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Drops sliding down an incline exhibit fascinating shapes, which indirectly provide a
great deal of information about wetting dynamics. Puthenveettil, Kumar & Hopfinger
(J. Fluid Mech., vol. 726, 2013, pp. 26–61) have renewed this subject by considering
water and mercury drops sliding at high speed. The results raise puzzling questions:
how to take into account inertia at a high-speed contact line, large contact angles, the
nature of the dissipation at small scale and sliding versus rolling behaviours?
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1. Introduction

Drops sliding down an incline offer a simple way to explore wetting dynamics,
although one needs reasonably smooth and well-controlled substrates. This is perhaps
why, up to the 1990s, pioneering works only addressed the yield threshold and
its connections with wetting hysteresis (Dussan 1985). Later, a successful model of
drop velocity just above threshold was constructed (Kim, Lee & Kang 2002), while
several researchers addressed surprising shape changes when this drop velocity U
was progressively increased (Podgorski, Flesselles & Limat 2001; Le Grand, Daerr
& Limat 2005). A remarkable instability of the drop rear was identified, in which
a conical tail develops on two inclined contact lines (see figure 1), reminiscent
of previous observations in the coating field (Blake & Ruschak 1979). The laws
governing the cone geometry, as well as the flow structure, have been clarified in the
lubrication limit. Strongly confined between two inclined contact lines, on which the
flow lines must end perpendicularly, the flow adopts a self-similar structure that has
been checked by particle image velocimetry (Snoeijer et al. 2005). This significantly
constrains the cone geometry, whose typical angles are described by generalizations
(Limat & Stone 2004; Snoeijer et al. 2005, 2007) of the Voı̈nov ‘hydrodynamical
model’. Even the curvature radius R regularizing the cone at small scale was identified,
and is proportional to the product of the microscopic cutoff length of the model lm

(below which liquid sliding is allowed) and an exponential function of the inverse of
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FIGURE 1. From left to right: mercury drops observed by Puthenveettil et al. (2013); a silicon
oil drop observed by Peters et al. (2009), with the definition of the tip radius R; and a recent
numerical simulation using a VOF method, by Maglio & Legendre (2013).

the capillary number (Peters et al. 2009), i.e. R ' lm exp(θ 3
S /[9Ca]), in which θS is the

static receding contact angle and Ca = µU/γ , where µ is the dynamic viscosity and
γ is the surface tension. This exponential function is due to the logarithmic thickness
profile found in the hydrodynamical model. However, the success of this model is
qualified at best, as experiments with water have revealed unexpectedly low values of
lm, sometimes even subatomic (Podgorski et al. 2001; Winkels et al. 2011). This fact
was suspected to be linked to the effect of liquid inertia, heretofore neglected.

Indeed, the behaviour of drops reaching a high Reynolds number remained largely
unknown. Another limitation was the low values of the equilibrium contact angles
explored, and also the very limited number of contact angles considered. Clearly,
these limitations prevent one from understanding how things change when one moves
from sliding drops in partial wetting conditions (Podgorski et al. 2001; Kim et al.
2002) to drops rolling on hydrophobic substrates (Mahadevan & Pomeau 1999;
Richard & Quéré 1999), in which both velocities and contact angles are increased
dramatically. This question is far from trivial, as the divergence of viscous stresses
near contact lines disappears when drops ‘roll’ (Mahadevan & Pomeau 1999), although
the transition scenario is still unclear (Thampi, Adhikari & Govindarajan 2013).

2. Overview

Puthenveettil, Kumar & Hopfinger (2013) first reconsider the drop velocity selection
by introducing a boundary layer at the solid/liquid interface, in which the shear
is localized. This leads to a new mobility law that works nicely for both water
and mercury. They then adopt a strategy similar to that of Le Grand et al. (2005),
extracting advancing and receding angles from side views, and comparing the results
to available models of wetting dynamics. First, the classical hydrodynamic description
with a slip length can again fit the data well, but the slip length required is much
too small and even unphysical, as in Winkels et al. (2011). The inertia terms in
a generalized model seem negligible, which is not so surprising, as the effective
Reynolds number defined in terms of the local thickness vanishes asymptotically near
the contact line. Molecular kinetic theory also gives reasonable fits, but the price
to be paid appears to be a rather strong asymmetry between wetting and dewetting.
The authors also consider the so-called ‘interface creation’ model, which has caused
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controversy recently in terms of its conception of surface tension, and they explain that
a careful choice of parameters could lead to consistency between their data and those
of Le Grand et al. (2005) while restoring a certain symmetry. In the author’s opinion,
in the presence of wetting hysteresis, this principle of symmetry is questionable, and
the use of an asymmetrical description of activated jumps at small scales, possibly
combined at large scale with viscous dissipation, remains a simpler alternative.

Finally, the authors prove that even in their situation, there is cone formation at
the drop rear. Modelling of the observed structure remains puzzling, as the inertial
terms (of order ρU2/x, where x is the distance to the cone tip) do not scale as
the capillary pressure gradient (γ /x2), which is balanced at all scales by viscous
dissipation (µU/x2) in the lubrication limit (Limat & Stone 2004).

3. Future

Perhaps the most puzzling issue is as follows: a hydrodynamical model describes
the spatial self-organization (logarithmic profiles, correlations between angles, the self-
similar structure of the flow etc.) reasonably well, but the price to be paid (at least
for water and now mercury) seems to be the acceptance of an unphysical cutoff length
scale lm. Here, it is not necessarily a good thing to set models against each other
as incompatible approaches. One is perhaps faced with a situation in which several
sources of dissipation are involved, each one being relevant at a different scale. This
can be illustrated by the ‘combined model’ (Petrov & Petrov 1992), whose simpler
form in the small contact angle limit states

θ 3
= θ 3

m ± 9Ca log(ξ/lm), θ 2
m = θ

2
S ± 2αCa, (3.1)

in which θ is the slope of the interface at a distance ξ from the contact line, the
logarithmic dependence accounting for viscous dissipation (‘bending’ of the interface),
while the static equilibrium angle θS is replaced by a velocity-dependent effective
angle θm defined at very small scale. Here, α is some microscopic sliding constant,
which could be related to molecular interactions with thermal activation mechanisms
(again, see, e.g., Petrov & Petrov 1992), or to the effect of surface defects on the
pinning of the contact line (Rolley & Guthmann 2007), or indeed to any other source
of dissipation at small scale. In the limit θS� α� θ 2

S /(2Ca), one can reorganize (3.1)
to obtain an ‘à la Voı̈nov’ description that reads θ 3

= θ 3
S±9Ca log(ξ/l′m), where l′m is an

effective cutoff given now by the relationship l′m = lm exp(−α/[3θS]), which can indeed
be much smaller than lm. A trivial extension to the three-dimensional description of
the corner tip in Peters et al. (2009) is possible and would indeed lead to the same
microscopic apparent scale in the formula describing the contact line curvature R.
Again, although the hydrodynamic description of the spatial interface structure remains
correct, its extrapolation to small scale seems to lead to an unphysically small
cutoff, but this is only reflecting the existence of a very large dissipation occurring
at microscopic scales, of different physical origin.

Here, the key obstacle for further progress could be our imperfect knowledge of
dissipation at small scales. One would need very well-controlled substrates having
well-defined interaction rules with the contact line. Such substrates can now be devised
by combining the present expertise in surface chemistry with nanotechnology facilities
in clean rooms. An obstacle is that it seems easier to fabricate perfectly hydrophobic
materials than surfaces of controlled wettability. In addition, it will be difficult to vary
the values assumed by the reference static contact angle. Here, powerful assistance
could come from numerical simulations of contact lines which have made huge
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progress by adapting interface codes (VOF and level set methods) to contact line
dynamics (see, e.g., Maglio & Legendre 2013), even allowing the inclusion of inertia
effects as well as finite slopes of the interface. Complex situations could then be
explored, even in parameter regions that are not accessible to analytical models or
experiments.
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