further effects are exerted by receptor protein complexes inside various types of gut 437 

cells. Here, we will briefly consider only selected agonists/antagonists linked to GM activity of a few cell-438 

surface, nuclear and peroxisome-linked receptors.  439 
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440 

Fig 4. Molecular mechanism of G-protein coupled receptors on the cell surface. The ligand binds 441 

to the receptor protein causing the G-protein subunits to disassemble and exchange bound GDP 442 

with GTP. The G-protein α-subunit is bound to the receptor, while the other subunits signal to 443 

other proteins involved in intracellular responses. GTP hydrolysis drives the dissociation of the α-444 

subunit from the receptor and a return to the GDP-bound multi-subunit G-protein complex.   445 

 446 

6.1 Cell-surface receptors 447 

G-protein coupled receptors (GPCRs) are the largest membrane protein family in humans and sense their 448 

ligands through a mechanism outlined in Fig 4. GPCR complexes contain a transmembrane subunit (green 449 

in Fig 4) which binds a small molecule (ligand) at the cell surface, while a linked trimeric G-protein bound 450 

to GDP is located inside the cell. Once the ligand has been captured by the receptor subunit, then a 451 

conformational change occurs in the complex, allowing GTP to bind the trimeric G-protein, which usually 452 

dissociates, triggering an intracellular response via further downstream events. There are a variety of GPCRs 453 

in the gut for various microbial metabolites such as SCFA84, bile acids85 and several other types of 454 

effectors86. Gut bacteria synthesise molecules such as commendamide, which mimic the human 455 

(endogenous) ligands of GPCRs87.  456 
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 457 

A forward genetics screen (i.e., trying to identify genes leading to a phenotype) based on the Tango β-458 

arrestin recruitment assay (PRESTO-Tango), was able to measure the activation processes of almost all the 459 

non-olfactory human GPCRs88 and revealed several novel GPCR ligands such as L-phenylalanine secreted 460 

in the GM89. Several other ligands which bind GPCRs (including in immune and nerve cells) such as 461 

phenylpropanoic acid, cadaverine, 9-10-methylenehexadecanoic acid, and 12-methyltetradecanoic acid 462 

were identified in a high throughput screening of 241 GPCRs90, using seven gut microbes to represent a 463 

simplified human microbiome (SIHUMI) consortium90,91.   464 

 465 

6.1.1 Free fatty acid receptors (FFAR): SCFA are sensed by specialized GPCRs called the FFAR, a family 466 

of cell surface receptors91-93. FFAR2 and FFAR3 signalling links the GM and the β-cells in the pancreas and 467 

therefore are important targets in type-1 and type-2 diabetes93,95. In pigs, the use of trans-glycosylated 468 

starches (TGS) led to downregulated FFAR2 via GM modulation, which decreased obesity95.  GM-derived 469 

SCFA and LPS also participate in the gut-lung immune axis since these molecules can travel to the lungs 470 

and modulate FFAR2/3 activity there84.  471 

 472 

6.1.2 Hydroxy carboxylic acid receptor (HCAR): This is yet another class of GPCRs which regulate 473 

immunity  and energy homeostasis and sense hydroxycarboxylic acids. Most mammals have HCA1 which 474 

senses lactic acid, and HCA2 which senses 3-hydroxybutanoate and butyrate96. Recently, a third HCAR 475 

called HCA3 was detected in hominin genomes and described in humans; it senses and is potently activated 476 

by D-phenyllactic acid (D-PLA)97, which is produced as an antimicrobial by GM Lactobacilli. HCA2 is 477 

expressed in not only the intestinal epithelial cells, but also adipocytes, immune cells, hepatocytes, retinal 478 

epithelium, and Langerhans cells98, suggesting involvement in communication between the gut and the fatty 479 

tissues, liver, eyes, and skin. It is implicated in pathological states such as intestinal inflammation and 480 

cancers, making it a possible therapeutic target in several diseases98.  481 

 482 

https://doi.org/10.1017/gmb.2025.4 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2025.4


Accepted Manuscript 

24 
 

6.2 Nuclear receptors 483 

The major nuclear receptors in the gut are the aryl hydrocarbon receptor, the farnesoid X receptor and the 484 

pregnane X receptor.  485 

 486 

6.2.1 Aryl hydrocarbon receptor (AHR): This receptor is a transcription factor with a helix-lop-helix 487 

motif, and senses compounds bearing an aromatic ring such as indole/tryptophan compounds, polyphenols, 488 

flavonoids, and synthetic pollutants like dioxins and polycyclic aromatic hydrocarbons. It controls immunity 489 

at the gut barrier via the differentiation and inflammatory responses of innate and adaptive immune cells99,  490 

100. GM tryptophan catabolism produces AHR ligands such as indole-3-aldehyde, which stimulate intestinal 491 

immunity against C. albicans colonization via IL-22101. Tryptophan metabolites also communicate bi-492 

directionally between the GM and the brain (gut-brain axis) via the AHR102. The natural dye indigo binds 493 

the AHR and induces the production of the interleukins IL-10 and IL-22, which confers protection against 494 

high-fat diet (HFD)-induced insulin resistance and fatty liver disease in mice103. This was linked to specific 495 

increases in Lactobacillus cell counts and the elicitation of IL-22 secretion in the gut104. Intestinal 496 

inflammation can be modulated by AHR ligands such as oxazoles105 and 6-formylindolo (3,2-b) carbazole 497 

(Ficz)106.   498 

  499 

6.2.2 Farnesoid X receptor (FXR): FXR is activated by bile acids and are involved in lipid and glucose 500 

metabolism as well as energy homeostasis through the enterohepatic route107,108. The antioxidant compound 501 

tempol leads to the accumulation of tauro-β-muricholic acid (T-β-MCA) in mice by blocking BSH enzymes 502 

in the Lactobacilli; T-β-MCA inhibits FXR signalling, consequently reducing obesity109. Glycine-β-503 

muricholic acid (Gly-MCA) prevents obesity, insulin resistance, and fatty liver disease in mice by 504 

decreasing the Firmicutes to Bacteroidetes ratio, leading to reduced SCFA levels110. Bile acids conjugated 505 

to the amino acids phenylalanine, tyrosine and leucine are FXR agonists and are elevated in cystic fibrosis 506 

and inflammatory bowel disease (IBD)111.  507 

 508 
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The bile acid derivative obitecholic acid (OCA) can reshape the small intestine microbiome in humans and 509 

mice via the FXR receptor112. These studies demonstrated the links between the GM, FXR and metabolic 510 

disease and showed that FXR agonists could be promising anti-obesity leads via microbiome remodelling. 511 

In addition, OCA could also reduce the severity of C. difficile infection in mice fed a high-fat diet by an 512 

FXR-mediated drop in primary bile acid levels, which decreases C. difficile spore germination113. Owing to 513 

the communication between the GM and the brain (the gut-brain axis), OCA can influence the GM-triggered 514 

microglia accumulation in the brain and ameliorate the anxiety associated with metabolic disease of treated 515 

mice114. Small-molecule manipulation of the GM therefore enables the modulation of distant organs via the 516 

gut-brain, the gut-liver, the gut-heart, and the gut-lung axes.  517 

 518 

6.2.3 Pregnane X receptor (PXR): PXR is implicated in the metabolism of xenobiotic compounds, 519 

expressed in the vascular endothelium lining the blood vessels and is in direct contact with the serum115. It 520 

is involved in innate immunity via the inflammasome and protection of the endothelia from oxidative 521 

damage116. The natural product tanshinone IIA protects the endothelial cells from ROS damage via PXR 522 

activation117, while the GM metabolite indole-3-propionate (IPA) regulates PXR-dependent vasodilation118. 523 

Using IPA as a scaffold, Dvořák et al, synthesized a series of indole derivatives which were the first ever 524 

non-cytotoxic PXR agonists which reduced inflammation in mice119, suggesting that GM metabolite 525 

mimicry might be a viable strategy to discover novel drugs with good efficacy and low toxicity. 526 

 527 

6.4 Peroxisome proliferator-activated receptors (PPARs) 528 

PPARs are found throughout the gut tissue and have roles fatty acid sensing, metabolism, and modulation 529 

of immunity; PPARα is crucial for fatty acid and branched chain amino acid catabolism in the mitochondria 530 

and peroxisomes120, while PPARγ is important in innate immunity121. Double agonists of both these 531 

receptors have been successful in animal models of Citrobacter rodentii and DSS-induced colitis of 532 

reducing tissue damage and bacterial loads leading to infection clearance and resolved inflammation, 533 

compared to agonists of each receptor separately122. PPARα and γ activation has been reported for keto- and 534 
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hydroxy-octadecanoic acid species, which were produced by Lactiplantibacillus plantarum123. 535 

Oleoylethanolamide (OEA), an endogenous PPAR ligand can be administered exogenously in mice to shift 536 

the microbiota in the colon to higher Bacteroidetes/Firmicutes ratio, with corresponding increases in 537 

Bacteroides, Prevotella and Parabacteroides and decreases in Bacillus and Lactobacillus strains124. The 538 

GM has also been modulated also by synthetic agonists, such as fenofibrate, which led to increased SCFA 539 

in serum and tissues in mice fed high-fat diets (HFD)125. Dysbiosis induced by either high-fructose diets or 540 

HFD in mice could be remediated by the PPAR agonist Wy-16434, whereby the  Bacteroidetes/Firmicutes 541 

ratio increased (reduced Proteobacteria and increased Actinobacteria)126, 127.    542 

 543 

6. Future directions and conclusions 544 

As outlined in this article, approaches such as the  inhibition of specific GM metabolism, the use of COINS, 545 

prophylactic use of small-molecule determinants of CR, and GM metabolite mimicry could emerge as 546 

therapeutic avenues in GM modulation and precision medicine. Outside the coverage of this article, 547 

developments in canonical amino acid modification, biorthogonal chemistry, non-canonical amino acids, 548 

ribosome engineering, mass spectrometry, natural product databases and machine learning have increased 549 

the scope of chemical and chemical information-based tools to interrogate GM-related metabolism and 550 

discover GM-related natural products. The emergence of chemical and informatics technologies alongside 551 

advances in deep sequencing128, improvement in technologies to cultivate “uncultivable microbes”129 and 552 

isolate GM-specific microbes via “culturomics”130 make it an exciting time to be a chemical biologist 553 

interested in GM research, with expanding opportunities for chemistry-based discovery and interventions 554 

to benefit human health. 555 
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