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Abstract

Macroscopically, a Darcian unsaturated moisture flow in the top soil is usually repre-
sented by an one-dimensional volume scale of evaporation from a static water table.
On the microscale, simple pore-level models posit bundles of small-radius capillary
tubes of a constant circular cross-section, fully occupied by mobile water moving in the
Hagen–Poiseuille (HP) regime, while large-diameter pores are occupied by stagnant air.
In our paper, cross-sections of cylindrical pores are polygonal. Steady, laminar, fully
developed two-dimensional flows of Newtonian water in prismatic conduits, driven
by a constant pressure gradient along a pore gradient, are more complex than the HP
formula; this is based on the fact that the pores are only partially occupied by water
and immobile air. The Poisson equation in a circular tetragon, with no-slip or mixed
(no-shear-stress) boundary conditions on the two adjacent pore walls and two menisci,
is solved by the methods of complex analysis. The velocity distribution is obtained via
the Keldysh–Sedov type of singular integrals, and the flow rate is evaluated for several
sets of meniscus radii by integrating the velocity over the corresponding tetragons.

2020 Mathematics subject classification: primary 30E25; secondary 31A30, 45E05,
76S05.

Keywords and phrases: mixed boundary value problem for holomorphic function,
two-dimensional Poisson equation, longitudinal pore-scale velocity, evapotranspiration
from “solonchaks” shallow water table.

1. Introduction

The motivation to apply microfluidic models to the hydrology of “solonchaks” is
presented in this section. The fluxes of all pore fluids (liquid H2O and soil gases) in
the topsoil, especially in the vadose zone, are of utmost importance in soil hydrology,
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civil engineering and agro-environmental management of soil resources, in particular
in hot dry lands [23]. In arid deserts, the topsoil is usually very dry and the water
table is deep (5+ m), that is, evaporation is negligible. However, at many urban
locales of the Middle Eastern and North African countries, a new phenomenon of
shallow (perched) water tables was recently discovered and mathematically modelled
[7, 20]. The capillary fringe of these aquifers is a zone extensively emitting water
by evapotranspiration to the desert atmosphere. This zone is only 10 to 50 cm
thick. Mitigating the catastrophic consequences of waterlogging is imperative for the
governments and public in the affected regions, especially in the urbanized catchment
of Oman and the other Gulf countries. Dialectically, there are also ecohydrologically
benign effects of shallow water tables (in particular, if groundwater is brackish or
saline): for example, phreatophytes and halophytes thrive and deposit/sequester CO2
(see [19]). The main question that soil physicists have to answer is: “How does one
evaluate the ascending flux of moisture from a shallow, almost static, water table”?

We recall that direct measurements of evaporation require buried lysimeters (not
used in Oman and other Gulf countries), which are expensive and cumbersome. In
Australia, where shallow water tables and the ensuing waterlogging became a national
disaster in the 1970s [33], the measured moisture fluxes (maintained by evapotranspira-
tion and conceptualized as one-dimensional on the representative elementary volume
(REV) scale) were 500+mm/year, that is, hydrologically huge. Similarly, in the USSR
(Central Asia) irrigation engineers confronted similar hyperintensive evaporation and
salinization of agricultural lands [5]. The microfluidic models of this process were,
however, not developed by Australians or Soviets.

Our paper analyses the microscopic process of two-dimensional pore water motion,
which takes place in desert soils classified as “solonchaks” (“sabkhas” in Arabic)
[11, 23]. The analytic solutions give integral representations (Keldysh–Sedov type
[18]) via singular integrals for an analytic function, found in a canonical domain
(half-plane). Modelling of the pore water dynamics at this scale can be an overture to
further field measurements of moisture motion in thin vadose zones and to developing
the means of optimally controlling the macroscopic evapotranspiration.

The monitoring of perched aquifers in Oman [2] evidenced that the depth of
the water table in most of them is not only small but also almost constant. Conse-
quently, although the atmospheric conditions vary with seasons, the annually averaged
evaporation flux in our model is assumed to be steady state. We also assume that
the mobile soil water phase is continuous, that is, it moves within soil pores under
a constant pressure gradient, whereas the air phase is static. In soil physics, most
models assume connected moisture pathway flow at the pore scale that implies
the functional form of the two-phase Darcy equations. In problems with rapidly
fluctuating water tables caused by, for example, infiltration, rather than evaporation, the
water retention functions and water relative permeability are dynamic (in particular,
hysteretic), that is, associated with rapidly moving breathing menisci and water–air
contact lines. The rapidity of infiltration of irrigated water into the topsoil, as well
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as the propagation of the oil–water contacts in secondary recovery of crude oils in
formations [9], are very different from the “rapidity” of salinization, as pinpointed
by Aver′yanov [5]. A typical timescale of infiltration is minutes and hours, while for
Aver′yanov”s evaporative fluxes and the ensuing primary/secondary salinization and
hydromorphism of “solonchaks” it is months and years.

Macroscopically, such flows are classified as “variably saturated” (see [3, Section
6.2] for more details), and obey the Richards–Richardson [28] nonlinear parabolic
partial differential equation (PDE), which can be solved analytically for steady-state
flows, as in two-dimensional evaporation in the vicinity of either a ponded land surface
(application to flood irrigation [35]) or an impeding surface (buildings foundation in
urban hydrology [10]). In case of transient seepage, the PDE is numerically solved.
On the pore scale, water motion obeys the Navier–Stokes PDE, which, under the
simplifications of our model, is reduced to the Poisson equation [6, 31].

Models for relative permeabilities of the water krw and air kra phases in macro-
scopically (REV-scale) two-phase steady-state Darcian flows through porous media
are applied in soil physics, and in reservoir, geotechnical and chemical engineering. In
these models, semi-empirical dependencies of krw and kra on the degrees of saturation
with respect to water, Sw, or on the capillary pressure (matric potential/suction) head,
p, are used [9, 13, 16, 24]). In the Richards–Richardson PDE for the mobile phase
only, the functions krw(Sw) or krw(p) were developed in [5, 16, 25] among others. On
a microscale, Aver′yanov [4] considered a partially filled circular pore and solved the
Poisson equation (see, for example, [26] for details of Aver′yanov”s derivations) in an
annulus with a no-slip condition for water velocity along the pore wall (a circle with
a large radius) and a no-shear condition along a meniscus (a concentric circle with
a smaller radius). Aver′yanov found that krw = kw/k0 = SmA

w , where 0 ≤ SW ≤ 1, and
kw and k0 are the unsaturated and saturated (intrinsic) hydraulic conductivities of the
soil, respectively. Aver′yanov”s analytically derived exponent mA ≈ 3.5 (see further
empirical analysis in [12, 29]) is consistent with the empirical Campbell analysis,
which was obtained for pores of various radii but fully occupied by capillary water.
The Van Genuchten relative permeability function [28] for pore water is

krw = S1/2
w {1 − (1 − S1/mVG

w )mVG}2,

where mVG is a soil-specific empirical constant. Aver′yanov”s exact and explicit
solutions were generalized to the case of two Poisson equations in [14], where the
conjugation condition was imposed on a circular interface (meniscus), which separates
water and oil phases concurrently moving in a steady-state regime.

In our view, there is an issue with the REV versus pore-level upscaling–downscaling:
bundles of conduits are most often postulated to be circles (in their cross-sections
perpendicular to the macroscopic pressure gradient). The real pore channels are
obviously not circular, even if cylindrical. Such “circularization” of water conduits
stems, obviously, from the availability of the Hagen–Poiseuille (HP) formula [3] for a
one-phase flow through a pipe. In unsaturated moisture flow models [28], microscopic
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FIGURE 1. (a) Cross-section of an arbitrary triangular pore. Three thin mobile water “bridges” are
sandwiched between immobile air. (b) 3D diagram with zoomed menisci CNB and DMA near one pore
corner. (c) Boundary conditions in the flow domain, a circular tetragon Gz.

tubes of sufficiently small radii are believed to convey the pore water in the HP regime,
while the air is static in large-diameter empty pores. In transient quasi-HP regimes of
rapid imbibition/drainage, for example, in the Green–Ampt infiltration model [24], the
HP formula is usually adjusted by assuming a propagating meniscus.

Microfluidic models (see Figures 2.16, 3.4, 3.6, 4.1, 4.2 and 5.5 in [9]) consider
polygons (triangles and rectangles) rather than circles as cross-sections of the pore
channels making parallel bundles. The vertices of these polygons (angular pores) allow
accumulation of the water phase in the crevices of pores (the case tackled by Kacimov
et al. [22]) or in water “bridges”, sandwiched between immobile bulk air phases by
two zero-shear stress menisci (see Figures 2.29, 5.6 and 5.16 in [9] and our Figure 1).

In this paper, we use the theory of holomorphic functions [17, 18], and we obtain
a new integral solution to a mixed boundary value problem (BVP) for the Poisson
equation in a circular quadrangle Gz, as shown in Figure 1, which has zero pore
velocity on the straight sides of the quadrangle and zero-shear boundary condition on
two menisci. In other words, our paper is a confluence of the Aver′yanov combination
of the boundary conditions (tackled analytically) with Blunt”s more realistic geometry
of pore cross-sections.

We recall that an area integration of the Prandtl function, which also obeys the
Poisson equation, gives a torsional rigidity of an elastic bar [34]. In microfluidics, a
mathematically equivalent integration of the magnitude of the pore water velocity over
Gz gives the volumetric discharge, provided the air phase is stagnant. In Section 2, a
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mixed (no-slip versus no-shear conditions) BVP is solved in a curvilinear quadrangle
for the Poisson equation, which the velocity of the water phase obeys. The moisture
content within the triangular pores is relatively low and the air phase is static. In
Section 3, the obtained solution is interpreted as an approximation of water flow in
the case of high moisture content and stagnant air confined near the corners of the
pore, as well as for the case of the dominating gas phase flowing through the bulk
volume of the pores, while the immobile water phase is trapped near the corners. In
Section 4, the limitations and perspectives of our analytical model are discussed.

2. Analytical solution to a mixed BVP, Poisson”s PDE

In a cross-section perpendicular to the macroscopically vertical direction Of
(ascending evaporation), we assume that the pore makes a triangle OO1O2 having
arbitrary sides c1, c2, c3, (Figure 1(a)). As a geometrical input of our model, we
consider the vicinity of one corner (O) of this triangle where water is contained in
a “bridge” bounded by two menisci, AMD and CNB, and two pore walls making an
angle α, 0 < α < π (Figure 1(b)). The menisci are circular arcs of constant radii, r1
and r2, respectively. We assume that the contact angle θ = π/2.

The gradient of soil water pressure ∇pw is assumed to be constant, as in [22].
Such gradients emerge due to, for example, an increase in the disjoining and capillary
pressure caused by the above-mentioned gradual “evaporative thinning” (that is, the
decrease of r2 and increase of r1 in the Of direction) of the water bridges. A higher
evaporation rate from menisci of larger diameters (just above the capillary fringe in
desert solonchaks), as compared with the vicinity of the super hot desert surface, is
well documented.

We introduce a complex physical coordinate z = x + iy = reiϕ. The water microflu-
idic velocity obeys the Poisson equation [6]: that is

Δu(r,ϕ) =
∂2u
∂r2 +

1
r
∂u
∂r
+

1
r2

∂2u
∂ϕ2 = −e, e = ∇pw/μw, (2.1)

where μw is the viscosity of the pore water. The right-hand side, e, in equation (2.1)
is a given constant as a model hydrodynamic input (see [22, 25] for more details of
similar flows in a circular digon and triangle).

The domain Gz in Figure 1(c) is a curvilinear tetragon made of two straight
segments DC and BA and two arcs AMD and CND. At the boundary of Gz, the
following conditions hold:

u(re±iα/2) = 0 r1 < r < r2,
∂u(rkeiϕ)
∂r

= 0 k = 1, 2, −α/2 < ϕ < α/2,
(2.2)

where r is a radial coordinate from the corner O and ϕ is an angular coordinate counted
from the axis of symmetry of the bridge, that is, OMN. The pair r1 and r2 provide
another geometrical input of our model. The no-slip (the first line in equation (2.1))
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FIGURE 2. (a) Rectangle Gz1 . (b) Reference half-plane Gζ .

and no-shear-stress (second line) conditions physically mean that the rigid skeleton
of our porous medium is static (always true) and μa is almost zero, as was assumed
in [22]. The latter assumption is justified by the two-order difference in viscosities of
air and pore water. The main output of the model given by (2.1)–(2.2) is the velocity
distribution u(r,ϕ) and ensuing areal integral of this quantity over Gz, which gives
the volumetric flow rate, and hence the water phase permeability. Extension of the
model given by (2.1)–(2.2) to more complex menisci can be found in [15] among other
applications to microgravity and soil physics.

The solution of a BVP with the u = 0 condition along the whole wall of our Gz

was obtained by Sparrow et al. [32], and it was reported by Shah and London [31].
Unfortunately, no details of the solution are presented in [31, 32]. Moreover, equation
(394) in [31] does not match equation (7) in [32]. Sparrow et al. used the method
of separation of variables for solving their BVP for a harmonic function obeying
Dirichlet”s boundary conditions, that is, they did not use the theory of holomorphic
functions.

Aver′yanov”s [4] solution to PDE (2.1) can be readily reformulated for Gz in the
following manner: the boundary conditions are no slip along DA in Figure 1(c) and no
shear along DC, CB and CA.

Similar to the work in the papers [21, 22, 32], we reduce the BVP (2.1)–(2.2) for
the Poisson equation to a BVP for the Laplace equation. For this purpose, we use the
transformation

z1 = log(z/r1) = x1 + iy1 = log(r/r1) + iϕ, x1 = log(r/r1), y1 = ϕ,

Φ(z) = u(r,ϕ) + er2/4, Φ1(z1) = Φ(r1 exp z1),
(2.3)

which makes the function u in equation (2.1) harmonic in a rectangle Gz1 (Figure 2(a)):
that is,

ΔΦ1(x1, y1) = 0 for z1 = x1 + iy1 ∈ Gz1 . (2.4)
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The boundary conditions (2.2), (2.3) in Gz1 become

AB, DC :Φ1(x1,±α) = 0.25 e r2
1e2x1 0 < x1 < l = log(r2/r1),

AD :
∂Φ1(0, y1)
∂x1

=
e r2

1

2
− α/2 < y1 < α/2, (2.5)

BC :
∂Φ1(l, y1)
∂x1

=
e r2

2

2
− α/2 < y1 < α/2.

Clearly, the function Φ1(x1,−y1) is a solution of the mixed BVP (2.4) and (2.5)
together with Φ1(x1, y1). Hence,

Φ1(x1,−y1) = Φ1(x1, y1),

due to the uniqueness theorem [18].
Next, we introduce the complex potential function

Ω1(z1) = Φ1(x1, y1) + iΨ1(x1, y1), (2.6)

which is holomorphic in Gz1 . Here the function Ψ1(x1, y1), being complex conjugate to
Φ1(x1, y1), satisfies the symmetry condition

Ψ1(x1,−y1) = −Ψ1(x1, y1).

Due to equations (2.5) and the Riemann–Schwartz symmetry principle [17], the
function (2.6) admits analytic continuations through the vertical sides of the boundary
of the rectangle Gz1 . Hence, the Cauchy–Riemann conditions (CRC) hold up to these
sides. Using the CRC ∂Φ1/∂x1 = ∂Ψ1/∂y1 and the last two conditions of (2.5) and
integrating, we get

Ψ1(0, y1) = 0.5er2
1y1, Ψ1(l, y1) = 0.5er2

2y1 − α < y1 < α. (2.7)

It is noteworthy that an arbitrary constant arising after integrating the CRC
condition is equal to zero due to the above-mentioned symmetry property of the
function Ψ1(x1, y1).

We map conformally Gz1 onto the upper half-plane Imζ > 0, Gζ = C+ (Figure 2(b)),
with the correspondence of the points

C → −1/λ, D→ −1, A→ 1, B→ 1/λ,

where 0 < λ < 1. The Schwarz–Christoffel formula [26] gives

z1(ζ) = − iα
2K(λ)

∫ ζ
0

dt√
(1 − t2)(1 − λ2t2)

= − iα
2K(λ)

F(arcsin ζ, λ), (2.8)

where F(arcsin ζ, λ) and K(λ) are, respectively, incomplete and complete elliptic
integrals of the first kind (see [1, formulae 17.2.7, 17.3.1]). The modulus λ is determined
from the condition

K′(λ)/K(λ) = 2l/α, (2.9)
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where K′(λ) = K(λ′), λ′ =
√

1 − λ2. We use the FindRoot routine of MATHEMATICA
[36] and find λ from equation (2.9).

Combining conditions (2.5) and (2.7), we obtain the following mixed BVP for the
function Ω(ζ) = Ω1(z(ζ)) in Gζ

ReΩ(ξ) = 0.25er2
1e2x1(ξ) 1 < |ξ| < 1/λ,

ImΩ(ξ) = 0.5er2
1y1(ξ) −1 < ξ < 1,

ImΩ(ξ) = 0.5er2
2y1(ξ) |ξ| > 1/λ.

(2.10)

Here x1(ξ) and y1(ξ) are real and imaginary parts of the function (2.8), respectively:
that is,

x1(ξ) =
α

2K(λ)

∫ ξ
1

dt√
(t2 − 1)(1 − λ2t2)

=
α

2K(λ)
F
(
arcsin

√
1 − ξ−2

λ′
, λ′
)

1 < ξ < 1/λ,

y1(ξ) = − α

2K(λ)

∫ ξ
0

dt√
(1 − t2)(1 − λ2t2)

=
α

2K(λ)
F(arcsin ξ, λ) − 1 < ξ < 1,

y1(ξ) =
α

2K(λ)

∫ 1

1/(λξ)

dt√
(1 − t2)(1 − λ2t2)

− α
2

=
α

2K(λ)
F
(
arcsin

√
ξ2 − 1/λ2

ξ2 − 1
, λ
)
− α

2
ξ > 1/λ.

(2.11)

It is clear that x1(ξ) = x1(−ξ) for −1/λ < ξ < −1 and y1(ξ) = −y1(−ξ) for ξ < −1/λ.
Thus, we have to find Ω(ζ), which is holomorphic in Gζ . This function must satisfy

boundary conditions (2.10). It must be bounded at all transition points ±1, ±1/λ and at
infinity in Figure 2(b). The index of the BVP (2.10) in the indicated class of functions
is −2, and, generally speaking, one solvability condition must be satisfied [17]. As
will be shown below, this solvability condition takes place automatically due to the
properties of functions (2.11).

Solution of problem (2.10) bounded at transition points, but generally, not at infinity,
[18] is

Ω(ζ) =
er2

1ω (ζ)

2π

(∫ 1

−1

y1(ξ)
ω (ξ)

dξ
ξ − ζ +

∫
Lλ

e2x1(ξ)

2|ω (ξ)|
dξ
ξ − ζ + e2l

∫ −1/λ

1/λ

y1(ξ)
ω (ξ)

dξ
ξ − ζ

)
,

where Lλ = (−1,−1/λ) ∪ (1, 1/λ), and the last integral is taken from 1/λ to −1/λ
through infinity. The branch of the function

ω(ζ) =
√

(1 − ζ2)(1 − λ2ζ2), (2.12)

is fixed in the upper half-plane by the condition of its positivity in the interval (-1,1).
This branch is real and negative at ζ = ξ ∈ (−∞,−1/λ) ∪ (1/λ,∞). The branch is pure
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imaginary with negative and positive imaginary parts at the intervals (1, 1/λ) and
(−1/λ,−1), respectively. It may seem that the Ω(ζ) obtained in equation (2.12) is
unbounded at infinity. If, however, we take into account the properties of functions
(2.11) and (2.12), this solution can be rewritten as

Ω(ζ) =
er2

1ω(ζ)

π

(∫ 1

0

ξy1(ξ)
ω(ξ)

dξ
ξ2 − ζ2 +

1
2

∫ 1/λ

1

ξe2x1(ξ)

|ω(ξ)|
dξ
ξ2 − ζ2 + e2l

∫ ∞
1/λ

ξy1(ξ)
ω(ξ)

dξ
ξ2 − ζ2

)
.

(2.13)

From equation (2.13), it is clear that our solution is bounded at ζ → ∞, as it should be.
Note that the functions (2.8), (2.12) and (2.13) satisfy the same symmetry condition

z1(ζ) ≡ z1(−ζ̄), ω(ζ) ≡ ω(−ζ̄), Ω(ζ) ≡ Ω(−ζ̄). (2.14)

The total flow rate through Gz, due to equation (2.3), is

Q =
∫

Gz

u(x, y) ds =
∫

Gz

Φ(x, y) ds − eα
16

(r4
2 − r4

1).

The last integral can be transformed as

Q0 =

∫
Gz

Φ(x, y) ds =
i
2

∫
Gz

Φ(x, y) dz ∧ dz̄ =
ir2

1

2

∫
Gz1

Φ1(x1, y1)e2x1 dz1 ∧ dz̄1,

where ∧ is the symbol for the exterior or wedge product. Using the transformation
(2.8), we obtain

Q0 =
ir2

1α
2

16K2

∫
C+

Ω(ζ) + Ω(ζ)

ω(ζ)ω(ζ)
e2Rez1(ζ) dζ ∧ dζ̄ =

r2
1α

2

4K2

∫ ∞
−∞

∫ ∞
0

ReΩ(ξ + iη)
|ω(ξ + iη)|2

e2x1(ξ+iη) dη dξ.

(2.15)

Using the Stokes formula, Q0 is transformed into a contour integral along the real axis

Q0 =
ir2

1α
2

16K2

(∫ ∞
−∞

ez1(ξ)

ω(ξ)

∫ ξ
0

Ω(t)ez1(t)

ω(t)
dt dξ −

∫ ∞
−∞

ez1(ξ)

ω(ξ)

∫ ξ
0

Ω(t)ez1(t)

ω(t)
dt dξ
)
.

Finally, using the symmetry properties (2.14), we obtain

Q = −
r2

1α
2

4K2 Im
∫ ∞

0

ez1(ξ)

ω(ξ)

∫ ξ
0

Ω(t)ez1(t)

ω(t)
dt dξ − eα

16
(r4

2 − r4
1). (2.16)

We used the NIntegrate routine of Wolfram”s MATHEMATICA [36] to compute
the integrals in equations (2.15) and (2.16). It turned out that computation Q using
equation (2.16) required up to three days (for example, on a PC Intel(R) Core(TM)
i7-4770 CPU 3.40GHz, 3401 IHz, cores: 4, logical processors: 8, which
we used) for each value of r1. If one uses equation (2.15) (as we did) the computations
take up to an hour.

We introduce the dimensional quantities Q∗ = Q/(er4
2) and r∗ = r1/r2. Table 1

presents the values of Q∗ for α = π/3 and five values of r∗.
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TABLE 1. Dimensionless flow rate Q∗ computed using equations (2.15) and (2.16) for tetragons Gz having
α = π/3 and five values of r∗.

r∗ 0.5 0.6 0.7 0.8 0.9

Q∗ 0.02032 0.01952 0.01756 0.01389 0.00445

REMARK 1. In addition, for simplification of the expression Ω(ζ) in equation (2.15),
we used the substitution ξ → −1/(λξ) and transformed the last term in equation (2.13)
to give

e2l
∫ ∞

1/λ

ξy1(ξ)
ω(ξ)

dξ
ξ2 − ζ2 = e2l

∫ −1/λ

−∞

ξy1(ξ)
ω(ξ)

dξ
ξ2 − ζ2 = −λe

2l
∫ 1

0

ξy1(ξ)
ω(ξ)

dξ
1 − λ2ξ2ζ2 .

To obtain this result, we used the identities

ω(−1/(λζ)) ≡ −ω(ζ)/(λζ2), z1(−1/(λζ)) ≡ l − z1(ζ).

3. Other applications of water flow at high Sw in the pore core with static air in
the corners

A curvilinear tetragon, as considered in Section 2 for the case of “thin bridges”
and small Sw, can be used as a generic mobile phase conduit in the opposite limit of
large Sw (close to 1). Indeed, let viscous water occupy almost the whole pore (see an
equilateral triangle in Figure 3(a)) and move in the Of direction (not shown in Figure
3). Tiny pockets of immobile air are “entrapped” near the three corners in Figure 3(a)
(see [9]) which, in applications to reservoir engineering, can be considered (at the
REV-scale) as an early (primary) stage of crude oil recovery with a minor proportion of
gas formation in the rock. The water flow domain in Figure 3(a) is a circular sextagon,
with point E being its centre. Owing to symmetry, we can consider the curvilinear
pentagon ADECEEBA, that is, the third part of Gz in Figure 3(a). Along the broken
line ECEEB the shear stress is zero (owing to symmetry). We can approximate this
curvilinear pentagon DECEEBA by a curvilinear tetragon DECNEBA, in which the
wedge ECEEB is replaced by a circular arc ECNEB, that is, we arrive at Gz in our
Figure 1. Consequently, in ADECNEBA of Figure 3, all analysis in Section 2 is valid.

In Figure 3(b), another limiting case of very low Sw is depicted. Now the pore
gas is moving in the Of direction. The right-hand side in equation (2.1) becomes e =
∇pa/μa, where μa is the viscosity of the air and ∇pa is the gradient of the gas pressure
along the pore. Water in Figure 3(b) is entrapped near the triangle corners, that is, it
is immobile. Similarly to the case in Figure 3(a), we make a circular tetragon with
mixed boundary conditions on its sides such that the analysis in Section 2 is valid.
Applications of this pore-scale model are to the emission of in-pore CO2 from the root
zone, which has much higher concentrations of CO2 than the superjacent atmospheric
air. Evaluation of the fluxes of gases through the vadose zone are of utmost importance
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FIGURE 3. (a) Flow of water at high Sw in a cylindrical pore channel, the cross-section of which is an
equilateral triangle with immobile air pockets entrapped near the corners. (b) Flow of air at low Sw in a
cylindrical pore channel, the cross-section of which is an equilateral triangle with immobile water pockets
entrapped near the corners.

(see [8, 30]), especially in the context of the impact of allegedly deleterious greenhouse
gases (generated by rhizomes in the soil) on the human race and terrestrial ecosystems.

4. Concluding remarks on limitations and perspectives of our model

Our model and machinery of solving mixed BVPs for holomorphic functions allows
us to use a combination of slip and no-slip boundary conditions, which is applicable
when one phase is an immobile gas while the pore is polygonal rather than the
Aver”yanov variably wet circle. In other words, we extend the cases of digon and
trigon with mixed boundary conditions, considered in [22, 25], to the case of a circular
tetragon, on the opposite sides of which these conditions are imposed. The motion of
moisture in a “bridge”, which is modelled by such a tetragon, is described by Poisson”s
equation. With the help of the Keldysh–Sedov-type formula [18], we obtained an
integral representation for the in-pore velocity.

We have doubts about the solution obtained by Sparrow et al. [32] to the BVP with
u = 0 on the whole boundary of the tetragon in Figure 1(c). The lack of comparisons
in [32] (as well as in [31]) with the earlier explicit solution to the Poisson equation
in a circular triangle, obtained by Saint–Venant [34] is confusing. Indeed, the solution
obtained in [32] should degenerate into Saint–Venant”s solution when the small-radius
meniscus in Figure 1 vanishes, which was not demonstrated by Sparrow et al. [32].

The estimates of the flow rate Q through polygonal cross-sections with no-shear
menisci can be attempted with the help of isoperimetric inequalities [27].

Recent video recording techniques of microfluidics processes can be used as
experimental tools for measuring the in-pore parameters α, r1, r2 in Figure 1.

Solute transport on the microscale was not studied in our paper. In future, the
advective dispersion equation on the macroscale (see [5]) can be downscaled to the
pore level. The root zone salinization, caused by evapotranspiration from shallow water
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tables, is a daunting problem in Australia and other arid countries, where applied
mathematicians may, like Aver′yanov, transcend from microfluidics to the scale of
engineered drainage of large salinized crop fields.

The limitations of our flow model in Section 2 are as follows.

(1) Viscosity of water is constant (in reality, it varies along the Of -axis, because the
soil temperature of deserts has a strong diurnal gradient in the vertical direction).

(2) The flow domain Gz does not vary in the Of direction (in reality, water
evaporates into the pore air and Gz dwindles from the capillary fringe to the
topsoil).

(3) The water pressure gradient is constant (in reality, it is not because the decrease
of r1 and r2) in the Of direction causes variation of this gradient.

(4) The pores are cylindrical and flow is two-dimensional (in reality, the pores are
not cylindrical and flow is microscopically three-dimensional).

(5) The contact angle is 90◦ (in reality, most soils are either hydrophilic or
hydrophobic).

(6) In Section 2, air is immobile (in reality, both water and air move, and not always
co-currently).

(7) Water “bridges” are assumed to be stable to potential perturbations (in reality, the
menisci in Figure 1 may break into Avery′anov-type films that simply “coat” the
wall of the polygonal pore, which gives the case of flow considered by Kacimov
et al. [22]).

(8) Gravity is ignored, that is, capillarity dominates the fluid behaviour, along with
the hydrodynamic pressure gradient along Of (in thick vadose zones, the gravity
force is explicitly counted on the right-hand side of the Poisson equation).

(9) Menisci are circular arcs (in reality, they are not [15]).
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