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We study the near-wall behaviour of pressure spectra and associated variances in canonical
wall-bounded flows, with a special focus on pipe flow. Analysis of the pressure spectra
reveals the universality of small and large scales, supporting the establishment of k−1

spectral layers as predicted by fundamental physical theories. However, this universality
does not extend to the velocity spectra (Pirozzoli, J. Fluid Mech., vol. 989, 2024, A5),
which show a lack of universality at the large-scale end and systematic deviations from the
k−1 behaviour. We attribute this fundamental difference to the limited influence of direct
viscous effects on pressure, with implied large differences in the near-wall behaviour.
Consequently, the inner-scaled pressure variances continue to increase logarithmically
with the friction Reynolds number as we also infer from a refined version of the attached-
eddy model, while the growth of the velocity variance tends to saturate. Extrapolated
distributions of the pressure variance at extremely high Reynolds numbers are inferred.
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1. Introduction
Pressure fluctuations in wall-bounded turbulence have been widely investigated due
to their important role in structural vibration and acoustic radiation (Blake 2017).
Fundamental theoretical predictions regarding the behaviour of pressure fluctuations in
boundary layers were made by Bradshaw (1967), who argued that near solid walls but
outside the viscous sublayer, the only important length scale is y (normal distance from
the wall), the only important velocity scale is uτ = (τw/ρ)1/2 (friction velocity) and
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the pressure scale is τw (wall shear stress). Hence, dimensional analysis requires that
E p(k) = τ 2

w y f (ky), where E p is the wavenumber spectral density of pressure fluctuations
and k is the wavenumber in any wall-parallel direction. Further assuming universality of
the spectrum at the lowest wavenumbers, associated with the largest eddies of the flow,
yields f (ky) ∼ 1/(ky), hence it follows that E p(k) ∼ τ 2

wk−1. Leveraging on Townsend’s
assumption that the near-wall region may be affected from ‘wall-attached’ eddies of
large size which contribute to the Reynolds stress much farther from the wall than the
point of observation, but not at the point of observation (Townsend 1961), Bradshaw
further realised that the near-wall pressure spectrum can receive contributions at small
wavenumbers also from distant eddies. Hence, integration of the k−1 energy spectrum
over an increasing range of scales results in logarithmic increase of the near-wall pressure
variance with the friction Reynolds number at any fixed y+ location. Logarithmic increase
of the pressure variance also results from inner/outer layer overlap arguments applied
to pressure fluctuations (Panton et al. 2017), and it is the expected behaviour from the
attached-eddy model (AEM) (Jiménez & Hoyas 2008; Xu et al. 2020).

Experiments have indeed confirmed that the intensity of wall pressure fluctuations
expressed in terms of pressure variance in boundary layers and channels tends to
increase with the Reynolds number, when scaled by the wall shear stress (e.g. Willmarth
1975; Farabee & Casarella 1991). However, the scatter in experimental measurements
is significant. The primary challenge arises from the limited size of transducers, which
restricts the resolution of high-frequency components that become increasingly important
at high Reynolds numbers. Direct numerical simulations (DNS) (Hu et al. 2006; Tsuji
et al. 2007; Jiménez & Hoyas 2008; Sillero et al. 2013; Mehrez et al. 2019) have generally
confirmed the validity of theoretical inferences regarding logarithmic growth of the
pressure variance; however, only partial evidence exists about the existence of an E p ∼ k−1

spectral range (Panton et al. 2017). This is most likely due to inherent limitations of DNS in
achieving high enough Reynolds numbers. In fact, Chen & Sreenivasan (2022) advocated
an alternative scenario whereby the growth of wall pressure variance would saturate at
infinite Reynolds numbers on account of an assumed bound on the wall dissipation rate
of the streamwise velocity variance. Specifically, the wall pressure variance would follow
a defect power law, and strict wall scaling would be recovered in the limit of extreme
Reynolds numbers.

The goal of the present paper is to get deeper insight into the proper behaviour of
pressure fluctuations in the near-wall region of turbulent wall layers in the asymptotically
high-Reynolds-number limit, also by contrasting their behaviour with that of the
streamwise velocity fluctuations. For that purpose, and similar to what was done by
Pirozzoli (2024) for the velocity fluctuations, we first analyse the behaviour of the spectral
densities of pressure in the near-wall region, and then extrapolate the high-Reynolds-
number behaviour of the pressure variance from integration of the spectral densities.

2. The direct numerical simulation database
The analysis relies on DNS data of fully developed turbulent flow in a circular pipe.
Friction Reynolds numbers up to Reτ ≈ 12 000 are considered (Pirozzoli 2024), which is
the current upper limit for DNS. Here, Reτ = Ruτ /ν, with R the pipe radius, uτ the friction
velocity and ρ the fluid density. Inner normalisation by uτ and δv = ν/uτ is hereafter
denoted with a + superscript. Uppercase letters are used to denote mean values of the flow
variables and lowercase letters to denote fluctuations thereof. The numerical method is de-
scribed in detail by Verzicco & Orlandi (1996) and Orlandi (2000), and relies on an imple-
mentation of the fractional step method on a staggered cylindrical mesh, whereby uniform
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Flow case Lx/R Mesh (Nθ × Nr × Nx ) Reb f Reτ T/τt Line style

B 15 768 × 96 × 768 17 000 0.02719 495.6 192.9
C 15 1792 × 164 × 1792 44 000 0.02119 1132.2 50.4
C-L 30 1792 × 164 × 3584 44 000 0.02119 1132.3 52.8
C-LL 45 1792 × 164 × 5376 44 000 0.02114 1131.0 45.3
D 15 3072 × 243 × 3072 82 500 0.01828 1972.0 45.1
E 15 4608 × 327 × 4608 133 000 0.01657 3026.8 26.9
F 15 9216 × 546 × 9216 285 000 0.01421 6006.4 18.2
G 15 18 432 × 1024 × 18 432 612 000 0.01242 12 054.5 6.99

Table 1. Flow parameters for DNS of pipe flow. Here R is the pipe radius, Lx is the pipe axial length, Nθ , Nr
and Nx are the number of grid points in the azimuthal, radial and axial directions, respectively, Reb = 2ub R/ν is
the bulk Reynolds number, f = 8τw/(ρu2

b) is the friction factor, Reτ = uτ R/ν is the friction Reynolds number,
T is the time interval used to collect the flow statistics and τt = R/uτ is the eddy turnover time. Cases C-L and
C-LL were run to test the sensitivity of the results to the axial pipe length.

volumetric forcing is applied to the axial momentum equation to maintain constant mass
flow rate in time. According to this method, pressure is obtained from discrete enforcement
of the divergence-free constraint to the velocity field, which results in the solution of a dis-
crete Poisson equation, as explained in detail by Kim & Moin (1985). Furthermore, since
pressure is defined at the cell centres and the velocity components are defined at the cell
faces, no numerical boundary condition for pressure is required, and pressure is automat-
ically consistent with the discretised form of the momentum equation. This avoids uncer-
tainties and ambiguities in the enforcement of proper boundary conditions for the pressure
Poisson equation, which have been extensively discussed (e.g. Gresho & Sani 1987).

A list of the flow cases is reported in table 1, which includes basic information about the
computational mesh and some key parameters. As can be seen in table 1, the largest DNS
has run for less than 10 eddy turnover times, which is the commonly accepted limit to guar-
antee time convergence (Hoyas & Jiménez 2006). Nevertheless, careful examination of the
time convergence according to the method of Russo & Luchini (2017) has shown that the
estimated standard deviation in the prediction of the pressure and velocity variances in the
range of wall distances under scrutiny here is at most 0.6 %. Power spectral densities of ve-
locity and pressure are hereafter reported, which we obtained by taking Fourier transform
in the azimuthal direction, and averaging in the axial direction and in time. The associated
uncertainties are expected to be larger than for the basic flow statistics; however, the con-
fidence bands shown in figure 5 convey that errors in the velocity spectra are mainly con-
fined to the largest wavelengths, and they are barely visible in the pressure spectra. Details
of the sensitivity of the flow statistics to the pipe length are provided in Appendix A.

3. Pressure spectra and the attached-eddy model
To start with, we compare the spectra of streamwise velocity and pressure to highlight
similarities and differences. Figure 1(a) shows the spectral density of the streamwise
velocity (Eu), as a function of the wall distance (y) and of the spanwise wavelength (λθ ),
pre-multiplied by kθ = 2π/λθ , for flow case G. The figure highlights the presence of a
prominent energetic buffer-layer peak scaling in wall units, and an outer energetic site
showcasing R-sized superstructures previously observed in experiments (Kim & Adrian
1999; Hellström & Smits 2014). Between these two primary locations, a band of energetic
intermediate modes is observed, with lengths roughly proportional to their distance from
the wall, as after the AEM (see Townsend 1976; Hwang 2015; Marusic & Monty 2019).
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Figure 1. Flow case G: pre-multiplied spanwise spectral densities of fluctuating streamwise velocity k+
θ E+

u

(a) and pressure k+
θ E+

p (b), as a function of wavelength and wall distance. Wall distances and wavelengths are
reported both in inner units (bottom, left axes) and in outer units (top, right axes). The diagonal line denotes the
trend y+

s = 0.11λ+θ , and the trapezoidal region bounded by the red dashed line marks the region of near-wall
influence of attached eddies. Contour levels are shown from 0.36 to 3.6, in intervals of 0.36 in (a) and from 0.3
to 3, in intervals of 0.3 in (b).

In particular, we find that the ‘centre’ of attached eddies with size λθ resides at yS ≈
0.11λθ . The separation between the two energetic sites is about two orders of magnitude
in flow case G. The figure also clarifies that the influence of the attached eddies and the
O(R) eddies on streamwise velocity fluctuations extends down to the wall. Specifically,
the spectral iso-lines tend to attain a triangular shape between the spectral ridge and the
wall due to energy ‘leakage’ from the overlying eddies. This region influenced by wall-
attached eddies is marked with dashed red lines in figure 1, indicating an upper wall
distance beyond which the influence of outer eddies is not felt. Setting the boundary
between attached eddies and large eddies at λθ = 0.5R (past which isolated maxima of the
spectral density emerge), it follows that the maximum wall distance where their influence
is felt is y+

max ≈ 0.055 Reτ , with y+
max ≈ 660 at the highest Reynolds number under scrutiny

here. This ‘near-wall’ region is the main subject of investigation in the present study.
The spectral map for pressure fluctuations is shown for contrast in figure 1(b). The

overall structure seems to be similar to that of the streamwise velocity, with a clear inner
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Figure 2. Flow case G: pre-multiplied spectral density of axial velocity (a) and pressure (b) as a function
of wall distance, corresponding to various wavelengths: λ+θ = 455 (y+

s = 50) (purple), λ+θ = 909 (y+
s = 100)

(green), λ+θ = 3636 (y+
s = 400) (orange), λ+θ = 10970 (y+

s = 1205) (red). The filled circles denote the wall
distance of the corresponding eddy centres (ys ); see figure 1. The dashed lines in (b) denote predictions of
Bradshaw (1967). The directory including the data and the Jupyter notebook that generated this figure can be
accessed at https://www.cambridge.org/S0022112025002642/JFM-Notebooks/files/figure_2.

energetic site centred in the buffer layer, and a diagonal ridge to be interpreted as the
signature of wall-attached eddies. Some differences are, however, noteworthy. First, the
velocity spectra reveal a distinct outer-layer spectral peak at λθ ≈ R, which is absent in
the pressure spectra. This finding suggests that superstructures do not induce significant
pressure variations. Second, along the primary spectral ridge (solid line in the figure),
the behaviour differs markedly: the spectral density of pressure decreases monotonically,
while the velocity spectral density exhibits a dip between the inner and outer energetic
regions. Third, and most relevant to this study, the iso-lines of the pressure spectral density
tend to extend down to the wall almost orthogonally. This feature is especially striking
when comparing with figure 1(a), which instead indicates decreasing behaviour as the
wall is approached. This essential difference in the near-wall behaviour of velocity and
pressure has a large impact on the flow statistics, as discussed in the following.

In order to more clearly bring out this aspect, in figure 2 we show wall-normal profiles
of k+

θ E+
u and k+

θ E+
p for various values of λθ in the range of wavelengths between the inner

and the outer energetic sites. In the AEM interpretation, these characterise the variance of
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Figure 3. Illustrative sketch of velocity and pressure perturbations associated with a wall-attached eddy
(u, p), along with corresponding wall signatures (τw , pw). The cross identifies the tentative eddy centre.

streamwise velocity and pressure fluctuations induced by attached eddies with size λθ and
centred along the main spectral ridge of figure 1. As shown by Pirozzoli (2024), the wall-
normal profiles of Eu very well conform with the theoretically predicted distributions
of the velocity variance resulting from ‘turbulent Stokes layers’, which are shown with
dashed lines. Indeed, according to Bradshaw (1967), the effect of ‘distant’ wall-attached
eddies on the near-wall region is mainly a low-frequency modulation of the wall shear
stress, to which turbulence has time to readjust, in such a way that the law-of-the-wall
applies instantaneously. This simple scheme offers a compelling explanation for why the
spectral density of streamwise velocity is influenced by the wall even well above the
viscous sublayer. In contrast, the spectral densities of pressure extend down to the wall
almost orthogonally, with little attenuation relative to the peak value observed at the centre
of the corresponding attached eddies.

A conceptual sketch illustrating these observations is provided in figure 3. The main idea
is that a wall-attached eddy produces both velocity and pressure fluctuations. However, due
to differing boundary conditions, it leaves a direct pressure imprint at the wall, while its
velocity influence primarily manifests as a change in local wall shear stress. We note that
the wall signatures shown in the figure are indicative only, as they depend on the specifics
of the particular AEM (see e.g. Ahn et al. 2010). The AEM (Townsend 1976; Marusic &
Monty 2019) can be used to make predictions of the velocity and pressure statistics, under
the critical assumptions that (a) the attached eddies are self-similar and (b) the eddies are
not cross-correlated. Assuming for simplicity flow over a flat wall at y = 0, the velocity
perturbation at point x = (x, y, z) from one representative eddy of height h, rooted at
xe = (xe, 0, ze), and with a characteristic velocity scale uo is given by

ui (x) = uo fi

(
x − xe

h

)
, (3.1)

where u1 = u, u2 = v and u3 = w refer to the streamwise, wall-normal and spanwise
components of fluctuating velocity. Adding up the contributions of wall-attached eddies
of various heights, one then obtains the distribution of the Reynolds stresses:

〈ui u j 〉(y) = u2
o

∫ δ

δ1

P(h)Ii j (y/h) dh, (3.2)

1010 A10-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.264


Journal of Fluid Mechanics

where P(h) is the probability distribution function of eddies of a given height;

Ii j (η) =
∫ ∞

−∞

∫ ∞

−∞
fi (ξ, η, ζ ) f j (ξ, η, ζ )dξ dζ, (3.3)

with ξ = x/h, η = y/h, ζ = z/h, is the contribution from an individual eddy to the
velocity correlations; and δ1 and δ are the smallest and largest eddy length scales,
respectively. Townsend (1976) reasoned that, on account of the no-penetration condition
at the wall, f1 and f3 are asymptotically finite for η → 0, whereas f2 ∼ η. This leads to
the requirements that for small η,

I12 � A12η, I11 � A11, I22 � A22η
2, I33 � A33, (3.4)

with A12, A11, A22, A33 non-zero constants. Townsend then deduced the distribution of
eddy sizes with wall distance necessary to produce invariance of the inner-scaled Reynolds
shear stress (−〈uv〉/u2

τ ≈ 1) with distance from the wall, as nominally observed in the
logarithmic layer. This analysis leads to setting uo = uτ and having P(h) ∼ 1/h. With this,
it follows that the other components of the Reynolds stress tensor must have the form

〈u2〉/u2
τ = B1 − A1 log(y/δ), (3.5)

〈v2〉/u2
τ = B2, (3.6)

〈w2〉/u2
τ = B3 − A2 log(y/δ). (3.7)

We extend the AEM to pressure fluctuations by considering the Poisson equation that
they satisfy, as given by (Kim 1989)

1
ρ

∂2 p

∂x j∂x j
= −2

dU

dy

∂v

∂x
− ∂ui

∂x j

∂u j

∂xi
, (3.8)

where x1 = x , x2 = y and x3 = z. The appropriate wall boundary condition for pressure is
derived from enforcing momentum balance in the wall-normal direction, resulting in

1
ρ

∂p

∂y

∣∣∣∣
y=0

= ν
∂2v

∂y2

∣∣∣∣
y=0

. (3.9)

Additional background and details of the pressure Poisson equation for turbulent wall-
bounded flows can be found in Appendix B. Assuming a similarity solution for pressure
fluctuations of the form

p(x, y, z) = ρu2
τ f p(ξ, η, ζ ), (3.10)

and noting that in the logarithmic layer dU/dy = uτ /κy, (3.8) can be approximated with

∂2 f p

∂ξ j∂ξ j
= − 2

κη

∂ f2

∂ξ
− ∂ fi

∂ξ j

∂ f j

∂ξi
. (3.11)

As for the boundary condition (3.9), in terms of similarity variables it becomes

∂ f p

∂η

∣∣∣∣
η=0

= 1
h+

∂2 f2

∂η2

∣∣∣∣
η=0

, (3.12)

with h+ = huτ /ν the typical shear Reynolds number for a given attached eddy. For eddies
whose centre is sufficiently distant from the wall, to which the AEM is supposed to apply,
h+ 	 1, and hence the previous boundary condition becomes
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Figure 4. Distribution of pressure variance as a function of outer-scaled wall distance. The colour
codes correspond to different Reynolds numbers, as defined in table 1. The dashed grey line indicates
the prediction of (3.17), with Bp = 1.13, C p = 2.28. The directory including the data and the Jupyter
notebook that generated this figure can be accessed at https://www.cambridge.org/S0022112025002642/
JFM-Notebooks/files/figure_4.

∂ f p

∂η

∣∣∣∣
η=0

= 0. (3.13)

Equations (3.11) and (3.13) show that wall-attached similarity solutions for the pressure
field are possible if the velocity field is self-similar. This is a key result which allows one
to extend Townsend’s formalism to pressure in straightforward manner, yielding

〈p2〉(y) = τ 2
w

∫ δ

δ1

P(h)Ip(η)dh, (3.14)

with

Ip (η) =
∫ ∞

−∞

∫ ∞

−∞
f 2

p (ξ, η, ζ )dξ dζ. (3.15)

The approximate boundary condition (3.13) implies that f p at the wall is finite and
independent of h, whence it follows that, for small η,

Ip � Ap, (3.16)

with Ap a non-zero constant, which figure 2(b) well supports. Substitution into (3.14) and
carrying out the integral as suggested by Perry & Chong (1982, Appendix B) yields

〈p2〉/τ 2
w = Bp − C p log(y/δ). (3.17)

The prediction of (3.17) is very well verified in the pipe flow DNS data, with constants
Bp = 1.13, C p = 2.28 (Yu et al. 2022). Indeed, figure 4 shows the presence of an extremely
long logarithmic layer ranging from the buffer layer all the way up to y/R ≈ 0.5. This
evidence is far more convincing than that supporting the existence of a logarithmic layer
for 〈u2〉, which is relatively thin and still debated (e.g. Monkewitz 2022). We interpret
this as a result of near-wall viscous effects on velocity, which undermine the inviscid
asymptotic predictions of (3.4). Therefore, we propose that (3.17) is the most robust
prediction derived from the AEM.
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Figure 5. For caption see next page.

4. Analysis of the spectra
The arguments presented in § 1 for the pressure fluctuation spectra by Bradshaw (1967),
which lead to the E p ∼ τ 2

wk−1 spectrum, can similarly be applied to velocity fluctuations,
resulting in the prediction Eu ∼ u2

τ k−1. This is the key contribution of the work of Perry &
Abell (1977). In figure 5, we present the spanwise spectral densities of streamwise velocity
and pressure fluctuations at various locations with fixed y+ < y+

max. Uncertainty bars for
flow case G are shown in grey, illustrating that the effects of limited time convergence
on the velocity spectra are mainly concentrated at scales λθ � R. Time convergence of
the pressure spectra appears to be very nearly perfect. The figure provides clear evidence
for the tendency towards universality at the small-scale end of the spectra when inner
normalisation is applied. However, this tendency manifests more rapidly for the velocity
field (Reτ � 2000) than for the pressure field, which appears to attain universal behaviour
only at the highest Reynolds number examined. In the velocity field, the universal inner
layer extends towards larger scales. In contrast, the large-scale end of the pressure spectra
still seems far from achieving a universal behaviour. The general trend for the pressure
field is an increase in spectral density, potentially forming a plateau at the highest
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Figure 5 (cntd). Pre-multiplied spanwise spectral densities of streamwise velocity (a,c,e,g,i,k) (from Pirozzoli
2024) and pressure (b,d,f ,h,j,l) in inner scaling, at various inner-scaled wall distances: y+ = 1 (a,b), y+ = 15
(c,d), y+ = 50 (e,f ), y+ = 100 (g,h), y+ = 200 (i,j), y+ = 400 (k,l). The colour codes indicate different
Reynolds numbers as given in table 1. The shaded grey regions denote the expected range of uncertainty for
flow case G. The dashed black lines denote the λ+θ

−0.18 trend. The directory including the data and the Jupyter
notebook that generated this figure can be accessed at https://www.cambridge.org/S0022112025002642/
JFM-Notebooks/files/figure_5.

Reynolds numbers. This observation aligns with Panton et al. (2017), who inferred a
similar behaviour from channel flow data, suggesting a k−1 spectral range.

Spectral overlap arguments as those used by Bradshaw (1967) and Perry & Abell (1977)
were used by Pirozzoli (2024) to infer the plausible behaviour of the velocity spectra,
which can also be applied to the pressure spectra. By assuming that: (i) the typical velocity
of all eddies is the friction velocity and (ii) the typical length of the smaller eddies is δv ,
whereas the typical length of the larger eddies is R, it follows that the spectral signature
of the smaller eddies can be expressed as

k+
θ E+ = f (λ+θ ), (4.1)

while the larger eddies are expected to follow a spectrum of the form

k+
θ E+ = g(λθ /R). (4.2)

Assuming an overlap spectral layer exists between these inner- and outer-scaled regions,
the functions f and g should take the form of either power laws or logarithmic functions.
Based on the DNS data, the power-law description appears to be more appropriate. Hence,
the spectral densities in the overlap layer are expected to behave as

k+
θ E+ = C

(
λ+θ

)−α = CRe−α
τ

(
λθ

R

)−α

, (4.3)

holding in inner and outer scaling, respectively, where α and C could in general depend
on y+. Equation (4.3) includes the k−1

θ spectral scaling as a special case, occurring for
α = 0. In that case, both the small-scale and the large-scale ends of the spectrum would be
universal.

Figure 5 indeed supports the validity of (4.3) for the streamwise velocity, suggesting
the occurrence of an overlap layer with power-law scaling with exponent α ≈ 0.18, as
we have estimated by fitting the DNS data for flow case G in the range of wavelengths
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Figure 6. For caption see next page.

1000 � λ+θ � 10 000 (Pirozzoli 2024). Notably, we confirm that the spectral power-law
exponent remains universal with respect to changes in wall distance and Reynolds number,
and, within numerical uncertainty, is consistent even in channel flow (Pirozzoli 2024). The
behaviour of pressure spectra is not so clear-cut, although the decay exponent is certainly
less than for the streamwise velocity, and energy pile-up is still visible as the Reynolds
number increases, reflecting imperfect universality of the small scales of motion.

In figure 6, the spectral densities of velocity and pressure are shown as a function
of the outer-scaled wavelength. The universality of the velocity spectra is clearly not as
pronounced as seen for the small wavelengths in figure 5. The energy associated with the
large scales of motion becomes slightly but consistently less at higher Reynolds numbers
for a given λθ /R. Inspection of (4.3) shows that this behaviour is consistent with the
occurrence of a negative power law in the intermediate scales. On the other hand, the
large-scale end of the pressure spectra appears to be very nearly independent of both
the Reynolds number and of the wall distance, given that the corresponding iso-lines of
the spectral map in figure 1(b) are vertically straight. Based on the theoretical prediction
(4.3), the universality at the large scales and the tendency towards (though imperfect)
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Figure 6 (cntd). Pre-multiplied spanwise spectral densities of streamwise velocity (a,c,e,g,i,k) (from Pirozzoli
2024) and pressure (b,d,f ,h,j,l) in outer scaling, at various inner-scaled wall distances: y+ = 1 (a,b), y+ =
15 (c,d), y+ = 50 (e,f ), y+ = 100 (g,h), y+ = 200 (i,j), y+ = 400 (k,l). The colour codes indicate different
Reynolds numbers as given in table 1. The directory including the data and the Jupyter notebook that generated
this figure can be accessed at https://www.cambridge.org/S0022112025002642/JFM-Notebooks/files/figure_6.

universality at the small scales, the only asymptotically possible behaviour for pressure is
a k−1 spectrum, as predicted by Bradshaw (1967).

For completeness, in figure 7 we also report the spectral densities of velocity and
pressure as a function of the outer-scaled wavelength at fixed values of y/R, to highlight
scaling in the outer part of the wall layer. At these wall distances the contamination
from viscous effects is minimal, and universality across Reynolds-number variation is
effectively achieved. However, whereas some scatter at the largest scales remains in the
velocity spectra, the pressure spectra are very nearly universal. This is in our opinion a
very important result as it speaks about tendency for the near-wall flow to achieve
universality in viscous units, but also for the flow in the pipe core to become universal
when expressed in R units, in support of the scenario envisaged by Dennis & Sogaro
(2014). Universality of the large scales in the near-wall region is retained in the pressure
spectra, but it is lost in the velocity spectra on account of viscous effects, recalling the
discussion of figure 2.

5. The pressure variance
The information derived from the analysis of the velocity and pressure spectra can be
distilled to infer the behaviour of the velocity and pressure variances, taking inspiration
from Hwang (2024). Let λs and λ� be, respectively, indicative lower and upper limits for
the observed overlap spectral range. The velocity variance can be expressed as

〈u2〉+ =
∫ log λ+s

−∞
k+
θ E+

u d log λ+θ︸ ︷︷ ︸
〈u2〉+s

+
∫ log λ+�

log λ+s
k+
θ E+

u d log λ+θ︸ ︷︷ ︸
〈u2〉+o

+
∫ ∞

log λ+�
k+
θ E+

u d log λ+θ︸ ︷︷ ︸
〈u2〉+�

,

(5.1)
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Figure 7. Pre-multiplied spanwise spectral densities of streamwise velocity (a,c,e,g) (from Pirozzoli 2024)
and pressure (b,d,f ,h) in outer scaling, at various outer-scaled wall distances: y/R = 0.1 (a,b), y/R = 0.2
(c,d), y/R = 0.3 (e,f ), y/R = 0.5 (g,h). The colour codes indicate different Reynolds numbers as given in
table 1. The directory including the data and the Jupyter notebook that generated this figure can be accessed at
https://www.cambridge.org/S0022112025002642/JFM-Notebooks/files/figure_7.

where the subscripts s, � and o denote, respectively, the contributions of the smallest
scales, the largest scales and the intermediate, overlap-layer scales. Likewise, the pressure
variance can be expressed as

〈p2〉+ =
∫ log λ+s

−∞
k+
θ E+

p d log λ+θ︸ ︷︷ ︸
〈p2〉+s

+
∫ log λ+�

log λ+s
k+
θ E+

p d log λ+θ︸ ︷︷ ︸
〈p2〉+o

+
∫ ∞

log λ+�
k+
θ E+

p d log λ+θ︸ ︷︷ ︸
〈p2〉+�

.

(5.2)

Although the precise values of the limits in (5.1) are not important, it is crucial that the
lower limit scales in wall units, hence λ+s = const., and that the upper limit scales in outer
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units, hence λ�/R = const. Based on the previous analysis of the velocity spectra, Pirozzoli
(2024) showed that the behaviour of the velocity variance should be as follows:

〈u2〉+ = Au(y+) − Bu(y+)Re−α
τ , (5.3)

with Au and Bu functions of the wall distance to be determined by fitting the DNS data.
Based on evidence previously given that the pressure spectra at the small and large

scales tend to be universal across the Reτ range, the associated contribution to the pressure
variance is expected to be asymptotically constant, and hence

〈p2〉+s = As(y+), 〈p2〉+� = A�(y/R) ≈ const. (5.4)

Last, the contribution of the overlap layer can be evaluated by integrating the power-law
spectrum given in (4.3) corresponding to α = 0, thus obtaining

〈p2〉+o = Ao(y+) + Bo(y+) log Reτ . (5.5)

Combining the previous equations, it follows that overall pressure variance should
vary as

〈p2〉+ = Ap(y+) + Bp(y+) log Reτ , (5.6)

where the functions Ap and Bp do not depend explicitly on the Reynolds number, given
the assumptions made to define λs and λ�. This formula predicts that, at any fixed y+,
the pressure variance should increase logarithmically with Reτ , in agreement with the
arguments of Bradshaw (1967) and Perry & Abell (1977), and with the predictions of the
AEM presented in § 3. Equation (5.6) is tested in figure 8, where we show the contributions
to the pressure variance from small, large and intermediate scales, having set λ+s = 400,
λ� = R/2. In agreement with the pressure spectra, the contribution from the large scales
(figure 8b) is found to be very nearly universal when reported as a function of the outer-
scaled coordinate y/R. The contributions from the small scales (figure 8a) show deviations
from universality at relatively low Re; however, saturation is close to complete at Reτ =
12 000 (black line). The contribution from the intermediate scales is instead found to grow
continuously, as after (5.5); see figure 8(c). Comparison of the various contributions for
flow case G (figure 8d) shows that all of them tend to assume flat behaviour near the
wall, again consistent with the notion that pressure fluctuations are not directly affected
by viscosity. The contribution from the small scales (dashed lines) has a peak in the
buffer layer, which is reflected in the peak of the overall variance. The contribution from
the superstructures (dotted lines) is nearly constant across the wall layer with a peak
at y/R ≈ 0.1, whereas the contribution from the intermediate scales (dot-dashed lines)
has a peak at an intermediate distance from the wall, here y+ ≈ 200. Values for the asymp-
totic constants Ap, Bp in (5.6) determined from fitting the DNS data at representative off-
wall locations are reported in table 2, along with the corresponding standard deviations.

The resulting distributions of the pressure variances as a function of Reτ are shown in
figure 9, at various y+ locations. In the figure we contrast the logarithmic fits predicted
from (5.6) with the defect power law given in (5.3). For comparison, fits of the streamwise
velocity variance are also displayed. As shown by Pirozzoli (2024), velocity variances are
clearly better fitted with the defect power law than from the logarithmic law. Whereas
the defect power law could well be mistaken for logarithmic growth at y+ = 15, the
trends at positions farther from the wall are distinctly different from logarithmic. As
for pressure, the logarithmic law (5.6) yields perfect fit of the DNS data, across the
entire Reynolds-number range, and at all off-wall stations. Larger scatter is observed
when data are fitted with a defect power-law distribution. To provide a quantitative
impression, the standard deviation for the logarithmic fit of the pressure variance at
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Figure 8. Contributions to pressure variance in pipe flow from: small scales (a), large scales (b) and
intermediate scales (c). (d) The pressure variance for flow case G (Reτ ≈ 12 000), and the contributions from
small scales (dashed lines), from large scales (dotted lines) and from intermediate scales (dash-dotted lines).
The colour codes correspond to different Reynolds numbers, as defined in table 1. The directory including
the data and the Jupyter notebook that generated this figure can be accessed at https://www.cambridge.org/
S0022112025002642/JFM-Notebooks/files/figure_8.

y+ = 50 is 0.045, whereas the defect power-law fit yields a standard deviation of 0.24.
The different behaviour of velocity and pressure is made manifest in figure 9(e), where
we show the ratio of pressure to streamwise velocity variances. Note that the data are
not shown at y+ = 1 as the velocity variance there is very small, so this indicator is
off scale. Whereas at low-to-moderate Reynolds number there is no obvious trend, with
logarithmic increase at near-wall stations (y+ = 15, 50) and flat behaviour farther from
the wall, there is very little ambiguity for Reτ � 3000, at which an increasing logarithmic
trend is observed at all y+, with the same growth rate. In our opinion, this is very
convincing evidence that streamwise velocity variance and pressure variance behave in
a different way, the streamwise velocity variance tending to saturate with the Reynolds
number following a defect power law, and pressure variance following an ever-increasing
logarithmic trend.

Figure 10 shows extrapolated distributions of the pressure variance as a function of
wall distance for various Reτ . In addition to confirming that the predictive formula (5.6)
accurately represents the range of Reynolds numbers used to inform the model, the figure
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Station Ap(y+) Bp(y+)

y+ = 1 −7.73 ± 0.207 (2.67 %) 2.08 ± 0.0262 (1.26 %)

y+ = 15 −7.41 ± 0.0929 (1.25 %) 2.23 ± 0.0118 (0.529 %)

y+ = 50 −7.85 ± 0.138 (1.76 %) 2.28 ± 0.0175 (0.768 %)

y+ = 100 −9.64 ± 0.117 (1.22 %) 2.29 ± 0.0148 (0.648 %)

y+ = 200 −11.6 ± 0.131 (1.12 %) 2.35 ± 0.0165 (0.705 %)

y+ = 400 −14.1 ± 0.211 (1.50 %) 2.46 ± 0.0258 (1.09 %)

Table 2. Fitting parameters to use in (5.6), based on DNS data fitting, at several off-wall positions, with
accompanying asymptotic standard errors.
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Figure 9. Variances of (a,c) streamwise velocity and (b,d) pressure, as a function of Re−0.18
τ (a,b) and as a

function of log Reτ (c,d), at various off-wall positions: y+ = 1 (purple), y+ = 15 (green), y+ = 50 (cyan),
y+ = 100 (orange), y+ = 200 (red), y+ = 400 (blue). (e) The ratio of pressure to streamwise velocity variances
as a function of Reτ . The directory including the data and the Jupyter notebook that generated this figure can
be accessed at https://www.cambridge.org/S0022112025002642/JFM-Notebooks/files/figure_9.

1010 A10-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/S0022112025002642/JFM-Notebooks/files/figure_9
https://doi.org/10.1017/jfm.2025.264


Journal of Fluid Mechanics

0

5

10

15

20

25

30

100 101 102 103 104

Reτ = 107

Reτ = 106

Reτ = 105〈p
2
〉+

y+

Figure 10. Predicted distributions of pressure variances at various Reτ , according to (5.6). The symbols
denote the DNS data used to determine the fitting coefficients Ap(y+), Bp(y+) (see table 1 for the colour
codes). The directory including the data and the Jupyter notebook that generated this figure can be accessed at
https://www.cambridge.org/S0022112025002642/JFM-Notebooks/files/figure_10.

also illustrates extrapolations beyond this range. Unlike the streamwise velocity variance
(Pirozzoli 2024), the growth does not saturate, and the shape of the pressure variance
distribution remains consistent. Instead, there is continuous growth, primarily driven by
the expanding range of scales associated with wall-attached eddies, as predicted by (5.6).

6. Conclusions
We have studied pressure fluctuations in the near-wall region of turbulent wall layers using
pipe flow DNS data. We find that spectral maps are key to properly understanding the
phenomenon. Although the structure of the spectral maps of pressure is similar to those
of the streamwise velocity field, featuring a clear imprint of wall-attached eddies in the
near-wall region, the details differ significantly. Specifically, while the velocity imprint of
wall-attached eddies becomes fainter as the wall is approached due to the impeding effect
of viscosity, the pressure footprint remains nearly constant, as pressure does not directly
feel the effects of viscosity. This results in different spectral behaviours at any fixed wall
distance. Whereas the pre-multiplied streamwise velocity spectra tend to slightly decay
at large wavelengths, the corresponding pressure spectra exhibit a tendency for a plateau.
In this case, the classical k−1 spectral scaling envisioned by Bradshaw (1967) emerges,
while deviations result in a shallower exponent for the streamwise velocity. This leads
to qualitative differences in the behaviour of the corresponding variances, which can be
inferred from the integration of the spectral densities. In particular, while the streamwise
velocity is predicted to saturate at any fixed y+ as Reτ increases, pressure is predicted
to undergo sustained logarithmic growth. Although differences between the two trends
may be difficult to capture in today’s DNS, they lead to vastly different behaviours in the
very-high-Reτ limit.

The results we obtain for pressure are, in a sense, not very surprising, as they align with
classical knowledge dating back to the work of Bradshaw (1967). However, this scenario
has recently been questioned by Chen & Sreenivasan (2022), who argued that pressure
variance should follow a behaviour similar to that of the streamwise velocity variance. We
contend that this is not the case. The identified differences in the behaviour of velocity and
pressure are somewhat surprising, given that velocity and pressure are related through the
pressure Poisson equation (3.8). Hence, it would be reasonable to expect the same scaling
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Figure 11. Analysis of sensitivity to pipe length for (a) pressure variance and (b) pre-multiplied spanwise
spectral density of pressure at y+ = 50. Flow cases C, C-L and C-LL are shown; see table 1 for line styles.

for the two quantities. However, it is important to note that the pressure Poisson equation
explicitly encompasses non-local interactions, particularly the long-range effects of outer-
layer large eddies (whose strength certainly scales with uτ ) on the near-wall region, which
are not impeded by viscosity. As the Reynolds number increases, an increasing number
of wall-attached eddies accumulate for a fixed y+, and their effects combine to yield
logarithmic growth of the pressure variance. In this regard, in § 3, we provide the first proof
that wall-attached self-similar solutions for the pressure field are possible if the velocity
field is also self-similar, thereby integrating pressure consistently within the AEM.

Supplementary material. Computational Notebook files are available as supplementary material
at https://doi.org/10.1017/jfm.2025.264 and online at https://www.cambridge.org/S0022112025002642/
JFM-Notebooks.
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Appendix A. Pipe length sensitivity analysis
The sensitivity of the computed results to the pipe length assumed in the DNS has been
assessed through additional simulations conducted at Reb = 44 000 (flow case C), as listed
in table 1. Specifically, we have doubled and tripled the pipe length in flow cases C-L and
C-LL, respectively. These flow cases have been simulated for numerous eddy turnover
times, for the purpose of minimising the time sampling error. The resulting change in
the distribution of the pressure variance is well below 1 %, as illustrated in figure 11(a).
Figure 11(b) additionally presents a comparison of the pre-multiplied pressure spectra at
y+ = 50, again showing that the pipe length has very little influence on the flow properties
herein considered and remaining numerical uncertainties primarily stem from finite time
sampling.
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Figure 12. (a) Two-dimensional, pre-multiplied spectral density of wall-normal velocity at y+ = 1 for flow
case G and (b) distribution of wall-normal velocity variance in log–log scale for the flow cases listed in
table 1. In (a) the cross denotes the peak location, corresponding to λ+θ ≈ 41.1, λ+z ≈ 144.2. The dashed line in
(b) denotes the trend 〈v2〉+ = 2 × 10−4(y+)4.

Appendix B. On the solution of the pressure Poisson equation
Since the problem (3.8) + (3.9) has a linear nature, its general solution can be found from
the solution of three subproblems, namely (Mansour et al. 1988)

1
ρ

∂2 pr

∂x j∂x j
= −2

dU

dy

∂v

∂x
,

∂pr

∂y

∣∣∣∣
y=0

= 0, (B1)

1
ρ

∂2 ps

∂x j∂x j
= − ∂ui

∂x j

∂u j

∂xi
,

∂ps

∂y

∣∣∣∣
y=0

= 0, (B2)

1
ρ

∂2 pst

∂x j∂x j
= 0,

1
ρ

∂pst

∂y

∣∣∣∣
y=0

= ν
∂2v

∂y2

∣∣∣∣
y=0

. (B3)

The first part (pr ) is referred to as mean shear or ‘rapid’ term, and the second part (ps)
is referred to as the turbulent, or ‘slow’ term. Both are associated with homogeneous
Neumann wall boundary condition, and can be determined for a given spatial distribution
of fluctuating velocity. The third part (pst ) results from solving a Laplace equation with
inhomogeneous boundary conditions, and it is referred to as Stokes pressure. This can be
determined once the distribution of the wall-normal velocity fluctuations near the wall is
given. As noted by Kim (1989), the above triple splitting is not unique, and inhomogeneous
boundary conditions can just as well be incorporated with the rapid or the slow term.

The magnitude of the Stokes pressure fluctuations can be inferred by taking the Fourier
transform of (B3) in the homogeneous directions, yielding

1
ρ

d p̂st

dy

∣∣∣∣
y=0

= ν
d2v̂

dy2

∣∣∣∣
y=0

, (B4)

where p̂st (y) and v̂(y) represent the Stokes pressure and wall-normal velocity in Fourier
space. The pressure fluctuations associated with each Fourier mode can be determined as

p̂st (kx , y, kz) = −ρν

k̃

d2v̂

dy2

∣∣∣∣
y=0

e−k̃ y, (B5)
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where k̃ = (k2
x + k2

z )
1/2 is the effective wavenumber for the given Fourier mode, with

kx and kz the wavenumbers in the streamwise and spanwise directions, respectively.
An approximate prediction for the magnitude of the Stokes pressure fluctuations can be
obtained by inspecting the two-dimensional spectral maps of v near the wall (see
figure 12a). These maps reveal a single dominant energetic site corresponding to
λ+θ ≈ 41.1, λ+x ≈ 144.2, yielding k̃+ ≈ 0.16. Although the spectrum is shown only for
pipe flow case G, it aligns well with findings at much lower Reynolds numbers (Kim
et al. 1987), suggesting universality across Reynolds-number variations. Analysis of the
distribution of wall-normal velocity variance from DNS, as reported in figure 12(b),
further suggests that

〈v2〉+ y+→0� Cv(y+)4, (B6)

with Cv ≈ 2 × 10−4 as a universal constant. From this, and noticing that in the wall
proximity

v̂(y) � 1
2

d2v̂

dy2

∣∣∣∣
y=0

y2, (B7)

it follows that ∣∣∣∣d2v̂

dy2

∣∣∣∣
y=0

≈ 2C1/2
v . (B8)

Finally, (B5) yields

p+
rms(y+) ≈ 2C1/2

v

k̃+ e−k̃+y+
. (B9)

This solution demonstrates that the inner-scaled intensity of the Stokes pressure
fluctuations is independent of the Reynolds number, with a wall value of p+

rms |y=0 ≈ 0.177,
hence much smaller than the overall pressure root mean square (r.m.s.) value (see figure 4).
Furthermore, (B9) conveys that the Stokes pressure fluctuations decay exponentially with
the wall distance and become negligible outside the viscous sublayer. This prediction
aligns closely with the numerically computed distributions of the r.m.s. Stokes pressure
extracted from channel flow DNS data (Kim 1989).

For many practical purposes, one could then use the homogeneous boundary condition
for both the rapid and slow pressure components, effectively ignoring the Stokes pressure
when considering the r.m.s. fluctuations. However, it is important to note that this does
not imply the wall has no effect on the pressure fluctuations. Rather, it suggests that most
of the wall’s influence is already accounted for in the source terms, which are modified by
the no-slip boundary conditions on the velocities. Therefore, the explicit influence of the
wall through the boundary condition in the Poisson equation is minimal.
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