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Abstract

In this paper, we consider the dependence of eigenvalues of sixth-order boundary value problems on the
boundary. We show that the eigenvalues depend not only continuously but also smoothly on boundary
points, and that the derivative of the nth eigenvalue as a function of an endpoint satisfies a first-order
differential equation. In addition, we prove that as the length of the interval shrinks to zero all higher
eigenvalues of such boundary value problems march off to plus infinity. This is also true for the first (that
is, lowest) eigenvalue.
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1. Introduction

For the second-order Sturm–Liouville differential equation

(−py′)′ + qy = λwy,

with p(t) ≥ k > 0 and p, q, w ∈ C∞, Dauge and Helffer in [8, 9] showed that its
Neumann eigenvalues, as functions of an endpoint, satisfy a differential equation of
the form

λ′ = u2(q − λw).

They also found the equation satisfied by Dirichlet eigenvalues,

λ′ = −pu′2,

and, more generally, the equation for the eigenvalues of any self-adjoint separated
boundary condition at b parameterised by, say, β,

λ′ = u2[−β/p + (q − λw)].

The work of the first and second authors is supported by the National Nature Science Foundation of China
(grant no. 11361039).
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In addition, these authors showed that the lowest Neumann eigenvalue is, in general,
not a decreasing function of the endpoints but, nevertheless, has a finite limit as
the endpoints approach each other. On the other hand, they showed that the lowest
Dirichlet eigenvalue is a decreasing function of the endpoints and thus must have a
finite or infinite limit as the endpoints approach each other, but left open the question
of whether this limit is finite or infinite. In [13] the authors showed that it is infinite.
Some of the conclusions above were extended to the fourth-order case [10].

In this paper, we consider the dependence of eigenvalues of sixth-order boundary
value problems (BVPs) on the boundary. The sixth-order BVPs are known to arise in
astrophysics; the narrow convecting layers bounded by stable layers which are believed
to surround A-type stars may be modelled by sixth-order BVPs [4, 20, 21]. In [11],
Glatzmaier also notes that dynamo action in some stars may be modelled by such
equations. Moreover, when an infinite horizontal layer [19] of fluid is heated from
below and is subjected to the action rotation, instability sets in. When this instability
is like ordinary convection the ordinary differential equation is sixth-order. Further
discussions of sixth-order BVPs are given in [2, 3] and in a book by Chandrasekhar [6].

We show that the eigenvalues of sixth-order BVPs considered here depend not
only continuously but also smoothly on boundary points, and that the eigenvalues,
as functions of the endpoint b, satisfy a differential equation of the form

(pλ′)(b) = −3(pu′′′)2(b, b)

and all higher eigenvalues march off to plus infinity; this is also true for the first (that
is, lowest) eigenvalue. Although we use the same method of proof as in [13] to get
our main results, the specific process of calculation and proof is not completely the
same as in [13]. Besides theoretical importance, the dependence of the eigenvalues
on the interval is fundamental from the numerical point of view (see, for example,
[1, 5, 7–10, 12–18, 22, 23]).

In Section 2 we summarise some of the basic results needed later and establish the
notation. The main results are given in Sections 3 and 4, followed by a example in
Section 5.

2. Notation and basic results

Consider the differential equation

(−py′′′)′′′(t) + q(t)y(t) = λw(t)y(t) on (A, B), −∞ ≤ A < B ≤ ∞, with λ ∈ R, (2.1)

where
p, q,w : I = (A, B)→ R, 1/p, q,w ∈ Lloc(I), w > 0 a.e. on I. (2.2)

From [22], we know that there are three basic types of self-adjoint boundary
conditions: separated, coupled and mixed. In the separated case, there are many forms
for the sixth-order problems. In this paper, we study one form of them.

Let
J = [a, b], A < a < b < B, (2.3)
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and consider boundary conditions

cosαy(a) − sinαy′(a) = 0, (2.4)
cosαy′′(a) − sinα(py′′′)(a) = 0, (2.5)

cosα(py′′′)′(a) − sinα(py′′′)′′(a) = 0, 0 ≤ α < π, (2.6)
cos βy(b) − sin βy′(b) = 0, (2.7)

cos βy′′(b) − sin β(py′′′)(b) = 0, (2.8)
cos β(py′′′)′(b) − sin β(py′′′)′′(b) = 0, 0 < β ≤ π. (2.9)

In this paper, we fix p,q,w and the boundary condition (constants) and one endpoint
and study the dependence of the eigenvalues and eigenfunctions on the other endpoint.

By a solution of (2.1) on I we mean a function y ∈ ACloc(I) such that

y′, y′′, (py′′′), (py′′′)′, (py′′′)′′ ∈ ACloc(I),

and (2.1) is satisfied almost everywhere on I. Here ACloc(I) denotes the set of functions
which are absolutely continuous on all compact subintervals of I.

It is well known that the sixth-order BVP consisting of (2.1) together with boundary
conditions (2.4)–(2.9) is a regular sixth-order self-adjoint BVP which has an infinite
but countable number of only real eigenvalues. If p ≥ 0 a.e. on J = [a, b], then the
eigenvalues are bounded below and can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ · · · and λn → +∞ as n→ +∞. (2.10)

If un is an eigenfunction of λn, then un can be chosen real, and is unique up to constant
multiples.

3. Differential equations for eigenvalues

In this section, we first show the continuity properties of eigenvalues and
eigenfunctions of the BVP (2.1)–(2.9), then obtain the differentiability of the
eigenvalues and establish differential equations satisfied by them.

By a normalised eigenfunction u of the BVP (2.1)–(2.9) we mean one that satisfies∫ b

a
|u|2w = 1. (3.1)

For fixed a and fixed boundary condition constants α, β we abbreviate the notation of
Section 2 to λn(b) and study λn(b) as a function of b for fixed n ∈ N0 = {0, 1, 2, . . .}, as
b varies in the interval (a, B).

We now present a continuity result for the eigenvalues and eigenfunctions.

Theorem 3.1. Let self-adjoint BVPs be described as (2.1)–(2.9). Fix the boundary
conditions and the endpoint a. Fix n ∈ N0. Let λn = λn(b) for b ∈ (a, B).

(1) λn(b) is a continuous function of b for b ∈ (a, B).
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(2) If λn(b) is simple for some b ∈ (a, B) then λn(b) is simple for every b ∈ (a, B).
(3) There exists a normalised eigenfunction un(·, b) of λn(b) for b ∈ (a, B) such that

un(·, b), u′n(·, b), u′′n (·, b), (pu′′′n )(·, b), (pu′′′n )′(·, b) and (pu′′′n )′′(·, b) are uniformly
convergent in b on any compact subinterval of (a, B), that is,

un(·, b + h)→ un(·, b), u′n(·, b + h)→ u′n(·, b),
u′′n (·, b + h)→ u′′n (·, b), (pu′′′n )(·, b + h)→ (pu′′′n )(·, b), (3.2)

(pu′′′n )′(·, b + h)→ (pu′′′n )′(·, b), (pu′′′n )′′(·, b + h)→ (pu′′′n )′′(·, b),

and this convergence is uniform on any compact subinterval of (a, B).

Proof. (1) The continuity of λn(b) as a function of b follows from [13, Theorem 3.1].
Although the proof is given there for second-order Sturm–Liouville case, it extends
readily to our case.

(2) The fact that the multiplicity of λn(b) is constant in b for b ∈ (a, B) is a
consequence of the spectral theorem for self-adjoint operators in Hilbert space.

(3) Firstly we show that there exist (not necessarily normalised) eigenfunctions
un(·, b), un(·, b + h) for h sufficiently small such that (3.2) hold uniformly on any
compact subinterval of (a, B). For any solution y of (2.1) and eigenfunction u(·, b),
let

Y = (y, y′, y′′, (py′′′), (py′′′)′, (py′′′)′′)T ,

U = (u, u′, u′′, (pu′′′), (pu′′′)′, (pu′′′)′′)T

where T denotes the transpose. Choose eigenfunctions u = un(·, b + h) for small h,
all satisfying the same initial condition at a. Then the uniform convergence U(·, b +

h)→ U(·, b) on compact subintervals follows from part 1 and from the continuous
dependence of solutions y and their quasi-derivatives y′, y′′, (py′′′), (py′′′)′, (py′′′)′′ on
the parameter λ.

By normalising the eigenfunctions we complete the proof. �

It turns out that the eigenvalues are differential functions of the endpoints satisfying
first-order differential equations. The following lemmas are used to obtain these
differential equations.

Lemma 3.2. Assume u and v are solutions of (2.1) with λ = µ and λ = ν, respectively.
Then

[u, v]b
a = [u, v](b) − [u, v](a)

= [−(pu′′′)′′v + (pu′′′)′v′ − (pu′′′)v′′ + (pv′′′)u′′ − (pv′′′)′u′ + (pv′′′)′′u](b)
− [−(pu′′′)′′v +(pu′′′)′v′ −(pu′′′)v′′ +(pv′′′)u′′ −(pv′′′)′u′ +(pv′′′)′′u](a)

= (µ − ν)
∫ b

a
uv̄w. (3.3)

Proof. This follows from integration by parts. �
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Lemma 3.3. Assume a real-valued function f ∈ Lloc(A, B). Then

lim
h→0

1
h

∫ t+h

t
f = f (t) a.e. in (A, B).

Proof. See the proof given in [13]. �

Theorem 3.4. Fix n ∈ N0, and consider the BVP (2.1)–(2.9) with 0 ≤ α < π and β = π.
Letting λ = λn be the eigenvalue and u = un be the corresponding eigenfunction, we
have the following differential equation:

(pλ
′

)(b) = −3(pu′′′)2(b, b) a.e. in (a, B). (3.4)

In particular, if p is continuous at b ∈ [a, B) and p(b) , 0, then (3.4) holds at b.

Proof. For small h, in (3.3) we choose µ = λ(b), ν = λ(b + h), and u = u(·, b), v =

u(·, b + h). From (3.3) and the boundary conditions (2.4)–(2.9), noting that [u, v](a) =

0, u(b, b) = u′′(b, b) = (pu′′′)′(b, b) = 0, we have

[λ(b) − λ(b + h)]
∫ b

a
u(s, h)u(s, b + h)w(s) ds

= −(pu′′′)′′(b, b)u(b, b + h) − (pu′′′)(b, b)u′′(b, b + h) − u′(pu′′′)′(b, b + h),
(3.5)

u(b, b + h) = u(b, b + h) − u(b + h, b + h)

= −

∫ b+h

b
u′(s, b + h) ds

= −

∫ b+h

b
u′(s, b) ds +

∫ b+h

b
[u′(s, b) − u′(s, b + h)] ds.

By Theorem 3.1 and the normalisation (3.1),

lim
h→0

u(b, b + h)
h

= −u′(b, b). (3.6)

Also

u′′(b, b + h) = u′′(b, b + h) − u′′(b + h, b + h)

= −

∫ b+h

b

1
p(s)

(pu′′′)(s, b + h) ds

= −

∫ b+h

b

1
p(s)

(pu′′′)(s, b) ds

+

∫ b+h

b

1
p(s)

[(pu′′′)(s, b) − (pu′′′)(s, b + h)] ds.

By Theorem 3.1 and the normalisation (3.1),

lim
h→0

u′′(b, b + h)
h

= −
1

p(b)
(pu′′′)(b, b). (3.7)
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Similarly,

lim
h→0

(pu′′′)′(b, b + h)
h

= −(pu′′′)′′(b, b). (3.8)

Observe that∫ b

a
u(s, b)u(s, b + h)w(s) ds→

∫ b

a
u2(s, b)w(s) ds = 1, as h→ 0. (3.9)

Plugging (3.6)–(3.9) into (3.5) and noting that h→ 0, we get

−λ′(b) = 2[(pu′′′)′′u′](b, b) +
1

p(b)
(pu′′′)2(b, b).

Noting that

[(pu′′′)′′u′](b, b) =

(∫ b

b0

[(pu′′′)′′u′](s, b) ds
)′

=

(∫ b

b0

u′(s, b)d(pu′′′)′(s, b)
)′

=

(∫ b

b0

1
p(s)

(pu′′′)2(s, b) ds
)′

=
1

p(b)
(pu′′′)2(b, b),

we get (3.4). The second part of the theorem follows from the above.

Theorem 3.5. Fix n ∈ N0, and consider the BVP (2.1)–(2.9) with 0 ≤ α < π and β =

π/2. Letting λ = λn be the eigenvalue and u = un be the corresponding eigenfunction,
we have the following differential equation:

λ
′

(b) = u2(b, b)(q(b) − λ(b)w(b)) a.e. in (a, B). (3.10)

In particular, if q and w are continuous at b ∈ [a, B), then (3.10) holds at b.

Proof. The proof is similar to that of Theorem 3.4. For small h, we choose µ, ν and u, v
as in the proof of Theorem 3.4. From (3.3) and the boundary conditions (2.4)–(2.9),
noting that

[u, v](a) = 0, u′(b, b) = (pu′′′)(b, b) = (pu′′′)′′(b, b) = 0,

we have

[λ(b) − λ(b + h)]
∫ b

a
u(s, h)u(s, b + h)w(s) ds

= (pu′′′)′(b, b)u′(b, b + h) (3.11)
+ u′′(b, b)(pu′′′)(b, b + h) + u(b, b)(pu′′′)′′(b, b + h),
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(pu′′′)′′(b, b + h) = (pu′′′)′′(b, b + h) − (pu′′′)′′(b + h, b + h)

= −

∫ b+h

b
(pu′′′)′′′(s, b + h) ds

= −

∫ b+h

b
[q(s)u(s, b + h) − λ(b + h)u(s, b + h)w(s)] ds

= −

∫ b+h

b
q(s)u(s, b) ds +

∫ b+h

b
q(s)[u(s, b) − u(s, b + h)] ds

+ λ(b + h)
∫ b+h

b
u(s, b)w(s) ds

− λ(b + h)
∫ b+h

b
[u(s, b) − u(s, b + h)]w(s) ds.

By Theorem 3.1 and Lemma 3.3,

lim
h→0

(pu′′′)′′(b, b + h)
h

= −(q(b) − λ(b)w(b))u(b, b). (3.12)

In a similar way,

lim
h→0

(pu′′′)(b, b + h)
h

= −(pu′′′)′(b, b), (3.13)

when h→ 0, noting that∫ b

a
u(s, b)u(s, b + h)w(s) ds→

∫ b

a
u2(s, b)w(s) ds = 1. (3.14)

Plugging (3.12)–(3.14) into (3.11), we obtain (3.10). The second part of the theorem
follows from the above. �

Theorem 3.6. Fix n ∈ N0, and consider the BVP (2.1)–(2.9) with 0 ≤ α < π, 0 < β ≤ π.
Letting λ = λn be the eigenvalue and u = un be the corresponding eigenfunction, we
have the following differential equation:

λ
′

(b) = −
1

p(b)
(pu′′′)2(b, b) + (q(b) − λ(b)w(b))u2(b, b)

− 2(pu′′′)′′(b, b)u′(b, b) + 2(pu′′′)′(b, b)u′′(b, b) a.e. in (a, B).
(3.15)

Furthermore, if β , π , then

λ′(b) = −
cot2 β
p(b)

(u′′)2(b, b) + (q(b) − λ(b)w(b))u2(b, b)

− 2 cot2 β(pu′′′)′(b, b)u(b, b) + 2(pu′′′)′(b, b)u′′(b, b) a.e. in (a, B).
(3.16)
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If β , π/2, then

λ′(b) = −
1

p(b)
(pu′′′)2(b, b) + (q(b) − λ(b)w(b)) tan2 β(u′)2(b, b)

− 2(pu′′′)′′(b, b)u′(b, b) (3.17)
+ 2 tan2 β(pu′′′)′′(b, b)(pu′′′)(b, b) a.e. in (a, B).

In particular, if p, q and w are continuous at b and p(b) , 0, then (3.15)–(3.17) hold
at b.

Proof. The proof is more complicated, but consists basically of combining the
techniques in the proofs of Theorems 3.4 and 3.5. For small h, we choose µ = λ(b), ν =

λ(b + h), and u = u(·, b), v = u(·, b + h). From (3.3) and the boundary conditions (2.4)–
(2.9), noting that [u, v](a) = 0, we have

([λ(b) − λ(b + h)]
∫ b

a
u(s, h)u(s, b + h)w(s) ds

= −(pu′′′)′′(b, b)u(b, b + h) + (pu′′′)′(b, b)u′(b, b + h)
− (pu′′′)(b, b)u′′(b, b + h) + (pu′′′)(b, b + h)u′′(b, b)
− (pu′′′)′(b, b + h)u′(b, b) + (pu′′′)′′(b, b + h)u(b, b).

(3.18)

Now dividing (3.18) by h and taking the limit as h→ 0, plugging (3.7), (3.8), (3.12)
and (3.13) into (3.18), and using the continuity of λ at b, the uniform convergence of
u(·, b + h) to u(·, b), and Lemma 3.3, we obtain (3.15). In addition, from the boundary
conditions (2.4)–(2.9) we note that if β , π, then

u′(b, b) = cot βu(b, b), (pu′′′)(b, b) = cot βu′′(b, b), (pu′′′)′′(b, b) = cot β(pu′′′)′(b, b),

and if β , π/2, then

u(b, b) = tan βu′(b, b), u′′(b, b) = tan β(pu′′′)(b, b), (pu′′′)′(b, b) = tan β(pu′′′)′′(b, b).

Plugging these into (3.15) we obtain (3.16) and (3.17), respectively. The rest part of
the theorem follows from the above.

It is easy to see that Theorem 3.6 includes Theorems 3.4 and 3.5. �

4. Behaviour of the eigenvalues of sixth-order boundary value problems

Based on the differential equations we obtained in the previous section, we discuss
the behaviour of the eigenvalues as functions of the endpoint b.

Theorem 4.1. Consider the BVP (2.1)–(2.9). Let (2.2) hold, α = 0, β = π. Fix a and
consider the eigenvalues λD

n (b) = λD
n (b)(0, π, a, b) for b in (a, B). If

p ≥ 0 a.e. and
q2

w
,

1
p2 ∈ Lloc(A, B),

then, for n ∈ N0, λn(b) is strictly decreasing on (a, B) and

λD
n (b)→ +∞ as b→ a+. (4.1)
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Proof. The decreasing property of λD
n as a function of b follows directly from

Theorem 3.4. Assume that (4.1) is false. Then, by Theorem 3.2, λ(b) = λD
0 has a

finite limit, say λ+(a), as b→ a+ and hence is bounded on (a, B1] for B1 < B. Let
u = u0(·, b) be an eigenfunction of λ(b) normalised to satisfy∫ b

a
u2w = 1. (4.2)

Next we show that

(pu′′′)′′(a, b)→ 0, (pu′′′)(a, b)→ 0, u′(a, b)→ 0, as b→ a+. (4.3)

Noting that (pu′′′)′(a, b) = (pu′′′)′(b, b) = 0, according to Rolle’s theorem we know
that there exists at least one point c3 ∈ (a, b) such that (pu′′′)′′(c3, b) = 0. In addition,
using the boundedness of λ and the Schwarz inequality, we get

[(pu′′′)′′(a, b)]2 = [−(pu′′′)′′(a, b) + (pu′′′)′′(c3, b)]2

=

[∫ c3

a
(pu′′′)′′′

]2

=

[∫ c3

a
(q − λw)u

]2

=

[∫ c3

a
(qw−1/2 − λw1/2)w1/2u

]2

≤

∫ c3

a
(qw−1/2 − λw1/2)2

∫ c3

a
u2w

≤

∫ b

a

(q2

w
− 2λq + λ2w

) ∫ b

a
u2w→ 0 (as b→ a+).

There exists at least one point c2 ∈ (a, b) such that (pu′′′)(c2, b) = 0 since u′′(a, b) =

u′′(b, b) = 0. For (pu′′′)(a, b), we similarly have

[(pu′′′)(a, b)]2 = [−(pu′′′)(a, b) + (pu′′′)(c2, b)]2

=

[∫ c2

a
(pu′′′)′

]2

=

[∫ c2

a

∫ s

a
(pu′′′)′′ dt ds

]2

≤

[∫ c2

a

∫ s

a

∫ t

c3

(pu′′′)′′′ dη dt ds
]2

≤ (b − a)4
[∫ t

c3

(pu′′′)′′′ dη
]2

≤ (b − a)4
∫ b

a

(q2

w
− 2λq + λ2w

) ∫ b

a
u2w→ 0 (as b→ a+).
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For u′(a, b), note that there exists at least one point c1 ∈ (a, b) such that u′(c1, b) = 0
since u(a, b) = u(b, b) = 0. In addition, using the boundedness of λ and the Schwarz
inequality, we get

[u′(a, b)]2 = [−u′(a, b) + u′(c1, b)]2

=

[∫ c1

a
u′′ ds

]2

=

[∫ c1

a

∫ s

a

1
p(t)

∫ t

c2

∫ η

a

∫ τ

c3

(pu′′′)′′′ dm dτ dη dt ds
]2

≤ (b − a)7
∫ b

a

1
p2(t)

dt
∫ b

a

(q2

w
− 2λq + λ2w

) ∫ b

a
u2w→ 0 (as b→ a+).

Noting that λ(b)→ λ+(a) as b→ a+, by (4.3) and the continuous dependence of
solutions (2.1) on initial conditions and on the parameter, we conclude that u(·, b)→ 0
uniformly on any compact subinterval of [a, B). Therefore, for ε > 0, there exists a
b0 ∈ (a, B) such that

|u(t, b)| < ε, t ∈ [a, b], a < b < b0. (4.4)

This implies that ∫ b

a
u2w < ε2

∫ b

a
w. (4.5)

For ε sufficiently small this contradicts the normalisation (4.2) and completes the
proof. �

5. Example

To illustrate the result of Theorem 4.1 we give a simple example. Consider the
differential equation

y(6)(x) = λy(x), 0 ≤ x ≤ l < +∞, (5.1)

subject to the boundary conditions

y(0) = y(l) = 0, y′′(0) = y′′(l) = 0, y(4)(0) = y(4)(l) = 0. (5.2)

It is easy to see the boundary value problem (5.1)–(5.2) is a regular sixth-order
self-adjoint BVP which has an infinite but countable number of only real eigenvalues
satisfying

0 < λ1 ≤ λ2 ≤ · · · and λn → +∞ as n→ +∞.

Let Z+ = {1, 2, · · · }, fix the boundary conditions, the endpoint 0, and n ∈ Z+. Let
λn = λn(l) for l ∈ (0,+∞). We now consider the dependence of eigenvalues of the BVP
(5.1)–(5.2) on the boundary. For the differential equation (5.1) we know the general
solutions

y(x) = c1eiαx + c2e−iαx + c3e(
√

3/2+(1/2)i)αx

+ c4e(
√

3/2−(1/2)i)αx + c5e(−
√

3/2+(1/2)i)αx + c6e(−
√

3/2−(1/2)i)αx,
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Figure 1. The functions λ1(l) and λ2(l).

where i2 = −1, α6 = λ, α > 0. The six homogeneous boundary conditions (5.2) yield
six homogeneous equations of the form

∑
aikck (i = 1, . . . , 6) in the six quantities

c1, c2, c3, c4, c5, c6.
To obtain a nontrivial solution, we set the determinant |aik| = 0. Calculations yield

a transcendental equation for the eigenvalues λ,

sin(λ1/6l)(cos(λ1/6l) − cosh(
√

3λ1/6l)) = 0. (5.3)

Although we cannot get exact solutions of (5.3), based on Theorem 4.1 we know that
λn(l)→ +∞, n ∈ Z+ as l→ 0+. Noting that λn(l) > 0, we show the functions λ1(l) and
λ2(l) in Figure 1, drawn using MATLAB.
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