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Models in Which Every Nonmeager Set
is Nonmeager in a Nowhere Dense
Cantor Set

Maxim R. Burke and Arnold W. Miller

Abstract. We prove that it is relatively consistent with ZFC that in any perfect Polish space, for every

nonmeager set A there exists a nowhere dense Cantor set C such that A ∩ C is nonmeager in C . We

also examine variants of this result and establish a measure theoretic analog.

1 Introduction

Our starting point is the following question of Laczkovich:

Does there exist (in ZFC) a nonmeager set that is relatively meager in every
nowhere dense perfect set?

Note that the continuum hypothesis implies the existence of a Luzin set, i.e., an un-
countable set of reals which meets every nowhere dense set in a countable set. Hence,
we can think of Laczkovich’s question as asking whether one can construct a partic-
ular weak version of a Luzin set without any extra set theoretic assumptions.

Recall that a space X is Polish iff it is completely metrizable and separable. A sub-
set of X is nowhere dense iff its closure has no interior and it is meager iff it is the
countable union of nowhere dense sets. A subset of X is residual iff it is the comple-
ment of a meager set. A perfect set in a Polish space is a closed nonempty set without

isolated points, and a Polish space is said to be perfect if it is nonempty and has no
isolated points. As we shall see, the underlying space in the question of Laczkovich
can be taken to be any perfect Polish space. If we ask, as is quite natural, for the
nowhere dense perfect sets in the statement to be Cantor sets (i.e., sets homeomor-

phic to the Cantor middle third set), then we do not know whether the nature of the
Polish space matters. Even for various standard incarnations of the reals (the real line,
the Baire space, and so on), we have only partial results on their equivalence in this
context. We answered Laczkovich’s question for the Cantor set in 1997 by building a

model where the answer is negative. (And of course the perfect nowhere dense sets
in this case are necessarily Cantor sets.) Very shortly afterwards, we noticed the more
elegant solution presented here which uses a slightly stronger variant of a statement
proven consistent by Shelah in [Sh1980]. We show in Section 3 that the stronger con-

clusion, in which for any perfect Polish space the perfect nowhere dense sets can be
taken to be Cantor sets, follows from yet another variant on the same statement. The

Received by the editors January 30, 2004.
AMS subject classification: Primary: 03E35; secondary: 03E17 03E50.
Keywords: Property of Baire, Lebesgue measure, Cantor set, oracle forcing.
c©Canadian Mathematical Society 2005.

1139

https://doi.org/10.4153/CJM-2005-044-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-044-x


1140 M. R. Burke and A. W. Miller

proof of the consistency of the variants in question is similar to the proof of Shelah.
Unfortunately, the proof is quite technical and the argument in [Sh1980] is only a

brief sketch, so we give the argument in some detail in Section 4 in order to be clear.
An alternative model for the negative answer to Laczkovich’s question for the Cantor
set is provided by a paper of Ciesielski and Shelah [CS]. See Remark 3.6. In the final
section of the paper, we show how a measure theoretic version of our results can be

deduced from results in Roslanowski and Shelah [RS]. The authors thank Ilijas Farah
for helpful discussions concerning the models constructed in [RS].

For a Polish space X, write perfect(X) to mean that for every nonmeager set A ⊆ X
there is a nowhere dense perfect set P ⊆ X such that A∩P is nonmeager relative to P.

Write cantor(X) if moreover P can be taken to be a Cantor set. Note that perfect(X)
and cantor(X) are trivially equivalent in spaces in which nowhere dense perfect sets
are necessarily Cantor sets, e.g., 2ω and R.

We recall for emphasis the following well-known elementary fact of which we will

make frequent use without mention.

Proposition 1.1 If X is a topological space and Y is a dense subspace of X, then for
any A ⊆ Y , A is nowhere dense in Y if and only if A is nowhere dense in X. Similarly, A

is meager in Y if and only if A is meager in X.

2 Relationships Between Various Polish Spaces

We begin by showing that for any two perfect Polish spaces X and Y , perfect(X) and
perfect(Y ) are equivalent.

Proposition 2.1 We have the following implications.

(a) Suppose X is a perfect Polish space and perfect(X) holds. Then perfect(ωω) holds.
(b) For every perfect Polish space X, perfect(ωω) implies perfect(X).

Proof We will use the well-known fact that every perfect Polish space X has a dense

Gδ subset Y homeomorphic to ωω . (To get Y , first remove the boundaries of the
elements of a countable base for X. What remains is a zero-dimensional dense Gδ .
Remove a countable dense subset of this dense Gδ and call the result Y . Then Y is
a perfect Polish space which is zero-dimensional and has no compact open sets and

hence is homeomorphic to ωω .)
(a) Let Y be a residual subspace of X homeomorphic to ωω . Let A be a nonmeager

set in Y . In X, A is nonmeager so there is a nowhere dense perfect set C so that
A is nonmeager in C . By replacing C by the closure of one of its nonempty open

subsets, we may assume that A is everywhere nonmeager in C . In particular, A ∩ C
is dense in C . Note that F = Y ∩ C is closed relative to Y , is nonempty and has no
isolated points (because it contains A∩C which is dense in C). Since F is dense in C ,
A ∩C = (A ∩ Y ) ∩C = A ∩ F is not meager in F. Also, because Y is dense in X and

F is nowhere dense in X, F is also nowhere dense in Y .
(b) Let X be a perfect Polish space. Let Y be a residual subspace of X homeomor-

phic to ωω . Let A ⊆ X be nonmeager. Then A ∩ Y is nonmeager in X and hence in
Y as well since Y is dense. By perfect(ωω), there is a nowhere dense perfect set C in Y
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such that A ∩ C is nonmeager in C . If P denotes the closure of C in X, then, since C
is dense in P, A ∩C is nonmeager in P and hence A ∩ P is also nonmeager in P. P is

perfect since it is the closure of a nonempty set without isolated points. P is nowhere
dense since it is the closure of a set which is nowhere dense in Y and hence in X as
well.

Part (b) holds for cantor( · ) by an easier argument.

Proposition 2.2 For every perfect Polish space X, cantor(ωω) implies cantor(X).

Proof Similar to the proof of Proposition 2.1(b), except that this time the proof

yields a nowhere dense Cantor set C ⊆ Y such that A ∩ C is nonmeager in C and
then we are done.

We do not know whether (a) holds for cantor(·).

Problem 2.3 Does cantor(2ω) imply cantor(ωω)?

Problem 2.4 Does cantor([0, 1]) imply cantor([0, 1] × [0, 1])?

Of course, cantor([0, 1]) ≡ perfect([0, 1]) ≡ perfect(2ω) ≡ cantor(2ω), so these
two questions have equivalent hypotheses.

We introduce one more version of perfect(X) based on the following observation.

Suppose that perfect(ωω) holds. Then for any nonmeager set A, we have a nowhere
dense perfect set P such that A ∩ P is nonmeager in P. Replacing P by the closure of
one of its open sets, we may assume that A ∩ P is everywhere nonmeager in P. Then
if P has a compact open subset U , then U is a Cantor set and A ∩ U is nonmeager

in U . Otherwise, P itself is homeomorphic to ωω . Hence, the perfect set P in the
conclusion of perfect(ωω) can always be taken to be either a closed nowhere dense
copy of ωω or a Cantor set. Let baire(X) be the strengthening of perfect(X) in which
we require that the perfect nowhere dense sets in the definition be homeomorphic

to the Baire space ωω . Of course a Polish space need not contain any closed copies
of ωω , so baire(X) can fail. However, when X = ωω it would seem reasonable that
baire(X) might hold, and we will show in the next section that baire(ωω) is indeed
consistent. Its relationship to cantor(ωω) is unclear to us.

Problem 2.5 (a) Does perfect(ωω) imply that one of baire(ωω) or cantor(ωω) must
hold? (b) Does either of baire(ωω) or cantor(ωω) imply the other?

3 Consistency Results

We now turn to the proof of the consistency of cantor(ωω) and baire(ωω). We need
a variation on the following result which forms part of the proof of [Sh1980, Theo-
rem 4.7], which states that if ZFC is consistent, then so is ZFC + 2ω

= ω2 + “There
is a universal (linear) order of power ω1”.
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Theorem 3.1 If ZFC is consistent, then so is ZFC + both of the following statements.

(a) There is a nonmeager set in R of cardinality ω1.
(b) Let A and B be everywhere nonmeager subsets of R of cardinality ω1. Then A and B

are order-isomorphic.

We shall need the following variant of this result.

Theorem 3.2 If ZFC is consistent, then so is ZFC + both of the following statements.

(a ′) Every nonmeager set in R has a nonmeager subset of cardinality ω1.
(b ′) Let A and B be everywhere nonmeager subsets of R of cardinality ω1. Suppose

we are given countable dense subsets A0 ⊆ A and B0 ⊆ B. Then A and B are

order-isomorphic by an order isomorphism taking A0 isomorphically to B0.

Problem 3.3 In the presence of (a), does (b) imply (b ′)?

We shall in fact verify in Theorem 4.9 that in (b ′) we can even ask that given pair-
wise disjoint countable dense subsets Ai , i < ω, of A and pairwise disjoint countable

dense subsets Bi , i < ω, of B, the order-isomorphism of A and B takes Ai isomorphi-
cally to Bi for each i < ω. As explained in the introduction, the proof is similar to the
one in [Sh1980], but as the proof is quite technical and the argument in [Sh1980] is
only a brief sketch, we need to give the argument in some detail in order to be clear.

We do that in the next section. Here, we derive the consequences of interest to us for
this paper. The definition of baire(X) is given at the end of Section 2.

Theorem 3.4 Assume (a ′) and (b ′). Then cantor(ωω) and baire(ωω) both hold.

Proof We will use the following elementary fact.

Fact 3.5 If K, L ⊆ R are dense and h : K → L is an order isomorphism, then h
extends to an order isomorphism of R.

Suppose that A ⊆ R \ Q is not meager. We wish to find a Cantor set C ⊆ R \ Q

such that A ∩ C is nonmeager relative to C . By (a ′), we may assume that A has
cardinality exactly ω1. A is everywhere nonmeager in some open interval (a, b). Let
C ⊆ (a, b) \ Q be a Cantor set, and, by (a ′), let B ⊆ C be a set of cardinality ω1

which is nonmeager relative to C . Then (A ∪ Q) ∩ (a, b) and (A ∪ B ∪ Q) ∩ (a, b)

are both everywhere nonmeager in (a, b) and both have cardinality ω1. By (b ′), there
is an order-isomorphism h : (A ∪ Q) ∩ (a, b) → (A ∪ B ∪ Q) ∩ (a, b) such that
h[Q∩(a, b)] = Q∩(a, b). Extend h to (a, b) and denote the extension also by h. Since
h is a homeomorphism, h−1[C] is a Cantor set and h−1[B] is nonmeager relative to

h−1[C]. Since h−1[C] ⊆ R \ Q and h−1[B] ⊆ A, we are done.

To get baire(ωω), we make a different choice of C in the preceding argument. This
time, choose C to be any Cantor set so that C ∩ Q is dense in C . Then h−1[C] will
have the same property, so h−1[C \ Q] = h−1[C] \ Q is closed nowhere dense in
R \ Q and homeomorphic to ωω . (Also, this time choose B ⊆ C \ Q .)
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Remark 3.6 The reader can easily verify that a similar but simpler argument yields
that (a ′) and (b) imply perfect(R). An alternative proof of the consistency of

perfect(R) can by had by using Theorem 2 of [CS], which states that the following
statement is consistent relative to ZFC:

For every A ⊆ 2ω ×2ω for which the sets A and Ac
= (2ω ×2ω \A) are nowhere

meager in 2ω × 2ω , there is a homeomorphism f : 2ω → 2ω such that the set
{

x ∈ 2ω :
(

x, f (x)
)

∈ A
}

does not have the Baire property in 2ω.

(A set has the Baire property if it has the form U△M where U is open and M is
meager.) Note that the map 2ω → f given by x 7→

(

x, f (x)
)

is a homeomorphism.
Hence the conclusion could be stated as “ f ∩ A does not have the Baire property in
f ”. Since 2ω × 2ω is homeomorphic to 2ω and the graph of a homeomorphism of 2ω

is a perfect nowhere dense set in 2ω × 2ω , the statement above implies the following
special case of perfect(2ω) (which is equivalent to perfect(R)).

For every A ⊆ 2ω for which the sets A and Ac are both nowhere meager in 2ω,

there is a perfect nowhere dense set P such that the set A∩P is not meager in P.

To reduce perfect(2ω) to this special case, consider a nonmeager set A ⊆ 2ω. A is

everywhere nonmeager in some clopen set U . If A is comeager in some clopen set,
then it contains a nowhere dense perfect set and we are done. Hence we may assume
that, relative to U , A and Ac are both everywhere nonmeager. The clopen set U is
homeomorphic to 2ω , so we now find ourselves in the special case described above.

4 Order-Isomorphisms of Everywhere Nonmeager Sets

We now turn to the proof of the consistency of (a ′) and (b ′). We begin by recalling

the basic properties of oracle-cc forcing. See [Sh1998, Chapter IV] for the details. A
version of this material is also explained in [Bu, Sections 4–6].

Definition 4.1 A sequence

M = 〈Mδ : δ is a limit ordinal < ω1〉

is called an oracle if each Mδ is a countable transitive model of a sufficiently large
fragment of ZFC, δ ∈ Mδ and for each A ⊆ ω1, {δ : A ∩ δ ∈ Mδ} is stationary in ω1.

The meaning of “sufficiently large” depends on the context. In a particular proof,

some fragment of ZFC for which models can be produced in ZFC must suffice for
all the oracles in the proof. The existence of an oracle is equivalent to ♦, (see [Ku,
Theorem II 7.14]) and hence implies CH. We limit the definition of the M-chain
condition to partial orders of cardinality ω1. This covers our present needs.

Associated with an oracle M, there is a filter Trap M generated by the sets

{δ < ω1 : δ is a limit ordinal and A ∩ δ ∈ Mδ}, A ⊆ ω1.

This is a proper normal filter containing all closed unbounded sets.
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Definition 4.2 If P is any partial order, P ′ ⊆ P, and D is any class of sets, then
we write P ′ <D P to mean that every predense subset of P ′ which belongs to D is

predense in P.

Definition 4.3 A partial order P satisfies the M-chain condition, or simply is M-cc,

if there is a one-to-one function f : P → ω1 such that

{δ < ω1 : δ is a limit ordinal and f −1(δ) <Mδ, f
P}

belongs to Trap M, where Mδ, f = { f −1(A) : A ⊆ δ, A ∈ Mδ}.

It is not hard to verify that if P is M-cc, then P is ccc, i.e., all antichains in P are
countable. Also, any one-to-one function g : P → ω1 can replace f in the definition.

Proposition 4.4 The M-cc satisfies the following properties.

(1) If α < ω2 is a limit ordinal, 〈〈Pβ〉β≤α, 〈Q̇β〉β<α〉 is a finite-support α-stage itera-
tion of partial orders, and for each β < α, Pβ is M-cc, then Pα is M-cc.

(2) If P is M-cc, then there is a P-name M
∗

for an oracle such that for each P-name Q̇

for a partial order, if P “Q̇ is M
∗

-cc” then P ∗ Q̇ is M-cc.
(3) If Mα, α < ω1, are oracles, then there is an oracle M such that for any partial order

P, if P is M-cc, then P is Mα-cc for all α < ω1.

We will need the following lemmas.

Lemma 4.5 Let M = 〈Mδ : δ < ω1〉 be an oracle and let A and B be everywhere non-
meager subsets of R. Suppose we are given pairwise disjoint countable dense subsets Ai ,
i < ω, of A and pairwise disjoint countable dense subsets Bi , i < ω, of B. Then there is a

forcing notion P satisfying the M-cc such that for every G ⊆ P generic over V , V [G] |=
A and B are order-isomorphic by an order isomorphism taking Ai isomorphically to Bi

for each i < ω.

Proof Fix well-orderings of A and B in type ω1. (CH holds because there is an or-

acle.) We will inductively define one-to-one enumerations 〈aα : α < ω1〉 of A and
〈bα : α < ω1〉 of B and functions fδ , δ < ω1. We let Aδ = {aα : ωδ ≤ α < ω(δ + 1)}
and Bδ = {bα : ωδ ≤ α < ω(δ + 1)} for δ < ω1. For A ′ ⊆ A and B ′ ⊆ B, let
P(A ′, B ′) denote the set of finite partial order-preserving maps p : A ′ → B ′ such that

p[Aδ] ⊆ Bδ for all δ < ω1. We also use the notation

A ↾ α = {aβ : β < α}, B ↾ α = {bβ : β < α}.

We will arrange that the following conditions hold.

(1) The sets Aδ and Bδ are dense in R.
(2) For δ < ω, the sets Aδ and Bδ are as in the hypothesis.
(3) For each δ < ω1, fδ is a bijective map of P(A ↾ ωδ, B ↾ ωδ) onto ωδ.
(4) For each δ < δ ′ < ω1, fδ ⊆ fδ ′ .
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(5) For each infinite δ < ω1, the predense subsets of P(A ↾ ωδ, B ↾ ωδ) which have
the form f −1

δ [S] for some S ∈
⋃

η≤δ Mη remain predense in P(A ↾ ω(δ + 1), B ↾

ω(δ + 1)).

To do this, we proceed as follows. The construction of the functions fδ is dic-
tated by (4) at limit stages, and fδ+1 is an arbitrary extension of fδ satisfying (3). The
elements of Aδ and Bδ for δ < ω are given by (2). For δ ≥ ω, by induction on
δ we choose the elements of Aδ and Bδ by alternately defining aωδ+n and bωδ+n, be-

ginning with aωδ when δ is even and with bωδ when δ is odd. Let us illustrate the
construction with the case where δ is even. Fix an enumeration 〈Im : 0 < m < ω〉 of
the nonempty open intervals with rational endpoints. The first element aωδ is sim-
ply the least element, in the well-ordering of A fixed at the beginning of the proof,

which is different from any of the elements of A chosen so far. We now choose
bωδ, aωδ+1, bωδ+1, aωδ+2, bωδ+2, . . . , in that order. For n > 0, we pick aωδ+n and bωδ+n

from In to ensure Aδ and Bδ will be dense.
To choose one of these elements, say bωδ+n, let N be a countable elementary sub-

model of Hθ, for a suitably large θ, such that A, B, fδ , the sequences 〈aα : α ≤ ωδ +n〉
and 〈bα : α < ωδ + n〉, and

⋃

η≤δ Mη are all elements of N . Choose bωδ+n to be a
member of B which is a Cohen real over N .

We must check that the construction gives (5). Let D be a predense subset of

P(A ↾ ωδ, B ↾ ωδ) of the appropriate form. In particular, we have D ∈ N . We will
show that D remains predense in P(A ↾ ωδ + n + 1, B ↾ ωδ + n + 1).

Remark 4.6 We are showing by induction on n that D remains predense in P(A ↾

ωδ + n + 1, B ↾ ωδ + n) and then in P(A ↾ ωδ + n + 1, B ↾ ωδ + n + 1). (This
establishes (5) since each member of P

(

A ↾ ω(δ + 1), B ↾ ω(δ + 1)
)

belongs to
P(A ↾ ωδ + n, B ↾ ωδ + n) for some n < ω.) Our current stage has the second form.

Note that at the stage n = 0, we first consider the passage from P(A ↾ ωδ, B ↾ ωδ)
to P(A ↾ ωδ + 1, B ↾ ωδ). But these two partial orders are equal because there is no
legal target value for aωδ until bωδ is chosen. So the preservation of the predense sets
trivially holds at that stage. In particular, it does not matter that aδω is not Cohen

generic over the previous construction.

Let

p ∈ P(A ↾ ωδ + n + 1, B ↾ ωδ + n + 1) \ P(A ↾ ωδ + n + 1, B ↾ ωδ + n).

Then p has the form q∪ {(a, bωδ+n)} for some q ∈ P(A ↾ ωδ + n + 1, B ↾ ωδ + n) and
a ∈ {aωδ+m : m ≤ n}. Fix r ∈ D. The set

{

b ∈ R : q ∪ {(a, b)} is compatible with r
}

∈ N

(“compatible with” here means only that q∪{(a, b)}∪r is a finite order isomorphism)
is open and hence its complement Cr is closed, as is the set CD =

⋂

r∈D Cr of b for

which q∪{(a, b)} is incompatible with every member of D. Since p is a partial order
isomorphism, there are open rational intervals J1 and J2 such that J1∩dom p = {a},
J2 ∩ ran p = {bωδ+n}. Note that whenever x ∈ J1 and b ∈ J2, q ∪ {(x, b)} is a partial
isomorphism.
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Claim 4.7 CD is nowhere dense in J2.

Proof Fix a nonempty open subinterval J of J2. There is an extension of q by mem-
bers of A0 × B0—the point of using A0 and B0 being simply that they are dense and
contained in A(ωδ + n + 1) and B(ωδ + n), respectively—which adds two points in
J1 × J straddling the line x = a. So this extension has the form

q ′
= q ∪ {(x1, y1), (x2, y2)}, x1 < a < x2, y1 < y2

where [x1, x2] ⊆ J1 and [y1, y2] ⊆ J. Since q ′ ∈ P(A ↾ ωδ + n + 1, B ↾ ωδ + n), by the
induction hypothesis D must have an element r compatible with this extension. Since
a 6∈ A(ωδ), we have a 6∈ dom r. Let x ′

1, x ′
2 be the closest members of dom(q ′ ∪ r) to

the left and right of a, respectively. Write y ′
1 = r(x ′

1), y ′
2 = r(x ′

2). Then (y ′
1, y ′

2) ⊆
(y1, y2) ⊆ J and for any choice of b ∈ (y ′

1, y ′
2), q ∪ {(a, b)} is compatible with r.

Hence (y ′
1, y ′

2) is disjoint from Cr and hence from CD. This proves the claim.

Thus, bωδ+n 6∈ CD and hence p is compatible with some member of D. This
establishes (5).

Now take P = P(A, B). The fact that P forces the desired order-isomorphism of A
and B is clear from (1) and (2). To see that P is M-cc, let f =

⋃

δ<ω1

fδ : P → ω1.

For any δ < ω1 we have f −1[ωδ] = P
(

A(ωδ), B(ωδ)
)

and for each S ⊆ ωδ

whenever a set D of the form f −1[S] = f −1
δ [S] belongs to Mδ and is predense in

P
(

A(ωδ), B(ωδ)
)

, a simple induction on δ ′ using (5) shows that if δ is infinite and

δ < δ ′ ≤ ω1, then D is predense in P
(

A(ωδ ′), B(ωδ ′)
)

. In particular, D is predense

in P = P
(

A(ω1), B(ω1)
)

. For a club of δ < ω1 we have ωδ = δ, so this shows that P

satisfies the M-cc.

Lemma 4.8 Assume ♦. Let A be a nonmeager subset of R. Then there is an oracle
M = 〈Mδ : δ < ω1〉 such that if P is any partial order satisfying the M-cc, then P “A
is nonmeager”.

Proof This is [Sh1998, Example IV 2.2].

Theorem 4.9 If ZFC is consistent, then so is ZFC + both of the following statements.

(a) Every nonmeager set in R has a nonmeager subset of cardinality ω1.

(b) Let A and B be everywhere nonmeager subsets of R of cardinality ω1. Suppose we
are given pairwise disjoint countable dense subsets Ai , i < ω, of A and pairwise
disjoint countable dense subsets Bi , i < ω, of B. Then A and B are order-isomorphic
by an order isomorphism taking Ai isomorphically to Bi for each i < ω.

Proof Start with a ground model of V = L. Fix a diamond sequence

〈( fα, gα, hα) : α < ω2, cof(α) = ω1〉

for trapping triples ( f , g, h) consisting of:
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(1) A function f : ω2 → ([ω2]≤ω)ω . The idea of f is that, with ω2 identified with
the ccc partial order we are about to build, [ω2]≤ω contains the antichains. Thus,

([ω2]≤ω)ω contains a name for each real number (construed as a subset of ω). Then
for any nonmeager set X in the extension, we can find a ground model function
f : ω2 → ([ω2]≤ω)ω enumerating the names of the elements of X.

(2) Functions g, h : ω1 → ([ω2]≤ω)ω intended to represent (enumerations of the
names for the elements of) everywhere nonmeager sets of cardinality ω1 with each of
the sets {g(ωi + n) : n < ω} and {h(ωi + n) : n < ω}, for i < ω, dense in R.

So for each α < ω2 of cofinality ω1, fα : α → ([α]≤ω)ω , and gα, hα : ω1 →
([α]≤ω)ω . Also, for each ( f , g, h) as in (1)–(2), {α < ω2 : cof(α) = ω1, f ↾ α = fα,
g ↾ α = gα and h ↾ α = hα} is stationary in ω2.

We will inductively define an ω2-stage finite support iteration

〈

〈Pα〉α≤ω2
, 〈Q̇α〉α<ω1

〉

as well as a Pα-names Mα for oracles and one-to-one functions Fα : Pα → ω2 for

α < ω2 such that the range of each Fα is an initial segment of ω2 which includes α
and for β < α < ω2, we have Fβ ⊆ Fα. (At each stage, Fα is any function satisfying
these conditions.)

For α < ω2, we will let Ẋα denote the Pα-name for the set of real numbers whose
elements have the names

⋃

n<ω

{n} × F−1
α

(

fα(ξ)(n)
)

, ξ < α.

Similarly, we will let Ȧα and Ḃα denote the ω1-sequences of Pα-names for real num-
bers

〈

⋃

n<ω

{n} × F−1
α

(

gα(ξ)(n)
)

: ξ < ω1

〉

and
〈

⋃

n<ω

{n} × F−1
α

(

hα(ξ)(n)
)

: ξ < ω1

〉

respectively. At stage α < ω2 of the construction, if cof(α) = ω1 and if

Pα
Ẋα is not meager,

then we use Lemma 4.8 to get a Pα-name M
′

α for an oracle so that if P is any forcing

notion which satisfies the M
′

α-cc, then Xα remains nonmeager after forcing with P.

Otherwise, in particular if cof(α) 6= ω1, we let M
′

α be any Pα-name for an oracle.

For β < α, let Pβα be the usual Pβ-name for a partial order such that Pα is iso-
morphic to a dense subset of Pβ ∗Pβα (see [Ba]). Let Mβα be a Pα-name for an oracle

such that

(1) If Pβ
“Pβ,α is Mβ-cc and Pβ,α

Q̇α is Mβα-cc”, then

Pβ
“Pβ,α+1 = Pβ,α ∗ Q̇α is Mβ-cc”.
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(There is such an Mβα by Proposition 4.4(2). In (1), Mβα is actually a Pβ-name for a
Pβ,α-name for an oracle. We denote the corresponding Pα-name also by Mβα.)

Let Mα be a Pα-name for an oracle such that

(2) Pα
“If Q̇α is Mα-cc, then Q̇α is M

′

α-cc and Mβα-cc for all β < α”.

(Use Proposition 4.4(3).)
Now, if cof(α) = ω1 and if

Pα
The ranges of Ȧα, Ḃα are everywhere nonmeager and each of the sets
{Ȧα(ωi + n) : n < ω}, {Ḃα(ωi + n) : n < ω}, for i < ω, is dense in R.

then use Lemma 4.5 to get a Pα-name Q̇α for a partial order satisfying the Mα-cc
and forcing an isomorphism between Aα and Bα as described in the statement of the

lemma. In all other cases, take Q̇α to name the partial order Q for adding one Cohen
real. We have thus

(3) Pα
“Q̇α satisfies the Mα-cc”.

Now suppose that for some Pω2
-name Ẋ we have

Pω2

Ẋ is not meager.

(Every nonmeager set in any extension has a name forced by the weakest condition

to be nonmeager since there is always a nonmeager set.) Fix a name ḟ such that

Pω2

ḟ : ω2 → Ẋ is onto.

Then define f : ω2 → ([ω2]≤ω)ω so that if

τξ =

⋃

n<ω

{n} × F−1
(

f (ξ)(n)
)

, ξ < ω2,

then for each ξ < ω2,
Pω2

ḟ (ξ) = τξ.

There is a closed unbounded set C ⊆ ω2 such that for each α ∈ C of cofinality ω1 we

have:

(i) f ↾ α : α → ([α]≤ω)ω .
(ii) ∀ξ < α, τξ is a Pα-name.
(iii) Pα

{τξ : ξ < α} is not meager.

(For (iii), note that when α has cofinality ω1, each Pα-name for a meager set is a Pβ-
name for some β < α. Thus, if M is an elementary submodel of Hθ for a suitably

large θ such that |M| = ω1, Mω ⊆ M, 〈τξ : ξ < ω2〉 ∈ M and α = M ∩ ω2 ∈ ω2 has
cofinality ω1, then for each (nice) Pα-name σ for a meager Borel set, we have σ ∈ M
and hence M knows about a maximal antichain of conditions each deciding a ξ for
which τξ is forced not to be in σ. The antichain is countable and hence contained in
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M. For each condition in the antichain, the least ξ which it decides is in M and hence
below α. Hence Pα

“{τξ : ξ < α} is not contained in σ”.)

Choose such an α of cofinality ω1 for which f ↾ α = fα. By (i) and (ii), the
definition of τξ would not change if we used fα instead of f and Fα instead of F.
Then from the definition of Ẋα we get

Pα
Ẋα = {τξ : ξ < α}.

So at stage α we chose a Pα-name Mα and we arranged that

Pα
“Pα,γ is Mα-cc”.

(This follows easily by induction on γ ≥ α and Propositions 4.4(1,2). (Recall that
Pα,γ can be viewed in canonical way as an iteration: see [Ba]. At limits γ use Propo-

sitions 4.4(1). At stages γ + 1, use (3) to get Pγ
“Q̇γ satisfies the Mγ-cc” and then

use (2) and (1) with (β, α) replaced by (α, γ).)

Hence, by the choice of Mα,

(4) Pα
Pα,γ

Ẋα is not meager

from which it follows that

Pα
Pα,ω2

Ẋα is not meager

since if this failed then we would have

p Pα
q Pα,ω2

Ẋα ⊆ Ḃ

for some conditions p ∈ Pα, q ∈ Pα,ω2
and some name Ḃ for a meager Borel set.

But then for some γ, we have α < γ < ω2, q ∈ Pα,γ and Ḃ is a Pγ-name and this

contradicts (4).

By what we have established, there are guaranteed to be sets of cardinality ω1 which
are not meager in any extension by Pω2

. Hence there are guaranteed to be everywhere
nonmeager sets of cardinality ω1. Suppose that for some Pω2

-names Ȧ and Ḃ for

ω1-sequences we have

Pω2

The ranges of Ȧ, Ḃ are everywhere nonmeager and each of the sets
{Ȧ(ωi + n) : n < ω}, {Ḃ(ωi + n) : n < ω}, for i < ω, is dense in R.

(By what we just said, every pair of everywhere nonmeager sets A and B of cardinality
ω1, together with choices of countably many disjoint countable dense subsets of each

one, has a name such that the weakest condition forces the desired properties.)

Define g, h : ω1 → ([ω2]≤ω)ω so that if

σξ =

⋃

n<ω

{n} × F−1
(

g(ξ)(n)
)

, ξ < ω1
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and

τξ =

⋃

n<ω

{n} × F−1
(

h(ξ)(n)
)

, ξ < ω1

then for each ξ < ω1,

Pω2

Ȧ(ξ) = σξ

and

Pω2

Ḃ(ξ) = τξ.

For all large enough α < ω2, we have:

(i) g, h : ω1 → ([α]≤ω)ω .

(ii) ∀ξ < α, σξ and τξ are Pα-names.

Choose any such α of cofinality ω1. By (i) and (ii), the definitions of σξ and τξ

would not change if we used gα instead of g, hα instead of h, and Fα instead of F.
Then from the definitions of Ȧα and Ḃα we get

Pα
The ranges of Ȧα, Ḃα are everywhere nonmeager and each of the sets
{Ȧα(ωi + n) : n < ω}, {Ḃα(ωi + n) : n < ω}, for i < ω, is dense in R.

(Being everywhere nonmeager is trivially downward absolute.) Then Q̇α was chosen
to add an order isomorphism between Aα and Bα of the desired type.

This completes the proof of the theorem.

5 A Measure-Theoretic Analog of perfect(2ω)

A measure theoretic version of Laczkovich’s question is not completely obvious be-

cause perfect sets carry many measures. We consider the following measures on 2ω

which we will call canonical. Given P ⊆ 2ω a perfect set, define

TP = {s ∈ 2<ω : P ∩U (s) 6= ∅},

where U (s) = {x ∈ 2ω : s ⊆ x}. We say that s ∈ TP splits iff both s0 and s1 are in TP.

The canonical measure µP is the one supported by P and determined by declaring
µP

(

U (s)
)

= 1/2n iff s ∈ TP and
∣

∣{i < |s| : s↾i splits}
∣

∣ = n. An equivalent view is to
take the natural map from 2<ω to the splitting nodes of TP and the homeomorphism
h : 2ω → P ⊆ 2ω induced by it and then µP is the measure corresponding to the

product measure µ on 2ω , i.e., µP(A) = µ
(

h−1(A)
)

.

Theorem 5.1 It is relatively consistent with ZFC that for any set B ⊆ 2ω which is not
of measure zero, there exists a perfect set P of measure zero such that B∩P does not have
measure zero in the canonical measure µP on P.

Proof The model is the one used by Rosłanowski and Shelah in the proof of [RS,
Theorem 3.2]. It is obtained by forcing over a model of CH with an ω2-stage count-
able support iteration

〈

〈Pα〉α≤ω2
, 〈Q̇α〉α<ω2

〉

of the measured creature forcing Q =

Qmt
4 (K∗, Σ∗, F∗) defined in [RS, Section 2]. We use the notation of [RS] concerning
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this partial order. The definition involves in particular a rapidly growing sequence of
powers of 2, 〈Ni = 2Mi : i < ω〉. Forcing with Q gives rise to a continuous func-

tion h :
∏

i<ω Ni → 2ω. We will make use of the following result concerning this
function. The measure on

∏

i<ω Ni in this proposition is the product of the uniform
probability measures on the factors and the measure on 2ω is the usual product mea-
sure. In the remainder of this proof, we denote both of these measures, as well as

their product, by µ, letting the context distinguish them.

[RS, Proposition 2.6] Suppose that A ⊆
∏

i<ω Ni × 2ω is a set of outer measure
one. Then, in V Q , the set

{

x ∈
∏

i<ω

Ni :
(

x, h(x)
)

∈ A
}

has outer measure one.

We shall also need to know that Q is proper and that countable support iterations of
Q preserve Lebesgue outer measure. The former is [RS, Corollary 1.14]. The latter
is explained in the proof of [RS, Theorem 3.2]. (The explanation refers the reader
to some very general preservation theorems for iterated forcing. For the reader who

wants to verify this without learning these general theorems, we indicate that it also
follows from the special case of these theorems, preservation of ⊏random , given in
[Go] by imitating the proof in [Pa] that Laver forcing satisfies what is called there ⋆

and by noting that ⋆ implies preservation of ⊏random .)

Recall that Ni = 2Mi . We identify Ni with the set of binary sequences of length Mi .
The map h :

∏

i<ω Ni → 2ω is determined from a generic sequence of finite maps
(

W (i) : Ni → 2 : i < ω
)

added by Q . h is defined by h(x)(i) = W (i)
(

x(i)
)

for
each i. We use the W (i)’s to define a perfect set P ⊆ 2ω by the condition that x ∈ P
if and only if there exists y ∈ 2ω such that x is the concatenation of the sequence
s0, i0, s1, i1, . . . , where y is the concatenation of s0, s1, s2, . . . and where each sk has

length Mk and ik = W (k)(sk) ∈ {0, 1}. P is essentially the same as the graph of h but
we spell out the details to be sure the canonical measure is the one we want. Another
way to define P is as follows:

(i) Let li = Mi +
∑

j<i(M j + 1). Let l−1 = −1. The li , i < ω, are the nonsplitting
levels of the tree TP which can be determined by the next two conditions.

(ii) If s ∈ TP and li−1 < |s| < li then both s0 and s1 are in TP.

(iii) If s ∈ TP and |s| = li , then only s j in TP where W (i)(t) = j and s = rt is the
concatenation of r and t where |t| = Mi and r has the appropriate length.

(iv) Define

P = [TP]
def
== {x ∈ 2ω : ∀n(x↾n ∈ TP)}

Every time we pass a nonsplitting level li we lose half the measure and so P is a perfect
set of measure zero for the usual measure on 2ω .

Let ρ :
∏

i<ω Ni ×2ω → 2ω be the natural homeomorphism given by ρ(x, z) is the
concatenation of the sequence x0, z0, x1, z1, . . . , where we are identifying Ni with the
set of binary sequences of length Mi .
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Claim 5.2 ρ is measure-preserving.

Proof By a standard uniqueness theorem for the extension of a measure from an
algebra to the σ-algebra it generates, it suffices to verify that ρ−1[C] has the same
measure as C for every clopen set C ⊆ 2ω . As above, for k < ω and s ∈ 2k, let us
write U (s) = {x ∈ 2ω : s ⊆ x}. Similarly, for s ∈

∏

i<k Ni we write V (s) = {x ∈
∏

i<ω Ni : s ⊆ x}. Every clopen set C ⊆ 2ω can be partitioned into clopen sets of the
form U (r), where for some k < ω, sr ∈

∏

i<k Ni and t r ∈ 2k, r is the concatenation of
sr
0, t r

0, . . . , sr
k−1t r

k−1. (These are simply the basic open sets U (r) for which r has length
∑

i<k(Mi +1) for some k < ω.) Hence it suffices to verify µ
(

ρ−1[U (r)]
)

= µ
(

U (r)
)

for r of this form. We have

µ(ρ−1[U (r)]) = µ
(

V (sr) ×U (t r)
)

=

(

∏

i<k

2−Mi

)

2−k
= 2−

∑

i<k(Mi +1)
= µ

(

U (r)
)

.

This proves the claim.

Let g :
∏

i<ω Ni →
∏

i<ω Ni × 2ω be the homeomorphism of
∏

i<ω Ni onto the

graph of h given by g(x) =
(

x, h(x)
)

. We have ρ[h] = P (i.e., the graph of h corre-
sponds to P under ρ).

Claim 5.3 For any Borel set B ⊆ 2ω

µP(B) = µ
(

g−1
[

ρ−1[B]
])

and similarly for outer measure.

Proof Since the range of g is the graph of h, we have

µ
(

g−1
[

ρ−1[B]
])

= µ
(

g−1
[

ρ−1[B] ∩ h
])

= µ
(

g−1
[

ρ−1[B ∩ P]
])

.

Similarly, since µP concentrates on P, µP(B) = µP(B ∩ P). Hence, it suffices to prove

the claim for Borel subsets of P.
Given s ∈

∏

i<k Ni , define t s ∈ 2k by t s
i = W (i)

(

s(i)
)

for all i < k, and write rs

for the concatenation of s0, t s
0, . . . , sk−1, t s

k−1. Using the notation for basic open sets
from the proof of the previous claim, we have

µP

(

U (rs)
)

= 2−
∑

i<k Mi =

∏

i<k

2−Mi .

Also, ρ−1[U (rs)] = V (s)×U (t s) and g−1
[

ρ−1[U (rs)]
]

= g−1[V (s)×U (t s)] = V (s),
so

µ
(

g−1[ρ−1
[

U (rs)]
])

= µ
(

V (s)
)

=

∏

i<k

2−Mi .

Thus, the claim holds for basic open sets of the form U (rs). Every clopen subset of P
is partitioned by such sets, so the claim holds for all clopen sets, and hence, as in the
proof of Claim 5.2, for all Borel sets. This proves the claim.
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Now we prove Theorem 5.1 in the case that B ⊆ 2ω has outer measure one. It
follows from the usual Lowenheim–Skolem arguments that if we let Bα = V Pα ∩ B

then there will exist α < ω2 such that Bα ∈ V Pα and

V Pα |= Bα has outer measure one.

Letting A = ρ−1[Bα] (which has outer measure one by Claim 5.2) in [RS, Proposi-
tion 2.6] cited above (applied in V Pα ) and using Claim 5.3, we have that

V Pα+1 |= Bα has µP outer measure one.

Because Q is proper, the remainder Pω2
/Pα+1 of the forcing is isomorphic in V Pα+1

to a countable support iteration of Q and hence preserves outer measure. It follows
that in the final model V Pω2 , B has µP outer measure one.

Now in the case that B has outer measure less than one, replace it by B ′
= Q + B

where Q is a countable dense subset of 2ω. Then B ′ has outer measure one, and so we
know there exists a measure zero perfect P such that B ′ has positive µP outer measure.

Hence for some q ∈ Q we have that q + B has positive µP outer measure. But then B
has positive µq+P outer measure.

This completes the proof of the theorem.

Problem 5.4 Is it relatively consistent with ZFC to have simultaneously both the

category property, perfect(2ω), and its measure theory analogue, Theorem 5.1?
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