Gas accretion history of galaxies at $z \sim 0-2$: Comparison of the observational data of molecular gas with the mass evolution model of galaxies

Kana Morokuma¹, Junichi Baba², Kazuo Sorai³ and Nario Kuno^{1,4}

¹Nobeyama Radio Observatory (NRO), NAOJ, email: kana.matsui@nao.ac.jp ²Tokyo Institute of Technology, ³Hokkaido University, ⁴University of Tsukuba

Abstract. We found stellar mass-dependent evolution of galactic molecular gas fractions ($f_{\text{mol}} = \frac{M_{\text{mol}}}{M_{\star} + M_{\text{mol}}}$, M_{mol} : molecular gas mass, M_{\star} : stellar mass) where less massive galaxies have decreased f_{mol} from z=1 whereas massive galaxies have already had low f_{mol} until z=1. Comparison of the observed quantities (f_{mol} , optical and near infra-red [NIR] colors, specific star formation rate [sSFR = SFR/ M_{\star}]) with mass evolution models suggests that less massive galaxies had high f_{mol} at z=1 thanks to recent gas accretion.

Keywords. galaxies: evolution - galaxies: ISM - ISM: molecules

Measuring $f_{\rm mol}$ of galaxies at 0 < z < 1 is essential for understanding the evolution of galactic disks. It is because $f_{\rm mol}$ is closely related to mass assembly history of galaxies (gas accretion and star formation). Additionally, optical and NIR surveys revealed that local disk galaxies have acquired their M_{\star} and developed their disks at z < 1 (van Dokkum et al. 2013). We observed 12 disk galaxies at $z \sim 0.1$ -0.2 with the 45-m telescope at NRO and detected the CO emissions from 8 galaxies. Combined with literature CO data of different redshifts, we find that the CO detected galaxies follow $M_{\star} - f_{\rm mol}$ evolution suggested from the statistical study based on the indirect method (Popping et al. 2012). Comparison with theoretical predictions revealed a discrepancy from the observations, suggesting that the baryon processes (star formation, H_2 prescription, feedbacks) adopted

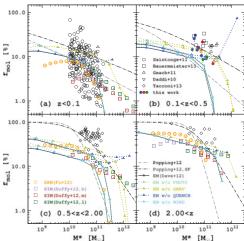


Figure 1. Comparison between observed and theoretically predicted $M_{\star} - f_{\rm mol}$.

in those studies bear improvements. Comparing the observed optical and NIR colors, sSFR and $f_{\rm mol}$ with mass evolution model, we find stellar mass dependence of gas accretion, mass loading factor and depletion time of gas. These suggest that less massive galaxies, possible progenitors of disk galaxies at z=0, had high $f_{\rm mol}$ at z=1 thanks to the gas accretion and have consumed gas to form galactic disks from z=1 to z=0.

References

van Dokkum, P. G., et al. 2013, ApJ, 771, 35 Popping, G., et al. 2012, MNRAS, 425, 2386 Fu, J., et al. 2012, MNRAS, 424, 2701 Duffy, A. R., et al. 2012, MNRAS, 420, 2799 Dave, R., et al. 2012, MNRAS, 421, 98 Tacconi, L. J., et al. 2013, ApJ, 768, 74