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Abstract

We determine all conjugacy classes of maximal /?-local subgroups of the Monster for p # 2.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 08.

1. Introduction

In this paper we find all the maximal /»-local subgroups of the Fischer-Griess
Monster group, for each odd prime p. The results for p > 5 are not new—they
were first obtained by S. P. Norton, but his proofs have not been published. The
hardest case, however, is the case p = 3, and our main result is

THEOREM 3. Any 3-local subgroup of the Monster group M is contained in a

conjugate of one of the seven groups

N(3A) = 3 • FiM,

N(3B)~ 3V"12-2 • Suz:2,

N(3C) = S3XTh.

Conversely, none of these groups is contained in a conjugate of any other.
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2 Robert A. Wilson [2]

The proof is based largely on calculations inside the group 31 + 12 • 2Suz, and
therefore depends heavily on the simple notation for this group introduced in
Section 3 below. This notation can be restricted to various subgroups of
31 + 12 . 2Suz, and enables one to find the maximal 3-local subgroups of B [10],
Th [11], Fi24 and Fi23 [12]. It is really an extension and modification of the
notation used in [9] to study the 3-local subgroups of Fi22.

Other notation is taken from the ATLAS [3].
The results for p = 5 and 7 are

THEOREM 5. Let Y be any non-trivial 5-subgroup of the Monster. Then N(Y) is
contained in a conjugate of one of the 6 groups:

N(5A) = (Dw X HN) • 2,

= ( 5 2 : 4 - 2 2 X U3(5)):S3,

4) = 5 4 : (3 X 2 • L2(25)):2.

Conversely, none of these groups is contained in a conjugate of any other.

THEOREM 7. Let Y be any non-trivial 1-subgroup of the Monster. Then N(Y) is
contained in a conjugate of one of the 5 groups

^ (72:(3X2^4)XI3(7)):2,

Conversely, none of these groups is contained in a conjugate of any other.

Note. This last group is missing from the list given in [3].
The results for p > 7 are given in the final section of the paper.

2. Basic 3-local structure

There are three classes of elements of order 3 in the Monster, with normalizers

= 3\+l2-2Suz:2,

JV(3C) = S3 X Th.
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[ 3 ] The odd-local subgroups of the Monster 3

Of these three classes, just the 32?-elements are 3-central. In particular, the group
31 + 12 • 2Suz contains a Sylow 3-subgroup of M, and hence contains a representa-
tive of every conjugacy class of elementary Abelian subgroups. Throughout the
rest of Sections 2-8, Y will denote an elementary Abelian 3-group of order at
least 32.

PROPOSITION 2.1. / / Y contains 3C-elements, then N(Y) is contained in N(Y0)
where Yo is a non-trivial elementary Abelian 3-group containing no 3C-elements.

PROOF. The subgroup Th contains no elements of Af-class 3C, while all
diagonal 3-elements in 3 X Th are of M-class 3C. It follows that Y has a unique
subgroup Yo of index 3 containing no 3C-elements, so N(Y) < N(YQ), and the
proposition is proved.

From now on, therefore, we concern ourselves only with the 3A- and 3B-
elements, and we begin by studying their centralizers.

Restricting the 196883-character of M to 3Fi'24 we obtain la + 8671a +
57477a + 783aZ» + 64584a£>, where the last four characters are faithful and the
first three characters are not. Calculating the character values on the various
elements of order 3 we deduce the class fusion:

Fi'24-cl&ss M-classes 32-centralizer in M

3A

3B

3C

3D

3E

3A3

3BXA2

3A,B2

3B3

3C3

32

(3
38

[2
32

X O+(3)

x 3 1 + 10):C/5(2)

• 2t/4(3)
5 . 314]

X G2(3)

PROPOSITION 2.2. / / Y contains 3A-elements but no 3B-elements, then N(Y) is
contained in

PROOF. From Proposition 2.1 and the above table it suffices to show that Fi2A

contains no 32-group whose non-trivial elements are all of Fz'24-class 3A. This is
proved in [12] by restricting the characters of degrees 783 and 2808.

From now on, we can assume that Y is an elementary Abelian group contain-
ing 35-elements but no 3C-elements. For the rest of the paper we fix a 3B-
element x contained in Y, and let X = 31 + 12 be normal in N(x).
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4 Robert A. Wilson [4]

Our next task is to investigate the structure of the 3.6-centralizer in detail. Now
the values of the 196883-character on the elements of classes 2B, 3B and 6B show
that it restricts to 31 + 12 • ISuz as

143 e 65520 e {(729 © 729') ®(12 © 78)},

where characters are denoted by their degrees, and 12, 78, 143 are faithful
irreducible characters of 6Suz, 3Suz and Suz respectively, 729 and 729' are
extensions of the faithful irreducible characters of 31 + 12 to 31 + 12 • ISuz, and
65520 is a faithful monomial representation of 31 2: ISuz. Again we calculate the
character values on the various elements of order 3, and deduce that the fusion
from 6Suz to M is given by

Suz-c\a&s Af-classes 32-centralizer in M
3A 3A2B1 38 • 2U4(3)

3B 3AXB2 [25 • 314]

3C 3C3 3 6 . 2 ^ 6

3. A notation for 3l + n • 2Suz

In this section we introduce a notation for the group 3 1 2 :25MZ = C(x)/(x).
Since the normal 312-group is really a reduction of the complex Leech lattice
modulo 6 = v -̂3~, it is useful to describe this lattice first. More details can be
found in [7], though for present purposes it is best to use the "quaternionic"
version given in [6], with slight modifications. It must be borne in mind however
that the group 6Suz does not preserve the quaternionic structure.

We write vectors of the Leech lattice in the 6 by 4 MOG array in the usual way,
and associate the rows to the quaternions 1, i, j and k respectively. By
interpreting each column of the MOG as a single quaternion, and dividing by 2,
we identify the Leech lattice with a certain set of vectors in a quaternionic
6-space. There is a "monomial" subgroup 2 5 + 1 2 : 3A6 of the automorphism group
of the lattice which preserves the associated decomposition into 6 quaternionic
1-spaces (real 4-spaces). This may be generated by left and right multiplications
by diagonal matrices corresponding to "hexacode" words, together with the
hexacode automorphism group 3A 6. This multiplicative hexacode may be gener-
ated by the elements (j, k, k, j , k, j), (k, j , j , k, k, j), (k, j , k, j , j , k) and their
images under a. Here w denotes the map defined by 1 -» 1, i -* j -* k -* i: this
may be realized as conjugation by ^(-1 + i + j + k). Full details are given in [8].

We want generators for 6Suz as a subgroup of the lattice automorphism group
2Cov so we take the group 2 5 + 6 generated by the right multiplications by
hexacode words, and extend by the hexacode automorphism group 3A6, which
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[5 ] The odd-local subgroups of the Monster 5

may be generated by (u, a, +, •—•—••) and ( * « ^ > C ^ ) . Then we need
one extra generator, which can be taken to be right multiplication by the matrix

J ~

I n o o o o l
1-10 0 0 0
0 0 1 1 0 0
0 0 1-10 0
0 0 0 0 1 1
0 0 0 0 1-1

Note that since « always denotes conjugation by w = ^(-1 + i + j + k), this
group is not a group of right multiplications by quatemionic matrices.

Now let 8 = i + j + k, and consider the endomorphism 6 of L defined by
multiplying each quatemionic coordinate of a vector on the left by 6. Then
L/QL is an Abelian group of exponent 3 and order 312. Now left multiplication
by w acts trivially on L/QL, so conjugation by w is the same as right multiplica-
tion by w. Hence the group 6Suz can be re-interpreted as a group of right
multiplications on L/QL, where the central element of order 3 acts trivially. The
group C(x)/(x) is then isomorphic to the split extension of L/QL by this group
of matrices.

Now the vector (8,0,0,0,0,0) is in L, and we can divide by 2 in L/QL, so we
can take these 6 vectors as a basis. Then the image in L/QL of a vector in L is
obtained simply by reducing its coordinate modulo 8. If we take the imaginary
part of the quatemionic inner product (that is, the sum of the coefficients of i, j
and k), and reduce modulo 3, then we obtain the symplectic form corresponding
to the commutator map on 31 +12.

4. The 3-elements in 31 + 12 • 2Suz

In this section we aim to classify the conjugacy classes of elements of order 3 in
312:2Suz, and to identify the corresponding groups of order 9 in 3 1 + u • 2Suz.
First, there are two classes in 312, as follows:

Representative il/-centralizer Af-type

(1,0,0,0,0,0) (3X3 1 + 1O):£75(2) 3A3BX

(1,1,1,0,0,0) (3X3 1 + 1 O ) .3 5 .M U 3B4(i)

The minimal vectors of the Leech lattice correspond to subgroups of type
3BXA3 in 31 + 12. There are five orbits under the monomial group 25 + 6 : 3A6, as
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follows
(1,0,0,0,0,0) 24
(1,1,0,0,0,0) 480
(1,1,1,1,0,0) 7680
(1,1,1,1,1,0) 6144
(1,1,1,1,1,/) 18432

Total = 32760
The type 3 vectors in the Leech lattice correspond to subgroups of type 3B4 in
31 + 12. There are 8 orbits under the monomial group, as follows:

(1,1,1,0,0,0) 5120
(1,1,1,/ , 0,0) 23040
(1.1.1.1.1.0) 92160
(1.1.1.1.1.1) 1024

(1,1,1,1,1,-1) 1024
(1,1,1,1,1,-/) 18432

(1,1,1,1,/,/) 46080
(1,1,1,1,/,-/) 46080

Total = 232960
Next, for each class of 3-elements in Suz we must find the classes they lift to in

312: 2Suz. Now each element t is conjugate to its multiples by vectors in the
image of 1 — t, so we need to find the orbits of C{t) on the vectors in
312/mi(l — t). There are 3 classes of elements of order 3 in 2Suz, with central-
izers:

C(3a) = 6t/4(3),

C(3c) = 32 X 2A6

and these three classes may be represented respectively by the elements
(w, co,co, co, w, co), (to, u, +, •—•—*~), and ( * C^^sC^i^)-

Case a: / = (co,co,tj,co,w,6j>. Here im(l - t) is 6-dimensional, spanned by
(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0) and
(0,0,0,0,0,1). The centralizer 6f/4(3) acts on the quotient 6-space as 2 • O6 (3),
and so there are four orbits on vectors, of which two are interchanged by the
outer automorphism

Representative M-centralizer M-type

(0,0,0,0,0,0) 38-2C/4(3) 3A2B2

( / , / , / , 0 , 0 ,0 ) 36.35.A6 3B4(n)

(/, 0,0,0,0,0) 37.[/4(2) 9A

(/,/, 0,0,0,0) 37.U4(2) 9A

Name
3a

3a'

-
_

Number
1

224

252

252
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Case b: t = (« , w, +, •—•—*•). Here im(l — t) is again 6-dimensional, and is
spanned by (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,0,1,-1,0), (0,0,0, i ,-/ , 0),
(0,0,0,1,1,1) and (0,0,0, /, /', /). This time it is not totally isotropic, but lifts to
34 X 31+ 2 in 31 + 12. The quotient 312/im(l - 0 may be generated by (/, 0,0,0,0,0),
(0, i, 0,0,0,0), (0,0,1,0,0,0), (0,0, i, 0,0,0), (0,0,0,1,0,0) and (0,0,0, i, 0,0). If
we multiply / by any vector involving either of the last two basis elements, then
we obtain an element of order 9 in 312: 2Suz. On the remaining 4-space C(t) has
an invariant 2-space, and some calculation or other easy arguments show that it
has 5 orbits on vectors, two of which are interchanged by an outer automorphism

Name Number Representative Af-centralizer M-type

3b

3b'

-

-

3b"

1

8

18

18

36

(o,
(0,

(••,

( - •

( ' ,

,0,0,0,0,0)

,0,1,0,0,0)

0,0,0,0,0)

1,0,0,0,0,0)

i, 0,0,0,0)

[25 . 314]

[22 • 313]
[2 4 • 311]

[ 2 4 • 311]

[23 • 311]

3A,

3B4

9B

9B

3B1

B3

(i>

Case c: t = ( *"" • O ^ ^ ^ r } - Here im(l — i) is 8-dimensional, and
312/im(l - 0 may be spanned by (1,0,1,0,1,0), (0,1,0,1,0,1), (/, 0, i, 0, i, 0) and
(0, /, 0, /, 0, /'). Then C(t) acts on this space as SL2(9), so there are just two orbits
on vectors. But it is clear that the non-zero vectors give rise to elements of order 9
in 312: 2Suz, so we have only one case:

Name Number Representative Af-centralizer M-type

3c 1 (0,0,0,0,0,0) 36.2A6 3BXC2

5. The 3 -normalizers

PROPOSITION 5.1. Let Y be an elementary Abelian subgroup of 31 + 12 of order 32,
not containing the centre. Then Y corresponds to a totally isotropic 2-space in the
symplectic 12-space. There are 7 conjugacy classes of such groups Y, as follows

Type Centralizer in N(3B) Centralizer in M Alias

3^ 4 (32 X 31/8) • 21 + 6 :33 32 X O8
+(3)

3A3BX (32X31
+

+ 8).3 'U5 (3x31
+

+ l o):f/5(2)

3A2B2 (32 X 3X
+

+8) . (3 X A6) (32 X 36) • 2t/4(3) 3a

3A1B3 (32 X 3V8) • [22 • 33] [25 • 314] 3b

3B4 (32X3V+ 8) .34 .32 :Z)8 32 . 35. 310 : M u

3B4 (32 X 3V8) . A6 {32X3\+*).A6 3a'

3B4 (32 X 31/8) • [22 • 32] (32 X 31/8) . [22 • 32] 3b'
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8 Robert A. Wilson [81 

PROOF. TO find the conjugacy classes and centralizers in 3 1 + 1 2 • 2Suz requires 
only some elementary geometry of the complex Leech lattice. (Note, however, 
that the classification of the 2-spaces spanned by minimal vectors given (but not 
used) in [7] is wrong, in that the orbit sizes given as 2970 and 5346 should be 1980 
and 6336.) We have also already classified 32-groups containing 3,4-elements, so 
all that remains is to identify the pure 35-type groups. To do this we must first 
describe the structure of the normalizer of a 32-group of type 3i?4(i), which has 
the shape 3 2 . 3 5 . 3 1 0 : (Afu X 2SA). We do this by analogy with the description of 
2 2 • 2 1 1 • 2 2 2 • ( M 2 4 X S3) given in [2]. The analogy is not complete, however, and 
there does not seem to be any underlying loop corresponding to Parker's loop. On 
the other hand, the fact that the group splits over its <93-subgroup means that we 
can manage without such a loop. 

The normal subgroup 3 2 . 3 5 = 3 7 is the intersection of the groups 31 + 1 2 

corresponding to the 35-elements in the original 32-group. The action of the next 
factor 3 1 0 on the 3 7 is the natural one, that is, it consists of all elements which fix 
both the 3 2 and the quotient 3 5 pointwise. As a module for Mn X 2S4 it is 
therefore isomorphic to Hom(5,2) = 5* <8> 2, where modules are denoted by their 
degrees, and * denotes the dual. 

Take a copy of the ternary Golay code containing the vector ( l 1 2 ) , and let Mn 

act by fixing this vector. The resulting 5-dimensional module is the one we have 
called 5*, so the module denoted 5 is obtained by taking all words in the co-code 
orthogonal to ( l 1 2 ) . Now Mn has orbits 55 + 66 on the 1-spaces in 5, and from 
what we have already proved of Proposition 5.1 these give rise to 33-groups of 
types 3BU and 3B4A9 respectively. 

We are now in a position to finish the proof of Proposition 5.1. First note that 
the structure of 3 2 . 3 5 . 3 1 0 : ( M u X 2SA) implies that the first 2-space of type 3B4 

in the Leech lattice is of class 3i?4(i), but that neither of the others is of this class. 
Hence the second 2-space of type 3B4 is of class 32?4(ii), since it is centralized by 
elements of order 5. It follows that the third 2-space of type 3i?4 cannot be 
conjugate to the second, so must be of class 32?4(iii). This concludes the proof. 

THEOREM 5.2. / / Y is an elementary Abelian group of order 9 then N(Y) is 
contained in one of the groups N(3A), N(3B), N(3A2) (whose structures are given 
above) or in one of the groups 

N(3B2) = 3 2 . 3 5 . 3 1 0 : ( M n X 2S4), 
JV(38) = 3 8 - 0 8 - ( 3 ) - 2 . 

PROOF. We have seen that the normalizer of a 32-group of type 354(ii) or 
3B4(iii) is contained in N(3B), and that the normalizer of a 32-group of type 
3i?4(i) has the shape given above. We have also dealt with the 3,4-pure groups, 
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[9 ] The odd-local subgroups of the Monster

and it is clear that NQA^) < N(3A) and N(3A3BX) < N(3B). Finally,
C(3A2B2) = 38 • 2£/4(3), so N(3A2B2) < JV(38). But now iV(38) is transitive on
the 3^42fi2-subgroups, so has the indicated structure.

From now on we may assume that Y is an elementary Abelian 3-group of order
at least 33, containing a 3£-element but no 3C-element. The group 38 with
normalizer 38 • Og~(3) • 2 will be denoted by E, and the group 37 with normalizer
3 2 . 3 5 . 31 0: (Mn X 2S4) will be denoted by F.

6. Subgroups of X containing x

Next we show that if we have a 32-group of type 32?4(ii) or 32?4(iii), embedded
in 31 + 12, then all the 3A- or 3B-elements which centralize it are also contained in
the same group 31 + 1 2 . We do this by showing that their centralizers in 2Suz
contain only elements of type 3c.

PROPOSITION 6.1. The centralizer of a 2-space of type 354(ii) contains no
elements of type 3a or 3b in 2Suz.

PROOF. We have seen that the full 32-normalizer is in 31 + 12 • 2Suz: 2, and that
it has the shape (32 X 31+8) . (A6 X 2^44) . 2. Now embedding (2 • A4 X A6) . 2
in 2Suz: 2 we see that the A6 centralizes 22?-elements of Suz, since these are the
ones which lift to elements of order 4 in 2Suz. Hence all the 3-elements in this A6

are of Swz-class 3C (that is, type 3c), and we have seen that there are no elements
of M-class 3A or 35 in such a coset of 31 *12.

PROPOSITION 6.2. There is no 32-group of type 3fi4(iii) in the fixed point set in
3 1 + 1 2 of an element of type 3a or 3b.

PROOF. In the 3a-case, the fixed point set is a subgroup of E = 38. But all
354-groups in E are conjugate, so are of type 32?4(i).

In the 3&-case, the fixed point set is the group 34 X 3 1 + 2 given in Section 4
above. But all the maximal Abelian subgroups of this are conjugate to a subgroup
of F, so we must show that F contains no 32-groups of type 3/?4(iii). Such a
subgroup would obviously have to have trivial intersection with the invariant
32-subgroup, so the problem reduces to showing that there is no 32 in the 35

consisting entirely of elements from the 55-orbit under Mn. The proof can now
be completed by easy calculations with the Golay code.
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COROLLARY 6.3. If we have an elementary Abelian group containing a 32-group of
type 354(ii) or 3i?4(iii), then we can embed it in a unique 31 + 12, and can adjoin the
centre of this 31 + 12, since it is central in all Sylow 3-subgroups of the 32-centralizer.

In general, we need only consider elementary Abelian groups Y whose normal-
izer acts irreducibly on Y. The following special case of a result of Piper [5] is
very useful in this connection.

LEMMA 6.4. / / p is an odd prime, n > 3, and H is an irreducible subgroup of
GLn(p) containing all the transvections fixing a given point, then H > SLn(p). In
particular, H acts transitively on the points and lines of the associated projective
space.

THEOREM 6.5. / / Y is any subgroup of 31 + 12 containing the centre, then its
normalizer is in one of

N(3B2)^32.35.310:(Mn X 2S4),

PROOF. We assume that N(Y) acts irreducibly on Y. But N(Y) contains all the
transvections fixing x, induced by elements of 31 + 12, so by Lemma 6.4 N(Y) is
transitive on the non-trivial elements of Y, and on the 32-subgroups of Y. Hence
Y is 35-pure, and all the 32-groups in Y are of class 32?4(i). But the calculation in
Proposition 6. 2 shows that the 35 chief factor contains no 35-pure 32-group, and
this concludes the proof.

7. Subgroups of E

We have dealt now with any elementary Abehan 3-group containing x which is
either in 31 + 12 or contains an element of class 3a' or 3b'. It remains therefore to
consider those groups containing only elements of class 3a or 3b, which give rise
to 32-groups of types 3A2B2 and 3A1B3 respectively. Now Suz contains no
32-groups of type 3a4, so we can divide the problem into two cases:

( l ) r < 31 + 1 2 : 3 , of type 3a,
(2) Y contains an element of type 3b.
In the first case Y is a subgroup of the group E = 38. There is a quadratic form

on this 38-group, which is invariant up to sign. This quadratic form is inherited by
subgroups, and we want to see to what extent it remains invariant. Note first that
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[li] The odd-local subgroups of the Monster 11

the 3A -elements are non-isotropic, while the 3.6-elements are isotropic, so that the
kernel of the quadratic form on a subgroup Y is well defined: it is the set of all
32?-elements in Y not contained in any 3y4252-subgroup of Y. Hence we may
assume that the quadratic form on Y is either zero, or non-singular. But if it is
zero then Y is a subgroup of X, and its normalizer is given by Theorem 6.5.

PROPOSITION 7.1. If the quadratic form is non-singular, then N(Y) is contained
in 38 • 0,(3) • 2.

PROOF. Since \Y\ > 33, Ycontains a 3^252-subgroup, so C(Y) < 38 • 08(3) • 2.
Furthermore, the normalizer of Y in 38 • O8(3) • 2 is transitive on the 3A2B2-sub-
groups, and N(3A2B2) < 38 • O8(3) • 2. Hence the result.

REMARK. This is a variant of Lemma 5.1 of [9], using subgroups rather than
elements.

8. Groups containing a 3AlB3-subgroup

First note that C(3A1B3) is contained in 32 . 35 . 3 1 0 : (M n X 254). For the
32-group of type 3AXB3 can be embedded in the 35 consisting of all Golay co-code
words orthogonal to (I12), so that its centralizer in N(3B2) is 32 . 35 . 36 .
(22 X 2 A 4 ) , which has the same order as its centralizer in M.

Now let Y1 = Z(O3(C(Y))), so that N(Y) < A ^ ) . Then Y1 contains Y and at
least one 35-element from the normal 32 in 3 2 . 3 5 . 31O:(MU X 2S4). From the
point of view of such a 3.8-element, therefore, it contains a 2-space of type 3AXB3

in the 31 + 12. The centralizer of this 33-group is (32 X 31 + 8) . [22 • 32]. If our
elementary Abelian 3-group is contained in the 31 + n, then its normalizer is given
by Theorem 6.5. From the results of Sections 5 and 6, it therefore suffices to
prove:

PROPOSITION 8.1. / / Y is an elementary Abelian group in 31 + 12 • 2Suz, contain-
ing the centre, an outer element of class 3b, and a subspace of type 3A^B3 in the
31 + 12, then it contains an element of class 3b', and hence a 32-group of class

PROOF. Taking the 3b element given above, its centralizer in 31 + 1 2 is a group
34 X 31 + 2. Now the only 3.6-elements in the centre of this group are those in the
group generated by (0,0,0,1,1,1) and (0,0,0, i, i, i), which does not contain a
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subgroup of type 3A1B3. Hence Y must contain a non-central element of
34 X 3 1 + 2 , and multiplying this by our 3&-element we obtain an element of type
3b'.

This concludes the proof of Theorem 3.

9. The 5-local subgroups

In this section we shall prove Theorem 5. Our proof follows in outline the same
method as for the 3-local subgroups, so we content ourselves with giving fewer
details. Many of the results stated here without proof can either be found in [4] or
else readily deduced from results of that paper.

First we consider the various classes of subgroups of order 5 and 25. There are
two classes of elements of order 5, with normalizers

N(5A) = (Dw X HN) • 2,

There is also one class of elements of order 25, which have centralizer 25 X Dw

and 5th-power to 55-elements. We have the following class fusion from 5 X HN
to M:

HN-c\ass
M-class
diagonal elements
52-type

52-centralizer

SA
SA
SA

SA6

S2 X U, (

SB
SB
SA

SA5BX

51 5 x 5 l + 4 : 2

SCD
SB
SA/B

5A3B3

: 1 + 4 : 5 5 2 x 5 2 : 2 - , 4 <

5£
SA
SB

SA

52 x5»+
+2:22

Next we wish to find the conjugacy classes of elements of order 5 in N(5B).
First note that there are two orbits of 2J2 on the 3906 1-spaces in the 56, as
follows

Number Class 52-type 52-centralizer

1890 5A 5 ^ 5 ^ 5 x 5 ' +
+ 4 : 2 1 + 4 : 5

2016 5B 556(i) (5 X 5 1 + 4 ) : 5 2 : S 3

The other classes of 5-elements in 56:2 • J2:4 are given names corresponding to
their images in J2, and are as follows:

Name 52-type 52-centralizer

5AB 5A3B3 52X52:2-A5

5AB' 5B6(ii) 5 4 :2

5CD 5A2B4 5 4 : (2 X Dw) = 52 X 5 1 / 2 :22

5CD' 5B6(w) 5 4 :2

5CD" 25A,5B 25 X D10
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Now consider the various 2-spaces in the 56 on which 2J2 acts, and the
normalizers of the corresponding 52-subgroups of M. By calculation we obtain

Number
6300

37800
50400
6048
1008

Type
5A6

5A2BA

5A3B3

5A5B,

5*6(i)

Stabilizer
(52

(52

(52

(52

(52

x5V+2):[27].
X5V2):[27]
xs1;2):^],
X5V2):[25-
X 51

+
+ 2):(5 X

S3

S3

52]
2AS). [23]

PROOF OF THEOREM 5. Let Y be an elementary Abelian 5-subgroup of M.
Consider first the case when Y is 5̂ 4 -pure, that is, Y contains no 55-elements.
Then it has order at most 52 and its normalizer is either in N(5A) or in
N(5A2) = (52 :4 • 22 X U3(5)): S3.

Next, suppose Y contains a 55-element x, and consider Y as a subgroup of
C(x) — 5 1 + 6 : 2J2. If y is contained in 5 1 + 6 then by Lemma 6.4 we may assume
it is 5.6-pure. Hence Y has order at most 53 and its normalizer is in one of N(5B),
N(5B2) = 52 • 5 2 • 54:(S3 X GL2(5)), or N(5B3) = 53 + 3 • (2 X L3(5)).

Finally, suppose Y contains elements outside 51 + 6 . If Y contains an element of
type 5AB' or 5CD' then its centralizer contains a unique 54-subgroup, which is
the same in both cases, and N{Y) is contained in N(54) = 5 4 : (3 X 2 • L2(25)): 2.
If y contains an element of type 5CD, then it is conjugate to a subgroup of 5 1 + 6 ,
and we can adjoin the centre of this since it is central in the unique Sylow
5-subgroup of C(Y). Hence this reduces to an earlier case. The only remaining
case is when Y contains only elements of type SAB. If Y has order 52 then its
normalizer is in N(5B2). Otherwise, it is conjugate to a subgroup of 51 + 6 ,
containing the centre, and again this reduces to an earlier case.

This concludes the proof of Theorem 5.

10. The 7-local subgroups

In this section we prove Theorem 7. As with Theorem 5, we do not give full
details, but much of the information can be derived from [1].

There are two classes of elements of order 7 in M, with normalizers

^ (7:3 xHe):2,

= 71
+

+4:(3 X 2 S 7 ) .
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There are 3 classes of 7-elements in He: 2, which give rise to 3 classes of 72-group
in M, with the following class fusion:

i/e-class
M-class
diagonal elements
72-type

72-centralizer

1AB
1A
1A

1A%

12XL2 (V)

1C
IB
1A

1A1B1

7 X 7*+
+2

IDE
IB
1A/B
1A4B4

:3 72 X D14

Now consider the group 71 + 4: (3 X 2S7). In the 74-factor the isotropic subspaces
(corresponding to the elementary Abelian subgroups of 71+4) are as follows

ClassClass

1A

IB

Number

280

120

Points

2

i .

1

Incidence

Lines

Number
70

120

210 1A4B4
f

Next let us consider the conjugacy classes of elements of order 7 in 74: (3 X 257)
outside the 74-subgroup. The 7-elements in 257 act on the 74 with one Jordan
block of size 4, since we already know that they centralize just 72 X Dl4 in
7 1 + 4 : (3 X 2S7). Fixing a particular such 7-element x, we see that 74/Im(l - x)
has dimension 1, and the normalizer of x permutes the non-trivial vectors
transitively. Hence there are two classes of these outer 7-elements, one of which
corresponds to the 72-group of type 1A4B4 which we have already found, the
other of which is a new 72-group of type 1B%.

PROOF OF THEOREM 7. Let Y be any elementary Abelian 7-group in M. If Y is
of pure 1A-type, then it has order at most I2, and its normalizer is contained in
one of the groups

N(1A)^ (7:3 XHe):2,

N{1A2) = (72 : (3 X 2A4) X L2(7)): 2.

Otherwise, Y contains a 7B-element x. If it is in the corresponding 71+4, then its
normalizer is in one of the groups

X 2S7),

https://doi.org/10.1017/S1446788700031323 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031323


[is] The odd-local subgroups of the Monster 15

Otherwise, it contains outer elements of 7 1 + 4 :25 7 . If these are of the first type,
then Y may be conjugated into 71 + 4 , and its normalizer is then in N(7B), as we
have already seen. If they are of the second type, however, then Y has order 72, is
self-centralizing, and has normalizer 72: SL2(7).

11. The p-locsA subgroups, p > 11

The /?-local subgroups for p > 11 can more or less be read off from the
character table. For p = 11 we have

N(UA) = (11:5 X M1 2):2 < ( L 2 ( l l ) X Af12):2,

Af(ll^2) = I I 2 : (5 X2-A5).

For p = 13, there are two classes of elements of order p, with normalizers

N(13A) = (13:6 X L3(3)) -2 ,

N(UB) = 1 3 1 / 2 : (3 X 4 • S4).

The 14 groups of shape 132 in 131 + 2 are 8 of type 13A13B1 and 6 of type 13514,
so we get just one more maximal 13-local subgroup

N(UB2) = 1 3 2 : 4 - L 2 ( 1 3 ) - 2 .

For the remaining primes, the Sylow /^-subgroup has order p, and we have

7V(1X4) = ( 1 7 : 8 X L 3 ( 2 ) ) - 2 < (S4(4): 2 X L3(2)) • 2,

N(19A) = (19:9xAs):2 < ( t / 3 ( 8 ) : 3 X ^ 5 ) : 2 ,

N(23AB) = 23:11 X 54 < 22 • 2U • 222 -(M24 X S3),

iV(29y4) = (29 :14 X 3) • 2 < 3 • F/24,

N(31AB) = 31:15 X 53 < S3 X 77i,

JV(4L4) = 41:40,

N(A1AB) = 47:23 X 2 < 2 • £ ,

= 59:29,

= 71:35.

In all cases where the group is known not to be maximal in M, we give a
containing group.

References

[1] G. Butler, 'The maximal subgroups of the sporadic simple group of Held', / . Algebra 69 (1981),
67-81.

[2] J. H. Conway, 'A simple construction for the Fischer-Griess Monster group', Invent. Math. 79
(1985), 513-540.

https://doi.org/10.1017/S1446788700031323 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031323


16 Robert A. Wilson [16]

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An ATLAS of finite
groups (Oxford Univ. Press, London and New York, 1985).

[4] S. P. Norton and R. A. Wilson, 'The maximal subgroups of the Harada-Norton group', / .
Algebra 103 (1986), 362-376.

[5] F. C. Piper, 'On elations of finite projective spaces of odd order', / . London Math. Soc. 41
(1966), 641-648.

[6] R. A. Wilson, 'The quaternionic lattice for 2G4(4) and its maximal subgroups', J. Algebra 77
(1982), 449-466.

[7] R. A. Wilson, 'The complex Leech lattice and maximal subgroups of the Suzuki group', J.
Algebra 84 (1983), 151-188.

[8] R. A. Wilson, "The maxima] subgroups of Conway's group Co{, J. Algebra 85 (1983),
144-165.

[9] R. A. Wilson, 'On maximal subgroups of the Fischer group Fi22\ Math. Proc. Cambridge
Philos. Soc. 95 (1984), 197-222.

[10] R. A. Wilson, 'Some subgroups of the Baby Monster', Invent. Math., to appear.
[11] R. A. Wilson, 'Some subgroups of the Thompson group', J. Austral. Math. Soc. 44 (1988),

17-32.
[12] R. A. Wilson, 'The local subgroups of the Fischer groups', submitted to J. London Math. Soc.

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
16 Mill Lane
Cambridge CB2 1SB
England

https://doi.org/10.1017/S1446788700031323 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031323

